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Abstract - In this paper, the Laplace Variational Iteration Method (LVIM)and the Caputo fuzzy fractional 
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I. INTRODUCTION 
 

         The theory of fractional calculus, which deals with the investigation and applications of derivatives and 

integrals of arbitrary order has a long history. The theory of fractional calculus developed mainly as a pure 

theoretical field of mathematics, in the last decades it has been used in various fields as rheology, 

viscoelasticity, electrochemistry, diffusion processes, etc. The telegraph equations have a wide variety of 

application in physics and engineering. The applications arise, for example, in the propagation of electrical 

signals and optimization of guided communication systems [4, 8, 9]. It is recently shown by [2] that a 

quaternionic momentum eigenvalue produces a telegraph equation. This equation is found to describe the 

propagation of a quantum particle. The theory of fuzzy logic provides a mathematical strength to capture the 

uncertainties associated with human cognitive processes, such as thinking and reasoning. Therefore, assume 

space-time telegraph models have imprecise parameters, since fuzzy sets theory is a powerful tool for modeling 

imprecise and processing vague in mathematical models, hence, the our idea is solving space-time telegraph 

equations with fuzzy parameters via the new concept of solution and, utilizing the Caputo-type fuzzy fractional 

derivatives [14] and Laplace Variational Iteration Method(LVIM). 

The (LVIM)[1]combined the Laplace transform and variational iteration method [15, 3, 10], has been introduced 

by many authors in solving various types of problems. and apply it to space-time one dimensional fractional 

telegraph equations in a half-space domain (signaling problem). This approach enables us to overcome the 

difficulties that arise in finding the general Lagrange multiplier. 

The paper is organized as follows: in Section 2, we call some fundamental results on fuzzy numbers. In Sections 

3, illustrates the construction of Laplace variational technique In Section 4, we study the fuzzy space-time 

telegraph models using the concept of caputo fuzzy fractional derivative and present a new concept of solution 

In Section 5, we present an example to illustrate our method. 

II. PRELIMINARIES 
 

       We place a bar over a capital letter to denote a fuzzy number of  ℝ𝑛   So, 𝐴 , 𝐾 , 𝛾 , 𝛽  etc.  all represent fuzzy 

numbers of ℝ𝑛   for some n.  We write 𝜇𝐴 (𝑡), a number in [0,1], for the membership function of 𝐴  evaluated at  

 𝑡 ∈ ℝ𝑛 . An 𝛼 −cut of 𝐴 ,  is always a closed and bounded interval that written 𝐴 [𝛼],  is defined as 

 𝑡 𝜇𝐴  𝑡  ≥  𝛼 for  0 <  𝛼 < 1 We separately specify 𝐴 [0], as the closure of the union of all the 𝐴 [𝛼],  for 

 0 <  𝛼 ≤ 1. 

Definition1 : [7] Let ℝℱ =  𝐴    𝐴  ∶ ℝ → [0,1]}, satisfies (1)-(4) : 

1. ∀ 𝐴   ∈   ℝℱ, 𝐴  is normal. 

2. ∀ 𝐴   ∈   ℝℱ, 𝐴  is a fuzzy convex set. 

3. ∀ 𝐴   ∈   ℝℱ, 𝐴   is upper semi-continuous on ℝ. 

4. 𝐴 [0] is a compact set. 

 

Then ℝℱ is called fuzzy number space and ∀ 𝐴 ∈ ℝℱ, 𝐴  is called a fuzzy number. 

 

Definition2 : [7,13]We represent an arbitrary fuzzy number by an ordered pair of functions 

𝐴  𝛼 =  [𝐴1 𝛼 , 𝐴2 𝛼 ],    𝛼 ∈ [0,1] , which satisfy the following requirements : 

1. 𝐴1(𝛼) is a  nondecreasing function over [0,1], 
2. 𝐴2(𝛼) is a nonincreasing function on [0,1] 
3. 𝐴1(𝛼) and 𝐴2(𝛼)  are bounded left continuous on (0,1], and right continuous at  𝛼 = 0, and 
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4. 𝐴1 𝛼 ≤  𝐴2(𝛼), for 0 ≤  𝛼 ≤ 1. 

 

It should be noted that for 𝑎 ≤ 𝑏 ≤ 𝑐, 𝑎, 𝑏, 𝑐 ∈  ℝ a triangular fuzzy number 𝐴   =(a,b,c) is given such that 𝑎1(𝛼) 

= b-(1- 𝛼)(b-a) and 𝑎1(𝛼) =b+(1- 𝛼)(c-b) are the endpoint of the 𝛼-cut set, for all 0 ≤  𝛼 ≤ 1. In this paper we 

use triangular fuzzy numbers. For arbitrary fuzzy numbers 𝐴   [𝛼] = [𝑎1 𝛼 , 𝑎2(𝛼)] and 

𝐵   [𝛼] = [𝑏1 𝛼 , 𝑏2(𝛼)] we have algebraic operations as follows : 

1. (𝐴  + 𝐵 ) [𝛼] = [𝑎1 𝛼 + 𝑏1 𝛼 , 𝑎2 𝛼 + 𝑏2(𝛼)] 
2. (𝐴 − 𝐵 ) [𝛼]  = [𝑎1 𝛼 − 𝑏2 𝛼 , 𝑎2 𝛼 − 𝑏1(𝛼)] 

3. 𝑘  𝐴   [𝛼] =  
 𝑘 𝑎1 𝛼 , 𝑘 𝑎2 𝛼  ,   k ≥ 0
 𝑘 𝑎2 𝛼 , 𝑘 𝑎1 𝛼  ,   k < 0

  

Definition3: Let 𝐴 , 𝐵 ∈ ℝℱ. If there exists 𝐶    ∈  ℝℱ. such that 𝐴 = 𝐵  + 𝐶 , then 𝐶  is called the Hukuhara 

difference (H-difference) of 𝐴   , 𝐵    , and it is denoted by 

𝐴   ⊝ 𝐵 ≠  𝐴 + (−1) 𝐵 . 

