Study of Low Dimention Separation Axioms and Weakly Generalized Pre - r₀ Spaces

G. B. Navalagi^{#1}, Tippeshi.V.Marigoudar^{*2} ^{#1}Department of Mathematics, K.L.E Society's G. H College, Karnataka University, Haveri-581110, Karnataka State, India

^{#2}Department of Mathematics, Research Scholar, (PPMAT0168), Rayalseema University,Kurnool-518007.(A.P),India.

Abstract: The aim of this paper is to introduce the new class of low dimension sets called generalized pre difference sets and to introduce weakly generalized space called generalized R_0 spaces in topological spaces, and studied some of their properties and characterizations.

Keywords – Topological spaces, $gp-D_i$, i = 0,1,2,3 sets and spaces, $gp-R_0$ spaces.

AMS Subject Classifications: 54A05, 54A10

I. INTRODUCTION

In 1989 Nour [19] introduced the notions of pre - T_0 , pre - T_1 , and pre - T_2 spaces. In 2000 Saied Jafari [8] introduced the weaker separation axioms like pre $-D_0$, pre $-D_1$, pre $-D_2$ and pre-symmetric spaces. The first part deals with weak form of separation axioms like gp - D_0 , gp - D_1 , gp - D_2 space. The second part contains notions of generalized pre – symmetric spaces. The last part of this deals with Weakly generalized pre – R_0 spaces.

II. PRELIMINARIES

Throughout the thesis (X, τ) and (Y, σ) denote topological spaces on which no separation axioms are assumed unless explicitly stated and they simply written as X and Y respectively. All sets are considered to be subsets to topological spaces. The complement of A is denoted by X - A. The closure and interior of a set A are denoted by Cl(A) and int(A) respectively.

The following definitions are useful in the sequel :

DEFINITION 2.1: A subset A of a space X is said to be

- (i) semiopen [] if $A \subset Cl$ (Int (A)).
- semi-closed set[6] if $Int(cl(A)) \subseteq A$. (ii)
- (iii) preopen [12] if $A \subset Int (Cl (A))$
- preclosed [14] ifCl (Int (A)) ⊆ A (iv)
- α open [15] if A \subset Int (Cl (Int A))) (v)
- α closed [13] ifCl (Int (Cl (A))) \subseteq A (vi)
- (vii) Semi - preopen [2] (= β - open [1]) if A \subset Cl (Int (Cl (A)))
- (viii) a semi- pre closed set [1] if $Int(cl(Int(A))) \subset A$
- generalized closed (briefly, g-closed) [11] if $Cl(A) \subset U$ whenever $A \subset U$ and U is open in X. (ix)
- generalized preclosed (briefly, gp-closed) [18] if pCl (A) \subset U whenever A \subset U and U is open in X. (x)

The family of all semi open sess (resp. semi-pre open sets) of X will be denoted by SO(X) SPO(X).

DEFINITION 2.2: The semi-closure (resp. semi-pre closure) of a subset A of a space X is the intersection of all semi-closed (resp. semi preclosed) sets that contain A and is denoted by sCl(A) [4] (resp. spCl(A) [1])

DEFINITION 2.3: The semi-interior (resp. semi-pre interior) of a subset A of a space X is the union of all semi-open (resp. semi preopen) sets that contained in A and is denoted by sInt(A) [4] (resp. spInt(A) [1])

DEFINITION 2.4 : A subset A of (X, τ) is called :

(i) generalized closed (in brief, g-closed) set [5] if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open.

(ii) a semi-generalized-closed (briefly sg-closed) set [3] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semiopen in X

(iii) a generalized semi-closed (briefly gs-closed) set [2] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

The complement of a g-closed (resp. sg-closed , gs-closed) set of a space X is called generalized open [5] (in brief, g-open) (resp. sg-open [3] , gs-open [2]) set of X .

DEFINITION 2.5: Pre T_i - spaces (i = 0, 1, 2) A topological space X is called

- (i) Pre T₀ [7] if for each pair of distinct points x, y of X there exists a preopen set U such that $x \in U$ and $y \notin U$.
- (ii) Pre -T₁ [7] if to each pair of distinct points x, y of X there exists a preopen set U, V such that $x \in U$ and $y \in V$.
- (iii) Pre $-T_2$ [9] if to each pair of distinct points x, y of X there exists disjoint preopen sets U, V such that x \in U and y \in V.

DEFINITION 2.6: A topological space (X,τ) is said to be

- (i) strongly regular [16] if for each preclosed set $A \subset X$ and each point $x \notin A$, there exist disjoint preopen sets U, $V \subset X$ such that $x \in U$ and $A \subset V$.
- (ii) strongly normal [17] if for each pair of disjoint preclosed sets A and B of X, there exist disjoint preopen sets U and V containing them.

III. GENERALIZED PRE-DIFFERENCE SETS AND SPACES

In this section we introduce some new separation axioms namely, $gp-D_0 - spaces$, $gp-D_1 - spaces$ and $gp-D_2 - spaces$ in topological spaces and investigate some of their properties.

