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I. INTRODUCTION 

       In  1989 Nour [19]  introduced the notions of pre - T0, pre -T1,and pre - T2 spaces.  In 2000 Saied Jafari [8] 

introduced the weaker separation axioms  like pre – D0, pre – D1, pre – D2   and  pre-symmetric spaces.  The first 

part deals with weak form of separation axioms like gp - D0, gp - D1,gp - D2 space. The second part contains notions 

of generalized pre – symmetric spaces. The last part of this deals with  Weakly generalized pre - R0  spaces. 

II. PRELIMINARIES 

                 Throughout the thesis (X, ) and (Y, )  denote topological spaces  on  which no separation axioms are 

assumed unless explicitly stated and they simply written as X and Y  respectively. All sets are considered to be 

subsets to topological spaces. The complement of A is denoted by X – A. The closure and interior of a set A are 

denoted by Cl(A)  and  int(A)  respectively.  

The following  definitions are useful in the sequel : 

DEFINITION 2.1 : A subset A of a space X is said to be  

(i) semiopen [] if A   Cl (Int (A)). 

(ii) semi-closed set[6] if Int(cl(A))  A. 

(iii) preopen [12] ifA   Int (Cl (A)) 

(iv) preclosed [14]  ifCl (Int (A)) A 

(v)  - open [15] if A   Int (Cl (Int A))) 

(vi)  - closed [13]  ifCl (Int (Cl (A))) A 

(vii) Semi - preopen [2] (=  - open [1]) if A   Cl (Int (Cl (A))) 

(viii) a semi- pre closed set [1]  if  Int(cl(Int(A)))  A 

(ix) generalized closed (briefly, g-closed) [11]  if  Cl(A)  U whenever A  U and Uis open in X. 

(x) generalized preclosed (briefly, gp-closed) [18] if pCl (A)  U whenever A  U and U is open in X. 

 

The family of all semi open sess (resp. semi-pre open sets) of X will   be denoted by SO(X) SPO(X). 

DEFINITION 2.2 : The semi-closure (resp. semi-pre closure) of a subset A of  a space X  is the intersection of all                       

semi-closed (resp. semi preclosed) sets that contain A and is denoted by sCl(A) [4] (resp. spCl(A) [1] ) 

DEFINITION  2.3 : The semi-interior  (resp. semi-pre interior ) of a subset A of  a space X  is the union   of all 

semi-open  (resp. semi preopen ) sets that contained in  A and is denoted by sInt(A) [4] (resp. spInt(A) [1] ) 
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DEFINITION  2.4 : A subset A of (X , ) is called :  

(i)   generalized closed ( in brief, g-closed) set [5] if Cl(A)  U whenever A U  and U  is   open. 

(ii) a semi-generalized-closed (briefly sg-closed) set [3] if scl(A)  U whenever A  U and U is semiopen in X 

(iii) a generalized semi-closed (briefly gs-closed) set [2] if scl(A)  U whenever A  U and U is open in X. 

 

                     The complement of a g-closed (resp. sg-closed , gs-closed) set of  a space X is called generalized  

open [5] ( in  brief, g-open) ( resp. sg-open [3]  , gs-open [2] ) set of  X . 

 

DEFINITION  2.5: Pre Ti– spaces (i = 0, 1, 2) A topological space X is called  

(i) Pre - T0 [7] if for each pair of distinct points x, y of X there exists a preopen set U such that x  U and 

y U. 

(ii) Pre -T1 [7] if to each pair of distinct points x, y of X there exists a preopen set U, V such that x  U 

and y  V. 

(iii) Pre -T2 [9] if to each pair of distinct points x, y of X there exists disjoint preopen sets U, V such that x 

 U and y  V. 

 

DEFINITION  2.6:   A topological space (X,) is said to be 

(i) strongly regular [16] if for each preclosed set A  X and each point x A, there exist disjoint preopen 

sets U, V  X such that x  U and  A  V. 

(ii) strongly normal [17] if for each pair of disjoint preclosed sets A  and B  of X, there exist disjoint 

preopen sets U and V containing them. 

 

III. GENERALIZED  PRE-DIFFERENCE  SETS AND SPACES 

                  In this section we introduce some new separation axioms namely, gp-D0 – spaces , gp-D1 – spaces  and 

gp-D2 – spaces  in topological spaces and investigate some of their properties. 

We define the following  

DEFINITION 3.1: A subset M of a topological space X is called generalized pre-Difference set  (briefly gpD-set)  

if  there are two  U, V ∊ GPO(X)  such that  U ≠ X  and M = U \ V. 

DEFINITION 3.2: A topological space (X, ) is called gp - D0 if for any distinct pair of points x and y of X  there 

exists a gpD-set of X containing x but not y. 

DEFINITION 3.3: A topological space (X, ) is called gp – D1 if for any distinct pair of points x and y of X  there 

exists a gpD-set of X containing x but not y and a gpD-set of  X containing y but not x. 

DEFINITION 3.4: A topological space (X, ) is called gp – D2 if for any distinct pair of points x and y of X there 

exists disjoint  gpD-sets M and N of X containing x and y respectively. 

REMARK  3.5:   By the definitions it follows the implication :  

 

 

 

 

  

 

THEOREM 3.6: For a topological space (X,), the following properties hold  : 

   gp – D2  space    gp – D0  space    gp – D1 space 

   gp – T2  space    gp – T1  space    gp – T0  space 
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(1) (X,) is gp - D0  iff   gp - T0.     