Definition4: Let 𝐹: 𝑇 →  ℝℱ  be a fuzzy function. One says, F is (1) -differentiable at 𝑥0 ∈ 𝑇 if there exists an 

element 𝐹′ 𝑥0  ∈  ℝℱ   such that for all 𝑕 > 0 sufficiently near to 0, there exist 

𝐹 𝑥0 + 𝑕 ⊝  𝐹(𝑥0 ), 𝐹 (𝑥0 )  ⊝  𝐹 𝑥0 − 𝑕  
 

lim𝑕→0+
𝐹 𝑥0 +𝑕 ⊝  𝐹 (𝑥0 )

𝑕
 = lim𝑕→0+

𝐹 (𝑥0 ) ⊝ 𝐹 𝑥0 −𝑕 

𝑕
  = 𝐹′ (𝑥0 )         (1) 

 

 

F is (2) -differentiable at 𝑥0 ∈ 𝑇 if there exists an element 𝐹′ (𝑥0 )  ∈ ℝℱ such that for all  𝑕 < 0 sufficiently 

near to 0, there exist 

𝐹 𝑥0 + 𝑕 ⊝  𝐹(𝑥0 ), 𝐹 (𝑥0 )  ⊝  𝐹 𝑥0 − 𝑕  
 

lim𝑕→0−
𝐹 𝑥0 +𝑕 ⊝  𝐹 (𝑥0 )

𝑕
= lim𝑕→0−

𝐹 (𝑥0 ) ⊝ 𝐹 𝑥0 −𝑕 

𝑕
  = 𝐹′(𝑥0 )           (2) 

 

 

Definition5:  The Caputo fractional derivative of order  𝛽 > 0 of a crisp continuous function   𝑓 𝑥 , 𝑥 > 0  is 

defined by [11] 

𝐷𝑥
𝛽
𝑓 𝑥 =  

1

Γ(𝑛−𝛽)
 (𝑥 − 𝑡)𝑛−𝛽−1𝑥

0
𝑓(𝑛)(t)dt,     n − 1 <  𝛽 ≤ 𝑛 ∈ ℕ

𝑑𝑛

𝑑𝑥 𝑛
 𝑓 𝑥 ,                                          𝛽 = 𝑛 ∈ ℕ           

         (3) 

 

where 𝐷𝑥
𝛽

 is called the Caputo derivative operator. 

 

From Definition 5 the following result is obtained: 

 

𝐷𝑥
𝛽
𝑡𝛾=      

Γ(𝛾+1)

Γ(𝛾−𝛽+1)
𝑡𝛽−𝛾  ,   n − 1 <  𝛽 ≤ 𝑛, 𝛾 > 𝑛 − 1, 𝛾 ∈ ℝ   

0,                               n − 1 <  𝛽 ≤ 𝑛, 𝛾 ≤ 𝑛 − 1.

           (4) 

 

Definition6:  The Laplace transform of fractional order derivative, is defined by [11] 

 

ℒ 𝐷𝑥
𝛽
𝑓 𝑥  = 𝑠𝛽ℒ 𝑓 𝑥  −  𝑠𝛽−𝑘−1[𝑓 𝑘 (𝑥)]𝑥=0

𝑛−1
𝑘=0 ,    n − 1 <  𝛽 ≤ 𝑛, 𝑛 ∈ ℕ         (5) 

 

Definition7:  The Mittag-Leffler function with two parameters is defined by [16,11] 

 

𝐸𝛽,𝛾 𝑧 =  
𝑧𝑛

Γ(𝛽𝑛 + 𝛾)
, 𝛽, 𝛾, 𝑧 ∈ ℂ,   𝑅𝑒(𝛽)

∞

𝑛=0

> 0, 𝑅𝑒 𝛾 > 0 

 

It follows Definition 7 that 

𝐸2,1 𝑧
2 = cosh(𝑧),  𝐸2,1 −𝑧

2 = cos⁡(𝑧), and 𝐸2,3 𝑧
2 =

1

𝑧2 [cosh 𝑧 − 1]. 
 

III. LAPLACE VARIATIONAL ITERATION METHOD (LVIM) 
 

     Consider the following general multiterms fractional telegraph equation: 
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𝐷𝑥
𝛽

U(t, x) + f(t, x) = a1Dt
δ U(t, x) + a2Dt

γ
 U(t, x) + a3 U(t, x)

U 0, t = h t ,    DxU 0, t = g(t)
          (6) 

 

where  1 < 𝛽, 𝛿 ≤ 2, 0 <  𝛾 ≤ 1, 𝑡, 𝑥 ≥  0 and a1, a2, a3 are constants. 