We define the following

DEFINITION 3.1: A subset M of a topological space X is called generalized pre-Difference set (briefly gpD-set) if there are two U, $V \in GPO(X)$ such that $U \neq X$ and $M = U \setminus V$.

DEFINITION 3.2: A topological space (X, τ) is called $gp - D_0$ if for any distinct pair of points x and y of X there exists a gpD-set of X containing x but not y.

DEFINITION 3.3: A topological space (X, τ) is called $gp - D_1$ if for any distinct pair of points x and y of X there exists a gpD-set of X containing x but not y and a gpD-set of X containing y but not x.

DEFINITION 3.4: A topological space (X, τ) is called $gp - D_2$ if for any distinct pair of points x and y of X there exists disjoint gpD-sets M and N of X containing x and y respectively.

REMARK 3.5: By the definitions it follows the implication :

THEOREM 3.6: For a topological space (X, τ) , the following properties hold :

- (1) (X,τ) is gp D₀ iff gp T₀.
- (2) (X,τ) is gp D₁ iff gp D₂.

PROOF: Necessary condition (1): Suppose that (X,τ) is gp - D₀ and for any distinct pair of distinct pair of points x and y of X at least one belongs to a gpD-set M. So we choose $x \in M$ and $y \notin M$. Let $M = U \setminus V$ for which $U \neq X$ and U, V \in GPO(X). It follows that $x \in U$. For $y \notin M$ we have two cases : (a) $y \notin U$, (b) $y \in U$ and $y \in V$. For the case (a), X is gp-T₀ since $x \in U$ and $y \notin U$. In case (b) $y \in V$ and $x \notin V$.

Necessary condition (2) : Assume that X is gp-D₁. So by definition, for any distinct pair of points x and y of X there exist gp -D sets M and N such that $x \in M$ and $y \notin M$ and $y \in N$ and $x \notin N$. Suppose $M = U \setminus V$ and $N = R \setminus S$ where U, V, R, S \in GPO(X). Since $x \notin N$ which implies $x \notin R$ or $x \in R$ and $x \in S$. If $x \notin R$, then from $y \notin M$ either (i) $y \notin U$ or (ii) $y \in U$ and $y \in V$. For the case (i) $x \in U \setminus V$ i.e. $x \in U \setminus (V \cup R)$ and $y \in R \setminus S$ follows that $y \in R \setminus (U \cup S)$. Now, we have $U \setminus (V \cup R)$ and $R \setminus (U \cup S)$ are disjoint sets. For the case (ii) since $y \in U$ and $y \in V$, it follows that $x \in U \setminus V$ and $y \in R \setminus S$ follows that $y \in R \setminus S$ and $x \in S$. Thus $R \setminus S$ and S are disjoint. All steps shows that X is gp-D₂.

The sufficient conditions for (1) and (2) follows from Remark 3.2.5.

REMARK 3.7 : From remark 3.5 and Theorem 3.6 it follows that $\text{gp-}D_1$ space $\text{gp-}T_0$ but converse is not true. Take $X = \{a, b\}$ and $\tau = \{X, \phi, \{a\}\}$. Then $\text{GPO}(X) = \{X, \phi, \{a\}\}$. The space (X, τ) is $\text{gp-}T_0$. But not $\text{gp-}D_1$. For $X = \{a, b, c, d\}$ with topology $\sigma = \{X, \phi, \{a\}, \{a, d\}, \{a, b, d\}, \{a, c, d\}\}$. The space (X, σ) is $\text{gp-}D_1$ but not $\text{gp-}T_1$.

IV. WEAKLY GENERALIZED PRE - R₀ SPACES

DEFINITION 4.1: A topological space (X, τ) is said to be weakly gp - R₀ if and only if $\bigcap_{x \in X} gpCl(\{x\}) = \phi$.

REMARK 4,2: Every weakly $gp - R_0$ space is weakly $pre - R_0$

PROOF: since $\bigcap_{x \in X} \operatorname{gpCl}(\{x\}) \subseteq \bigcap_{x \in X} \operatorname{pCl}(\{x\})$ hence the result follows.

EXAMPLE 4.3: Take $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{b, c\}\}$ then (X, τ) is weakly gp - R₀.

DEFINITION 4.4: Let (X,τ) be a topological space and $A \subset X$. Then the gp-kernel of the point x is the set denoted by gpKer $(\{x\}) = \{y \mid \{x\} \cap_{x \in X} \text{gpCl}(\{y\}) \neq \phi\}$ equivalently gpKer $(\{x\}) = \cap \{G \in \text{GPO}(X,\tau) / x \in G\}$.

THEOREM 4.5: A topological space (X, τ) is weakly gp - R₀ if and only if gpKer $({x}) \neq X$.