(2) (X,) is gp - D1  iff   gp - D2. 

PROOF :  Necessary condition (1):  Suppose that (X,)  is gp - D0 and for any distinct pair of distinct pair of points 

x and y of X at least one belongs to a gpD-set M.  So we choose x∊M and y∉M.  Let M = U \ V for which U ≠ X 

and U, V ∊ GPO(X).  It follows that x ∊ U. For y ∉ M we have two cases : (a) y ∉ U  ,  (b)   y ∊U and y∊V.  For the 

case (a), X is gp-T0 since x ∊ U and y ∉ U.   In case (b) y∊V  and x∉ V. 

Necessary condition (2) :  Assume that X is gp-D1.  So by definition,  for any distinct pair of points x and y of X 

there exist gp -D sets M and N such that x∊M and y∉M and y∊N and x∉N.  Suppose M = U \ V  and  N  =  R \ S  

where U, V, R, S ∊ GPO(X).  Since x∉N which implies x∉R   or   x ∊ R   and   x ∊ S.   If  x∉ R,  then from y∉M 

either (i)  y ∉ U  or  (ii)  y ∊U and y∊V. For the case (i) x ∊ U \ V  i.e.  x ∊ U \ (V ⋃ R )   and  y ∊  R \ S  follows that 

y ∊ R \ (U ⋃ S).  Now, we have U \ (V ⋃ R ) and R \ (U ⋃ S) are disjoint sets. For the case (ii)  since y ∊U and y∊V,  

it follows that x ∊ U \ V    and y ∊ V.  So U \ V and V are disjoint.  Now if x ∊ R and x ∊ S follows that y ∊ R \ S and 

x ∊ S.  Thus R \ S and  S are disjoint.  All steps shows that X is gp- D2 . 

The sufficient conditions for (1) and (2)  follows from Remark 3.2.5. 

REMARK 3.7 : From remark 3.5   and Theorem 3.6   it follows that gp-D1 space gp-T0 but converse is not true.  

Take  X =  {a, b}  and 𝜏 = { X, 𝜙, {a}}.  Then GPO(X) = { X, 𝜙, {a}}.The space  (X,) is gp-T0.  But not gp-D1.  

For X = {a,b,c,d} with topology  σ =  { X, 𝜙, {a}, {a, d}, {a, b, d}, {a, c, d}}.  The space   (X,σ) is gp-D1but not gp-

T1. 

IV. WEAKLY  GENERALIZED PRE -  R0  SPACES 

DEFINITION 4.1: A topological space (X, τ ) is said to be weakly gp - R0 if and only if   gpCl( x )x∊X =  ϕ. 

REMARK 4,2:  Every weakly gp - R0   space is weakly  pre - R0 

PROOF:  since  gpCl( x )x∊X   ⊆   pCl( x )x∊X   hence the result follows. 

EXAMPLE 4.3: Take  X =  {a, b, c }  and  𝜏 = { X, 𝜙, {a}, {b, c}} then (X, τ ) is weakly gp - R0. 

DEFINITION 4.4: Let (X,) be a topological space and A  X.  Then the gp-kernel of the point x is the set  

denoted by gpKer ({x}) = { y | {x} gpCl  y  x∊X ≠𝜙}  equivalently   gpKer ({x}) =  {G  GPO(X,)/ x∊G}. 

THEOREM 4.5 : A topological space  (X, τ ) is weakly gp - R0  if and only if  gpKer ({x})≠ X. 

PROOF: Suppose (X, τ ) is weakly gp - R0 and there exist a point z ∊ X such that gpker({z}) = X.  It follows that z 

∉ U, where U is some proper gp-open subset of X.  It means that     z ∊ gpCl( x )x∊X  which against to the 

assumption. Now if gpker({z}) ≠ X   for every x in X.  If there exists a point z in X such that z ∊ gpCl( x )x∊X ,  

then every gp-open set containing z must contain every point of X.  It follows that X is the unique preopen set 

containing z.  Therefore,  gpker({z}) = X which is a contradiction.  It follows that  X is weakly gp - R0. 

DEFINITION 4.6 : A function f : (X, τ ) → (Y, σ) is called strongly gp-closed if the image of every gp-closed 

subset of X is gp-closed in Y. 

THEOREM 4.7: If  the function  f : (X, τ ) → (Y, σ) is an injective always gp-closed function and X is weakly , 

then Y is weakly gp - R0. 

PROOF:  From the assumption follows that  

 gpCl( y )y∊X ⊂ gpCl( f(x) )x∊X ⊂f  gpCl( x )x∈X   = f ∅  = ∅. 

THEOREM 4.8: Let the topological space be weakly gp - R0  and Y be any topological space. Then the product 

space X xY is weakly gp - R0. 
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PROOF:  It is sufficient to show that gpCl   x, y   =   ∅(x,y)∊XxY . 

We have  

 gpCl   x, y   =  (x,y)∊XxY   gpCl  x   ×  gpCl  y    (x,y)∊XxY =        

   gpCl  x  x∊X ×      gpCl  y  y∊Y =  ∅ × Y  =  ∅. 

V. CONCLUSION 

      In this paper, we have introduced the new class of  low dimension separation axioms  and weakly generalized R0 

–spaces  and their properties and characterizations. 
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