 

The concept of the technique (LVIM) [1] is illustrated in the following context. By applying Laplace transform 

with respect to x, on both sides of (6) we get 

𝑠𝛽𝑢  𝑠, 𝑡 − 𝑠𝛽−1𝑢 0, 𝑡 − 𝑠𝛽−2𝑢𝑥 0, 𝑡 =  ℒ  a1
𝜕𝛿

𝜕𝑡 𝛿
𝑢 𝑥, 𝑡 + a2

𝜕𝛾

𝜕𝑡 𝛾
𝑢 𝑥, 𝑡 + a3u 𝑥, 𝑡 − f(𝑥, 𝑡)    (7) 

 

𝑢 𝑠, 𝑡 =
1

𝑠
𝑕 𝑡 +

1

𝑠2 𝑔 𝑡 −
1

𝑠𝛽
ℒ[f(𝑥, 𝑡)] +

1

𝑠𝛽
 ℒ  a1

𝜕𝛿

𝜕𝑡 𝛿
𝑢 𝑥, 𝑡 + a2

𝜕𝛾

𝜕𝑡 𝛾
𝑢 𝑥, 𝑡 + a3u 𝑥, 𝑡           (8) 

By taking the inverse Laplace transform to (7) we have 

 

𝑢 𝑥, 𝑡 = 𝑕 𝑡 + 𝑥𝑔 𝑡 − ℒ−1[
1

𝑠𝛽
ℒ f 𝑥, 𝑡  ] + ℒ−1[

1

𝑠𝛽
 ℒ  a1

𝜕𝛿

𝜕𝑡 𝛿
𝑢 𝑥, 𝑡 + a2

𝜕𝛾

𝜕𝑡 𝛾
𝑢 𝑥, 𝑡 + a3u 𝑥, 𝑡   ]    (9) 

Now the fractional derivative of order 𝛽 with respect to 𝑥 is removed, and the dependent variable 𝑢(𝑥, 𝑡) in the 

left hand side of (9) became free of derivatives. Next step, we differentiate (7) with respect to get 
𝜕

𝜕𝑥
𝑢 𝑥, 𝑡 = 𝑔 𝑡 −

𝜕

𝜕𝑥
[ℒ−1[

1

𝑠𝛽
ℒ f 𝑥, 𝑡  ]] +

𝜕

𝜕𝑥
[ℒ−1[

1

𝑠𝛽
 ℒ  a1

𝜕𝛿

𝜕𝑡 𝛿
𝑢 𝑥, 𝑡 + a2

𝜕𝛾

𝜕𝑡 𝛾
𝑢 𝑥, 𝑡 + a3u 𝑥, 𝑡  ]]    (10) 

The above step has been taken to enable us to construct the correction functional for (9) to be 

 

𝑢𝑛+1 𝑥, 𝑡 = 𝑢𝑛 𝑥, 𝑡 +  𝜆{
𝜕

𝜕𝜉

𝑥

0

𝑢𝑛 𝑥, 𝑡 − 𝑔 𝑡 +
𝜕

𝜕𝜉
[ℒ−1[

1

𝑠𝛽
ℒ f 𝑥, 𝑡  ]] 

− 
𝜕

𝜕𝜉
[ℒ−1[

1

𝑠𝛽
 ℒ  a1

𝜕𝛿

𝜕𝑡𝛿
𝑢𝑛 𝑥, 𝑡 + a2

𝜕𝛾

𝜕𝑡𝛾
𝑢𝑛 𝑥, 𝑡 + a3𝑢𝑛 𝑥, 𝑡  ]]}𝑑𝜉     (11) 

 

The general Lagrange multiplier for (11) can be identified optimally via variation theory to get 1 + 𝜆|𝜉=𝑥=0, 

𝜆′|𝜉=𝑥  =0 then, we obtain 𝜆 = −1 

Substituting 𝜆 = −1 into (11) we get the iterative formula for n =  0, 1, 2, 3. ., as follows: 

𝑢𝑛+1 𝑥, 𝑡 = 𝑢𝑛 𝑥, 𝑡 −  {
𝜕

𝜕𝜉

𝑥

0

𝑢𝑛 𝑥, 𝑡 − 𝑔 𝑡 +
𝜕

𝜕𝜉
[ℒ−1[

1

𝑠𝛽
ℒ f 𝑥, 𝑡  ]] 

− 
𝜕

𝜕𝜉
[ℒ−1[

1

𝑠𝛽
 ℒ  a1

𝜕𝛿

𝜕𝑡𝛿
𝑢𝑛 𝑥, 𝑡 + a2

𝜕𝛾

𝜕𝑡𝛾
𝑢𝑛 𝑥, 𝑡 + a3𝑢𝑛 𝑥, 𝑡  ]]}𝑑𝜉     (12) 

 

Start with the initial iteration 

𝑢0 𝑥, 𝑡 = u 0, t = x𝑈𝑥 0, 𝑡 = h(t) + x g(t) 

The exact solution is given as a limit of the successive approximations 𝑢𝑛 𝑥, 𝑡 , n=0,1,2… in other words, 

u(x,t)= lim𝑛→∞ 𝑢𝑛 𝑥, 𝑡  
 

IV. FUZZY SPACE-TIME FRACTIONAL TELEGRAPH EQUATIONS 
 

A. Caputo fuzzy fractional derivatives 

        Now we introduce definition and theorems for the order  1 < 𝛽 < 2, 𝛽 ≠ 1 derivative based on the 

selection of derivative type in each step of differentiation. (For 𝛽 = 1 see [6] and 𝛽 = 2  see[12,5]). 

Theorem1:  let  F ∈  C((0, a), ℝℱ)⋂𝐿1(0,a), ℝℱ) be a fuzzy valued function and   F x  =𝛼  𝑓1 x, 𝛼 , 𝑓2 x, 𝛼   
for 𝛼 ∈ [0,1] and 𝑥0 ∈ (0, 𝑎) then for  0 < 𝛽 < 1. 