PROOF: Suppose (X, τ) is weakly gp - R₀ and there exist a point $z \in X$ such that $gpter(\{z\}) = X$. It follows that $z \notin U$, where U is some proper gp-open subset of X. It means that $z \in \bigcap_{x \in X} gpCl(\{x\})$ which against to the assumption. Now if $gpker(\{z\}) \neq X$ for every x in X. If there exists a point z in X such that $z \in \bigcap_{x \in X} gpCl(\{x\})$, then every gp-open set containing z must contain every point of X. It follows that X is the unique preopen set containing z. Therefore, $gpker(\{z\}) = X$ which is a contradiction. It follows that X is weakly gp - R₀.

DEFINITION 4.6: A function $f : (X, \tau) \to (Y, \sigma)$ is called strongly gp-closed if the image of every gp-closed subset of X is gp-closed in Y.

THEOREM 4.7: If the function $f: (X, \tau) \to (Y, \sigma)$ is an injective always gp-closed function and X is weakly, then Y is weakly gp - R₀.

PROOF: From the assumption follows that

 $\bigcap_{y \in X} \operatorname{gpCl}(\{y\}) \subset \bigcap_{x \in X} \operatorname{gpCl}(\{f(x)\}) \subset f(\bigcap_{x \in X} \operatorname{gpCl}(\{x\})) = f(\emptyset) = \emptyset.$

THEOREM 4.8: Let the topological space be weakly $gp - R_0$ and Y be any topological space. Then the product space X xY is weakly $gp - R_0$.

PROOF: It is sufficient to show that $\bigcap_{(x,y) \in XxY} \operatorname{gpCl}(\{(x,y)\}) = \emptyset$.

We have

$$\begin{split} &\bigcap_{(x,y)\in XxY} \text{gpCl}(\{(x,y)\}) = \bigcap_{(x,y)\in XxY} \big(\text{gpCl}(\{x\}) \times \text{gpCl}(\{y\})\big) = \\ &\bigcap_{x\in X} \text{gpCl}(\{x\}) \times \bigcap_{y\in Y} \text{gpCl}(\{y\}) = \emptyset \times Y = \emptyset. \end{split}$$

V. CONCLUSION

In this paper, we have introduced the new class of low dimension separation axioms and weakly generalized R_0 –spaces and their properties and characterizations.

REFERENCES

- [1] Abd-El Monsef, M.E., El-Deeb, S.N. and Mahmoud, R.A., β open and β continuous mappings, Bull. Fac. Sci. Assiut Univ. 12 (1983), 70 90.
- [2] D.Andrijevic, Semi-preopen sets, Mat. Vesnik 38 (1986), No.1, 24 32.
- [3] S.P.Arya and R. Gupta, On strongly continuous mappings, Kyungpook Math., 14(1974)131-143.
- [4] S.Arya and T. Nour, Characterizations of s normal spaces, Indian J. Pure Appl. Math., 21 (1990). 717 719.
- [5] K.Balachandran, P. Sundram and A. Rani, On generalized preclosed sets, preprint.
- [6] N.Biswas, Characterization of semicontinuous mappings, Atti. Accad. Naz. Lience. Rend. Cl. Sci. Fis. Mat. Nat (8), 48 (1970), 399 402.
- [7] Chattopadhyay. A, Pre T₀ and Pre T₁ topological spaces, J. Indian Acad. Math. Vol. 17 No.2 (1995), 156 159.
- [8] S.Jafari and T. Noiri, On contra-precontinuous functions, Bull.Malaysian Math.Sci.Soc. (Second series)(2002), 115-128
- [9] A.Kar and P. Bhattacharya., Some weak separation axioms, Bull. Calcutta. Math Soc. 82(1990), 415 422.
- [10] N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70
- [11] (1963), 36-41. Mashhour, A.S., Abd El-Monsef, M.E. and El-Deeb, S.N., On pre-continuous and weak pre-continuous mappings, Proc. Math. Phys. Soc. Egypt (1982), No. 53, 47-53.
- [12] Mashhour, A.S., I.A. Hasanein and S.N. El-Deeb, On α -continuous and α open mappings, Acta. Math Hunga. 41 (1983), 213 218.
- [13] Mashhour, A.S., Abd El-Monsef, M.E., and I.A. Hasanein: On pretopological spaces, Bull. Math. Soc.Sci.Math. R.S.R. 28(76) (1984), 39-45.
- [14] Govindappa Navalagi, and Girishsajjanshettar, (2012), Some properties of (s, p)-open and (s, p)-closed functions, Int. J. of Matematical sciences and applications, Vol. 2 No.1(2012), Pp. 13-16.
- [15] G.B.Navalagi, Completely preirresolute functions and completely gp-irresolute functions, IJMMS.
- [16] G.B.Navalagi, Quasi α closed, strongly α closed and weakly α irresolute mappings, TAP # 421,
- [17] G.B.Navalagi, Generalization of preirresolute functions, Topology Atlas Preprint 420.
- [18] T.Noiri, H. Maki and J. Umehara, Generalized preclosed functions, Mem. Fac.Sci. Kochi Univ. (Math.)19(1998), 13-20.
- [19] T.Noiri and V. Popa, On g-regular spaces and some functions, Mem.Fac.Sci.Kochi Univ.Math 20 (1999), 67-74.