(i) If F is (1)-Caputo fractional differentiable then 𝑓1(𝑥, 𝑎) and 𝑓2(𝑥, 𝑎), Caputo fractional differentiable 

and 

 

[𝐷1
𝛽
𝐹(𝑥0)]𝛼 = [𝐷𝛽𝑓1 x0, 𝛼 , 𝐷𝛽𝑓2(x0, 𝛼)] 

(ii) If F is (2)-Caputo fractional differentiable then 𝑓1(𝑥, 𝑎) and 𝑓2(𝑥, 𝑎), Caputo fractional differentiable 

and 

[𝐷2
𝛽
𝐹(𝑥0)]𝛼 = [𝐷𝛽𝑓2 x0, 𝛼 , 𝐷𝛽𝑓1(x0, 𝛼)] 

Where 

𝐷𝛽𝑓1(𝑥0, 𝛼) = [
1

Γ 𝑛 − 𝛽 
  𝑥 − 𝑡 𝑛−𝛽−1

𝑥

0

𝑓1
(𝑛)

(t, α)dt]𝑥=𝑥0
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𝐷𝛽𝑓2(𝑥0, 𝛼) = [
1

Γ 𝑛 − 𝛽 
  𝑥 − 𝑡 𝑛−𝛽−1

𝑥

0

𝑓2
(𝑛)

(t, α)dt]𝑥=𝑥0
 

Proof. See [14]. 
For a given fuzzy valued function  𝐹(𝑥), we have tow possibilities (as in definition 4) to obtain the Caputo 

fractional differentiable of F at x: 𝐷1
𝛽
𝐹(𝑥)  and 𝐷2

𝛽
𝐹(𝑥) for 0 < 𝛽 < 1. Then for each of these two derivatives, 

we have again two possibilities for  1 < 𝛽 < 2 (see definition 3.1 [14]): 
 

𝐷1
𝛽

F(x)  ↘
𝐷2,1
𝛽

F(x )

↗
𝐷1,1
𝛽

F(x )

 and for 𝐷2
𝛽

F(x)  ↘
𝐷2,2
𝛽

F(x )

↗
𝐷1,2
𝛽

F(x )

 

 

Definition8: Let F ∈  C ((0, a), ℝℱ) ⋂𝐿1((0, a), ℝℱ) and 𝑛,𝑚 = {1,2}. One says 𝐹 is (𝑛,𝑚)-Caputo 

fractional differentiable at 𝑥0 ∈ (0, a) if  𝐷𝑛
𝛽
𝐹  for 0 < 𝛽 < 1  exists on a neighborhood of 𝑥0 as a fuzzy valued 

function and it is (𝑚)-Caputo fractional differentiable at 𝑥0 for 1 < 𝛽 < 2 are denoted by  𝐷𝑛,𝑚
𝛽

𝐹(𝑥0)  for 

𝑛,𝑚 = {1,2}.  Using Definition 4 we have: 

 

Theorem2:  Let 𝐷1
𝛽

F x   or  𝐷2
𝛽
𝐹(𝑥) ∈  C ((0, a), ℝℱ)  be a fuzzy valued function and [F(x)] 𝛼 =

[𝑓1(x, 𝛼), 𝑓2(x, 𝛼)],  for  𝛼 ∈ [0,1] and 𝑥0 ∈ (0, 𝑎) then for  1 < 𝛽 < 2 

(i) If 𝐷1
𝛽

F(x) is (1)-Caputo fractional differentiable function then    𝐷𝛽𝑓1(𝛼) and  𝐷𝛽𝑓2( 𝛼) Caputo fractional 

differentiable and 

[𝐷1,1
𝛽

F x0 ]
𝛼 = [ 𝐷𝛽𝑓1 x0, 𝛼 ,  𝐷𝛽𝑓2(x0, 𝛼) ] 

(ii) If 𝐷1
𝛽

F(x) is (2)-Caputo fractional differentiable function then    𝐷𝛽𝑓1(𝛼) and  𝐷𝛽𝑓2( 𝛼) Caputo fractional 

differentiable and 

[𝐷1,2
𝛽

F x0 ]
𝛼 = [ 𝐷𝛽𝑓2 x0, 𝛼 ,  𝐷𝛽𝑓1(x0, 𝛼) ] 

(iii) If 𝐷2
𝛽

F(x) is (1)-Caputo fractional differentiable function then    𝐷𝛽𝑓1(𝛼) and  𝐷𝛽𝑓2( 𝛼) Caputo fractional 

differentiable and 

[𝐷2,1
𝛽

F x0 ]
𝛼 = [ 𝐷𝛽𝑓2 x0, 𝛼 ,  𝐷𝛽𝑓1(x0, 𝛼) ] 

(iv) If 𝐷2
𝛽

F(x) is (2)-Caputo fractional differentiable function then    𝐷𝛽𝑓1(𝛼) and  𝐷𝛽𝑓2( 𝛼) Caputo fractional 

differentiable and 

[𝐷2,2
𝛽

F x0 ]
𝛼 = [ 𝐷𝛽𝑓1 x0, 𝛼 ,  𝐷𝛽𝑓2(x0, 𝛼) ] 

Where 

𝐷𝛽𝑓1(𝑥0, 𝛼) = [
1

Γ 𝑛 − 𝛽 
  𝑥 − 𝑡 𝑛−𝛽−1

𝑥

0

𝑓1
(𝑛)

(t, α)dt]𝑥=𝑥0
 

𝐷𝛽𝑓2(𝑥0, 𝛼) = [
1

Γ 𝑛 − 𝛽 
  𝑥 − 𝑡 𝑛−𝛽−1

𝑥

0

𝑓2
(𝑛)

(t, α)dt]𝑥=𝑥0
 

Proof. see [14]. 

IV.2 A new concept of solution for the Fuzzy Space-Time Fractional Telegraph Equations 

Consider the following fuzzy general multiterms fractional telegraph equation: 

 
𝐷𝑥
𝛽

U x, t + f x, t = a1Dt
δ U x, t + a2Dt

γ
 U x, t + a3 U x, t     t ∈  0, a , x ∈ (0, b)

U 0, t = h t ,    DxU 0, t = g(t)
  (13)  

 

Where 𝑎1, 𝑎2, 𝑎3 > 0 and 𝑕 𝑡 , 𝑔(𝑡) and 𝑓(𝑡, 𝑥) are a continuous fuzzy functions. 

Now we consider Equation (13) with generalized fractional differentiability and introduce a new class of 

solutions. 

Definition9: Let 𝜆 ∈ {𝛾, 𝛽, 𝛿} and U(x, t) ∈  C (I × 𝐽, ℝℱ) ⋂𝐿1(I × 𝐽, ℝℱ) be a fuzzy valued function and 

𝑛,𝑚 ∈ {1,2}. One says (𝑛,𝑚)-solution for problem (13)  on I × 𝐽, if  𝐷𝑛
𝜆U x, t  for  0 <  𝜆 < 1  and  

𝐷𝑛,𝑚
𝜆 U x, t  for 

1 <  𝜆 < 2 exist on I × 𝐽 and 

 

 
𝐷𝑛,𝑚,(𝑥)
𝛽

U x, t + f x, t = a1Dn,m,(t)
δ  U x, t + a2Dn,(t)

γ
 U x, t + a3 U x, t     t ∈ I, x ∈ J

U 0, t = h t ,    Dn(x)U 0, t = g(t)
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Let U be an, (𝑛,𝑚)-solution for (13). To find it, utilizing theorem (2) and considering the initial values, we can 

translate problem (13) to system space-time fractional telegraph equations hereafter, called corresponding 

(𝑛,𝑚)-system for problem (13). 

Therefore, four space-time fractional telegraph equations systems are possible for problem (13), as follows: 

(1,1)-system: 

 
 
 

 
 𝐷𝑥

𝛽
U1 x, t, α + f1 x, t, α = a1Dt

δ U1 x, t, α + a2Dt
γ
 U1 x, t, α + a3 U1 x, t, α ,

𝐷𝑥
𝛽

U2 x, t, α + f2 x, t, α = a1Dt
δ U2 x, t, α + a2Dt

γ
 U2 x, t, α + a3 U2 x, t, α ,

U1 0, t, α = h1 t, α ,  U2 0, t, α = h2 t, α ,

𝐷𝑥U1 0, t, α = g1 t, α ,  DxU2 0, t, α = g2 t, α 

         (14) 

(1,2)-system: 

 

 
 
 

 
 𝐷𝑥

𝛽
U2 x, t, α + f1 x, t, α = a1Dt

δ U2 x, t, α + a2Dt
γ
 U1 x, t, α + a3 U1 x, t, α ,

𝐷𝑥
𝛽

U1 x, t, α + f2 x, t, α = a1Dt
δ U1 x, t, α + a2Dt

γ
 U2 x, t, α + a3 U2 x, t, α ,

U1 0, t, α = h1 t, α ,  U2 0, t, α = h2 t, α ,

𝐷𝑥U1 0, t, α = g1 t, α ,  DxU2 0, t, α = g2 t, α 

         (15) 

 

(2,1)-system: 

 

 
 
 

 
 𝐷𝑥

𝛽
U2 x, t, α + f1 x, t, α = a1Dt

δ U2 x, t, α + a2Dt
γ
 U2 x, t, α + a3 U1 x, t, α ,

𝐷𝑥
𝛽

U1 x, t, α + f2 x, t, α = a1Dt
δ U1 x, t, α + a2Dt

γ
 U1 x, t, α + a3 U2 x, t, α ,

U1 0, t, α = h1 t, α ,  U2 0, t, α = h2 t, α ,

𝐷𝑥U2 0, t, α = g1 t, α ,  DxU1 0, t, α = g2 t, α 

         (16) 

 

 

(2,2)-system: 

 

 
 
 

 
 𝐷𝑥

𝛽
U1 x, t, α + f1 x, t, α = a1Dt

δ U1 x, t, α + a2Dt
γ
 U2 x, t, α + a3 U1 x, t, α ,

𝐷𝑥
𝛽

U2 x, t, α + f2 x, t, α = a1Dt
δ U2 x, t, α + a2Dt

γ
 U1 x, t, α + a3 U2 x, t, α ,

U1 0, t, α = h1 t, α ,  U2 0, t, α = h2 t, α ,

𝐷𝑥U2 0, t, α = g1 t, α ,  DxU1 0, t, α = g2 t, α 

         (17) 

 

Our strategy of solving (13) is based on the selection of derivative type in the fuzzy space-time fractional 

telegraph equations. We first choose the type of solution and translate problem (13) to the corresponding 

system. Then, we solve the obtained space-time fractional telegraph equations by Laplace variational iteration 

method (LVIM). Finally we find such a domain in which the solution and its derivatives have valide level sets 

according to the type of Caputo fractional differentiable and using the representation Theorem [11] we can 

construct the solution of the fuzzy space-time fractional telegraph equations(13). 

Theorem3:  Let 𝑛,𝑚 ∈ {1,2} and 𝑈 =  [U1, U2],  be an  𝑛,𝑚 -solution for problem (13) on 𝐼 × 𝐽 . Then U1 and 

U2 solve the associated (n,m)-systems. 

Proof. 

Suppose 𝑈 is the  𝑛,𝑚 -solution of problem(13). According to the definition9, then 𝐷𝑛
𝜆𝑈 for  0 < 𝜆 < 1 and 

𝐷𝑛,𝑚
𝜆 U for 0 < 𝜆 < 2 exist and satisfy problem (13). By theorem2 and substituting U1, U2 and their Caputo 

fractional derivatives in problem(13), we get the  𝑛,𝑚 -system corresponding to  𝑛,𝑚 -solution. 

Theorem4:  Let  𝑛,𝑚 ∈ {1,2}, 𝜆 ∈ {𝛾, 𝛽, 𝛿}  and  U1(x, t, 𝛼) and U2(x, t, 𝛼) solve the  𝑛,𝑚 -system on I×J, for 

every 𝛼 ∈ [0,1]. Let [U(x, t)]𝛼  =[U1(x, t, 𝛼),U2(x, t, 𝛼)] If U has valid level sets on I×J and  𝐷𝑛,𝑚
𝜆 U for 0 < 𝜆 < 1 

and 𝐷𝑛,𝑚
𝜆 U  for 1 < 𝜆 < 2  exists, then U is an  𝑛,𝑚 -solution for the fuzzy problem(13). 

Proof. 

Since [U(x, t)]𝛼  =[U1(x, t, 𝛼),U2(x, t, 𝛼)] is  𝑛,𝑚 -Caputo fractional differentiable, by theorem2 we can 

compute 𝐷𝑛
𝜆  for 0 < 𝜆 < 1  and 𝐷𝑛,𝑚

𝜆 U for 0 < 𝜆 < 2 according to 𝐷𝑛
𝜆U1(x, t, 𝛼),𝐷𝑛

𝜆U2(x, t, 𝛼), for 0 < 𝜆 ≤ 1  

and 𝐷𝑛,𝑚
𝜆 U1(x, t, 𝛼), 𝐷𝑛,𝑚

𝜆 U2(x, t, 𝛼), for 0 < 𝜆 < 2. Due to the fact that U1(x, t, 𝛼), U2(x, t, 𝛼) solve  𝑛,𝑚 -
system, from definition9, it comes that U is an  𝑛,𝑚 -solution for (13). 

Remark1: Let 𝜆 = {𝛿, 𝛽, 𝛿} 

If 𝑈 𝑥, 𝑡  is  𝑛,𝑚 -Caputo fractional differentiable for   0 < 𝜆 < 2 , 𝜆 ≠ 1 then 𝑈 𝑥, 𝑡  is   𝑛,𝑚 -Caputo 

fractional differentiable with respect to 𝑥, 𝑡. 
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If 𝑈 𝑥, 𝑡  is  𝑛,𝑚 -solution on 𝐼 × 𝐽 for n, m ∈ {1,2}, then 𝑈(𝑥, 𝑡) is  𝑛,𝑚 -Caputo fractional differentiable on 

𝐼 × 𝐽. 
Remark2:  Let 𝜆 =  1,2  
If 𝑈 𝑥, 𝑡 is   𝑛,𝑚 -solution on 𝐼 × 𝐽 for 𝑛,𝑚 ∈ {1,2}, then 𝑈 𝑥, 𝑡  is  𝑛,𝑚 -differentiable on 𝐼 × 𝐽 see [12,5]. 
Remark3:  We see that the solution of the fuzzy space-time fractional telegraph equations (13) depends upon 

the selection of derivatives. 

It is clear that in this new procedure, the uniqueness of the solution is lost, an expected situation in the fuzzy 

context. Nonetheless, we can contemplate the existence of at most four solutions as shown in the examples of 

the next section. 
 

V. EXAMPLE 
 

       Consider the following fuzzy space-time fractional nonhomogeneous telegraph equation [1]: 
 

 
𝐷𝑥
𝛽

U x, t + f x, t, K = Dt
2 U x, t + Dt

γ
 U x, t +  U x, t     t ≥ 0, x ∈ [0,1]

U 0, t = Ct,    DxU 0, t = 0
            (18)   

 

Where   0 < 𝛽 ≤ 2, 0 < 𝛾 ≤ 1, [𝐾 ]𝛼 =  [𝐶 ]𝛼 = [𝛼, 2 − 𝛼] 
[𝑓 (𝑥, 𝑡, 𝐾 )]𝛼 =  𝑓1 𝑥, 𝑡, 𝛼 , 𝑓2 𝑥, 𝑡, 𝛼  = [𝑥2 + 𝛼𝑡 − 1, 𝑥2 +  2 − 𝛼 𝑡 − 1] 

And         [𝑈 (0, 𝑡)]𝛼 =  𝑈1 0, 𝑡, 𝛼 , 𝑈2 0, 𝑡, 𝛼  = [𝛼𝑡, (2 − 𝛼)𝑡] 
According to the LVIM, a correct functional for (18) in form (14) from (7,9,11,12) can be constructed 

solution as follows 

𝑈1 𝑥, 𝑡, 𝛼 = 𝛼𝑡 + 𝑥2   1 − 2𝐸𝛽,3 𝑥
𝛽  +  1 + 𝛼

𝑡1−𝛾

Γ 2 − 𝛾 
   𝐸𝛽,1 𝑥

𝛽 − 1   

𝑈2 𝑥, 𝑡, 𝛼 = (2 − 𝛼)𝑡 + 𝑥2   1 − 2𝐸𝛽,3 𝑥
𝛽  +  1 + (2 − 𝛼)

𝑡1−𝛾

Γ 2 − 𝛾 
  𝐸𝛽,1 𝑥

𝛽 − 1  

 

If 𝑈 is a (1,1)-solution for the problem, then 

[𝐷𝑥𝑈1 𝑥, 𝑡, 𝛼 ,  𝐷𝑥𝑈2(𝑥, 𝑡, 𝛼)] , [𝐷𝑥
2𝑈1 𝑥, 𝑡, 𝛼 , 𝐷𝑥

2𝑈2 𝑥, 𝑡, 𝛼 ] 
And [𝐷𝑡𝑈1 𝑥, 𝑡, 𝛼 ,  𝐷𝑡𝑈2(𝑥, 𝑡, 𝛼)] , [𝐷𝑡

2𝑈1 𝑥, 𝑡, 𝛼 , 𝐷𝑡
2𝑈2 𝑥, 𝑡, 𝛼 ] 

 

and they satisfy the (14) associated with (13). On the other hand, by direct calculation, the corresponding 

solution of the  14  has necessarily the following expression of standard telegraph equation i.e for 𝛽 = 2 and 

𝛾 = 1: 

𝑈1 𝑥, 𝑡, 𝛼 = 𝛼𝑡 + 𝑥2 +  𝛼 − 1  cosh 𝑥 − 1  
𝑈2 𝑥, 𝑡, 𝛼 =  2 − 𝛼 𝑡 + 𝑥2 +  1 − 𝛼  cosh 𝑥 − 1       (19) 

We see 𝑈1 𝑥, 𝑡, 𝛼  and 𝑈2 𝑥, 𝑡, 𝛼  represent a valid fuzzy number for 𝑡 ≥ 0, 𝑥 ≥ 0. The (1)-derivative of (19) 

in that case is given by: 

𝐷𝑥𝑈1 𝑥, 𝑡, 𝛼 = 2𝑥 +  𝛼 − 1 sinh 𝑥 , 𝐷𝑥𝑈2 𝑥, 𝑡, 𝛼 = 2𝑥 +  1 − 𝛼 sinh 𝑥  
And  

𝐷𝑡𝑈1 𝑥, 𝑡, 𝛼 = 𝛼 , 𝐷𝑡𝑈2 𝑥, 𝑡, 𝛼 = 2 − 𝛼 

Then it is again (1)-differentiable and 

 

𝐷𝑥
2𝑈1 𝑥, 𝑡, 𝛼 = 2 +  𝛼 − 1 cosh(𝑥) , 𝐷𝑥

2𝑈2 𝑥, 𝑡, 𝛼 = 2 +  1 − 𝛼 cosh(𝑥) 

We thus see that 𝑈(𝑥, 𝑡)  defined by  19  is (1,1)-differentiable. 

Hence 𝑈 𝑥, 𝑡 , 𝐷𝑥𝑈 𝑥, 𝑡 , 𝐷𝑡𝑈 𝑥, 𝑡  and 𝐷𝑥
2𝑈 𝑥, 𝑡  have valid level sets for 𝑡 ≥ 0, 𝑥 ≥ 0, then 𝑈(𝑥, 𝑡)  is (1,1)-

differentiable and defines a (1,1)-solution of the fuzzy space-time fractional telegraph equation 

for 𝑡 ≥ 0, 𝑥 ≥ 0. 

For  (1,2)-solution, we get the solution for (15) of (18) using  the LVIM i.e by(7,9,11,12): 

𝑈1 𝑡, 𝑥, 𝛼 = 𝛼 𝑡 − 1 + 𝑥2 1 − 2𝐸𝛽,3 𝑥
𝛽  +  𝐸𝛽,1 𝑥

𝛽 − 1 +   
𝑡1−𝛾

Γ 2 − 𝛾 
 𝐸𝛽,1 𝑥

𝛽   

+(𝛼 − 1)[
𝑡1−𝛾

Γ 2 − 𝛾 
]𝐸𝛽,1(−𝑥𝛽) 

𝑈2 𝑡, 𝑥, 𝛼 =   2 − 𝛼  𝑡 − 1 + 𝑥2 1 − 2𝐸𝛽,3 𝑥
𝛽  +  𝐸𝛽,1 𝑥

𝛽 − 1 +   
𝑡1−𝛾

Γ 2 − 𝛾 
 𝐸𝛽,1 𝑥

𝛽   

+ 1 − 𝛼  
𝑡1−𝛾

Γ 2 − 𝛾 
 𝐸𝛽,1 −𝑥

𝛽            (20) 



International Journal of Mathematics Trends and Technology (IJMTT) – Volume64 Number 2 – December 2018 

ISSN: 2231 – 5373                                http://www.ijmttjournal.org  Page 107 

for 𝛽 = 2 and 𝛾 = 1 

𝑈1 𝑡, 𝑥, 𝛼 = 𝛼 𝑡 − 1 + 𝑥2 + 1 + (𝛼 − 1) cos(𝑥) 

𝑈2 𝑡, 𝑥, 𝛼 = (2 − 𝛼) 𝑡 − 1 + 𝑥2 + 1 + (1 − 𝛼) cos(𝑥) 

 

Where 𝑈(𝑥, 𝑡) has valid  level sets for 𝑡 ≥ 1, 𝑥 ∈ [0,1] and we have 

 

𝐷𝑥𝑈1 𝑥, 𝑡, 𝛼 = 2𝑥 +  𝛼 − 1 sin(𝑥) , 𝐷𝑥𝑈2 𝑥, 𝑡, 𝛼 = 2𝑥 +  1 − 𝛼 sin(𝑥) 

and 

𝐷𝑥
2𝑈1 𝑥, 𝑡, 𝛼 = 2 +  𝛼 − 1 cos(𝑥) , 𝐷𝑥

2𝑈2 𝑥, 𝑡, 𝛼 = 2 +  1 − 𝛼 cos(𝑥) 

 

Since  𝐷𝑥𝑈2 𝑥, 𝑡, 𝛼 , 𝐷𝑥𝑈1 𝑥, 𝑡, 𝛼  ,  𝐷𝑥
2𝑈2 𝑥, 𝑡, 𝛼 , 𝐷𝑥

2𝑈1 𝑥, 𝑡, 𝛼   and  𝐷𝑡𝑈1 𝑥, 𝑡, 𝛼 , 𝐷𝑡𝑈2 𝑥, 𝑡, 𝛼   then 

𝑈(𝑥, 𝑡) is (1,2)-differentiable on 𝑥 ∈  0,1 , 𝑡 ≥ 1, hence, no (1,2)-solution exists for 𝑥 ∈  0,1 , 𝑡 ≥ 1. 

 

For (2,1)-solution of (18) we use the LVIM in (16) we deduce 

𝑈1 𝑡, 𝑥, 𝛼 = 𝛼𝑡 + 𝑥2 1 − 2𝐸𝛽,3 𝑥
𝛽  +  𝐸𝛽,1 𝑥

𝛽 − 1 +   
𝑡1−𝛾

Γ 2 − 𝛾 
 𝐸𝛽,1 𝑥

𝛽   

+ 1 − 𝛼  
𝑡1−𝛾

Γ 2 − 𝛾 
 𝐸𝛽,1 −𝑥

𝛽 − (2 − 𝛼) 

𝑈2 𝑡, 𝑥, 𝛼 = (2 − 𝛼)𝑡 + 𝑥2 1 − 2𝐸𝛽,3 𝑥
𝛽  +  𝐸𝛽,1 𝑥

𝛽 − 1 +   
𝑡1−𝛾

Γ 2 − 𝛾 
 𝐸𝛽,1 𝑥

𝛽   

+ 𝛼 − 1  
𝑡1−𝛾

Γ 2 − 𝛾 
 𝐸𝛽,1 −𝑥

𝛽 − 𝛼       (21) 

for 𝛽 = 2 and 𝛾 = 1 

𝑈1 𝑡, 𝑥, 𝛼 = 𝛼𝑡 + 𝑥2 + (1 − 𝛼) (cos 𝑥 − 1) 

𝑈2 𝑡, 𝑥, 𝛼 =  2 − 𝛼 𝑡 + 𝑥2 +  𝛼 − 1 (cos 𝑥 − 1) 

 

We see that the fuzzy function  𝑈(𝑥, 𝑡) has valid level sets for 𝑡 ≥ 1, 𝑥 ∈ [0,1]. 
Since  𝐷𝑥𝑈1 𝑥, 𝑡, 𝛼 , 𝐷𝑥𝑈2 𝑥, 𝑡, 𝛼  ,  𝐷𝑥

2𝑈1 𝑥, 𝑡, 𝛼 , 𝐷𝑥
2𝑈2 𝑥, 𝑡, 𝛼   and  𝐷𝑡𝑈1 𝑥, 𝑡, 𝛼 , 𝐷𝑡𝑈2 𝑥, 𝑡, 𝛼   then 

𝑈(𝑥, 𝑡) is (1,1)-differentiable on 𝑥 ∈  0,1 , 𝑡 ≥ 1, hence, no (2,1)-solution exists for  𝑡 ≥ 1, 𝑥 ∈  0,1 . 
Finally to find  (2,2)-solution  we use the LVIM in (17) we get 

 

𝑈1 𝑡, 𝑥, 𝛼 = 𝛼𝑡 + 𝑥2 1 − 2𝐸𝛽,3 𝑥
𝛽  +  1 + (2 − 𝛼)  

𝑡1−𝛾

Γ 2 − 𝛾 
    𝐸𝛽,1 𝑥

𝛽 − 1  

 

𝑈2 𝑡, 𝑥, 𝛼 = (2 − 𝛼)𝑡 + 𝑥2 1 − 2𝐸𝛽,3 𝑥
𝛽  +  1 + 𝛼  

𝑡1−𝛾

Γ 2 − 𝛾 
    𝐸𝛽,1 𝑥

𝛽 − 1  

for 𝛽 = 2 and 𝛾 = 1 

𝑈1 𝑡, 𝑥, 𝛼 = 𝛼𝑡 + 𝑥2 + (1 − 𝛼) (cosh(x)−1) 

𝑈2 𝑡, 𝑥, 𝛼 =  2 − 𝛼 𝑡 + 𝑥2 +  𝛼 − 1 (cosh(𝑥) − 1) 

that  𝑈(𝑥, 𝑡) has valid level sets for 𝑡 ≥
5

9
, 𝑥 ∈ [0,1] and we have 

Since  𝐷𝑥𝑈2 𝑥, 𝑡, 𝛼 , 𝐷𝑥𝑈1 𝑥, 𝑡, 𝛼  ,  𝐷𝑥
2𝑈2 𝑥, 𝑡, 𝛼 , 𝐷𝑥

2𝑈1 𝑥, 𝑡, 𝛼   and  𝐷 𝑡 𝑈1 𝑥 , 𝑡 , 𝛼  , 𝐷 𝑡 𝑈2 𝑥 , 𝑡 , 𝛼    then 

𝑈(𝑥 , 𝑡 ) is (2,1)-differentiable on 𝑥 ∈  0,1 , 𝑡 ≥
5

9
, hence, no (2,2)-solution exists for  𝑡 ≥

5

9
, 𝑥 ∈  0,1 . 

 

VI. CONCLUSIONS 
 

        In the present work, the Caputo fuzzy fractional derivatives and the Laplace Variational Iteration Method 

(LVIM) applied to find the exact fuzzy solution of the fuzzy space-time fractional telegraph equations. The main 

purpose of the paper is to present a new concept of solutions. The efficiency of the proposed algorithm is 

illustrated by giving example. 
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