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1. INTRODUCTION 

 The study of abstract measure differential equations is initiated by Sharma [6] and subsequently developed by 

Joshi [19] Shendge and Joshi [14], Dhage [1–2], Dhage et al. [10] and Dhage and Bellale [3], Bellale [6] for 

different aspects of the solutions, Similarly, the study of abstract measure integro differential equations is 

studied by Dhage [12], Dhage and Bellale [4-5], Bellale and Dapke [7] , Bellale and Birajdar [8-9] varius 

aspects of solutions in such model of differential equations involve the derivative of the unknown set-function 

with respect to the σ-finite complete measure. 

         The existence and uniqueness of solutions of the nonlinear abstract measure differential equation under 

usual compactness and Lipschitz type conditions have been discussed at length in the literature. These 

conditions are considered to be very strong assumptions in the study of nonlinear differential and integral 
equations. Similarly, upper and lower solution method and monotone iterative technique also require the 

assumption that both the lower as well as upper solution exist and preserve the order relation. However, a recent 

trend for the existence of solution for such nonlinear problem is to assume only one of lower and upper 

solutions. In the present paper, we prove existence and uniqueness of solutions of the abstract measure integro 

differential equations under the weaker partial compactness and partial Lipschitz type conditions via the Dhage 

iteration method  by  assuming  one of  lower and upper solutions to exist. 

II. PRELIMINARIES 

 A mapping : T X X is called D -Lipschitz if there exists a continuous and non-decreasing function 

:   R R such that 

   
|| || (|| ||)   Tx Ty x y

 

 for all , x y X , where (0) 0  . In particular if ( ) , 0,   r r T is called a Lipschitz function with a 

Lipschitz constant α . Further if α < 1, then T is called a contraction on X with the contraction constant α . 

 Let X be a Banach space and let : T X X T is called compact if ( )T X is a compact subset of X . T is called 

totally bounded if for any bounded subsets S of X, T (S ) is abounded subset of X . T is called completely 

continuous if T is continuous and bounded on X. Every compact operator is totally bounded, but the converse 

may not be true, however, two notions are equivalent on bounded subsets of X . The details of different types of 
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nonlinear contraction, compact and completely continuous operators appear in Granas and Dugundji [17]. 

III. STATEMENT OF THE PROBLEM 

 Let X be a real Banach algebra with a convenient norm || . || . Let , x y X . Then the line segment xy  in X is 

defined by 

   { ( ),0 1}       xy z X z x r y x r             (3.1) 

 Let 0 x X be a fixed point and z X . Then for any 0x x z , we define the sets Sx  and xS in X by 

   { | 1},   xS rx r                 (3.2) 

 and  { | 1}   xS rx r                 (3.3) 

 Let 1 2, x x xy  be arbitrary. We say 1 2x x  if 
1 2
x xS S , or equivalently, 0 1 0 2x x x x . In this case we also write 

2 1x x . 

 Let M denote the σ-algebra of all subsets of X such that (X, M) is a measurable space. Let ca(X, M) be the space 

of all vector measures (real signed measures) and define a norm || · || on ca(X, M) by 

   ||p|| = |p|(X),                  (3.4) 

 where  |p| is a total variation measure of p and is given by 

   
1

| | ( ) sup | ( ) |, ,




  i i

i

p X p E E X             (3.5) 

 where the supremum is taken over all possible partitions { : }iE i N  of X. It is known that ca(X,M) is a Banach 

space with respect to the norm || · || given by (3.4). 

 Let μ be a σ-finite positive measure on X, and let ( , )p ca X M . We say p is absolutely continuous with respect 

to the measure μ if μ(E) = 0 implies p(E) = 0 for some E M . In this case we also write  p . 

 Let 0 x X be fixed and let M0 denote the σ-algebra on 
0xS .  Let z X be such that 0z x and let Mz denote the 

 -algebra of all sets containing M0 and the sets of the form zxxSx 0,  .Throughout this paper, unless 

otherwise mentioned, let ( , , || · ||)E  denote a partially ordered normed linear space. Two elements x and y in 

E are said to be comparable if either the relation  or  x y y x holds. A non-empty subset C of E is called a 

chain or totally ordered if all the elements of C are comparable. It is known that E is regular if {xn} is a non 

decreasing (resp. non increasing) sequence in E such that *nx x  as ,n then *nx x (resp. *nx x )for all

N.n  The conditions guaranteeing the regularity of E may be found in Heikkiländ  and Lakshmikantham [18] 

and the references therein. We need the following definitions (see Dhage [12] and the references therein) in 

what follows. 

 Definition 3.1. A mapping : T E E is called isotone or non-decreasing if it preserves the order relation ,

that is, if x y implies Tx Ty for all , .x y E Similarly, T is called non-increasing if x y implies Tx Ty for 

all , .x y E Finally, T is called monotonic or simply monotone if it is either non decreasing or non increasing 

on  E. 

 Definition 3.2. A mapping : T E E is called partially continuous at a point a E if for 0  there exists a 

0  such that || ||  Tx Ta  whenever x is comparable to a and || || .  x a
 
T called partially continuous on 

E if it is partially continuous at every point of it. It is clear that if T is partially continuous on E, then it is 
continuous on every chain C contained in E. 

 Definition 3.3. A non-empty subset S of the partially ordered Banach space E is called partially bounded if 
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every chain C in S is bounded. An operator T on a partially normed linear space E into itself is called partially 

bounded if T (E) is a partially bounded subset of E. T is called uniformly partially bounded if all chains C in 
T (E) are bounded by a unique constant. 

 Definition 3.4. A non-empty subset S of the partially ordered Banach space E is called partially compact if 

every chain C in S is a relatively compact subset of E. A mapping : T E E is called partially compact if T 

(E) is a partially relatively compact subset of E. T is called uniformly partially compact if T is a uniformly 

partially bounded and partially compact operator on E. T is called partially totally bounded if for any bounded 
subset S of E, T (S) is a partially relatively compact subset of E. If T is partially continuous and partially totally 

bounded, then it is called  partially completely continuous on E. 

  Definition3.5. An upper semi-continuous and monotone non decreasing function : R R   is called a  

            D-function provided (0) 0.  An operator : T E E is called partially nonlinear D-contraction if there          

exists a D-function such that 

                 || || (|| ||)   Tx Ty x y                (3.6) 

 For all comparable elements , ,x y E where 0 ( )  r r for r> 0. In particular, if ( ) , 0,  r kr k T is called a 

partial Lipschitz operator with a Lipschitz constant k and more over,if  0 < k < 1, T is called a partial linear 

contraction on E with a contraction constant k. 

 The Dhage iteration method or Dhage iteration principle embodied in the following applicable hybrid fixed 

point theorem of Dhage [10] in a partially ordered normed linear space is used as a key tool for our work 

contained in this paper. The details of the Dhage iteration method or principle is given in, Dhage et al.[1,16] and 

the references therein. 

 Theorem 3.1. Let ( , ,|| · ||)E be a regular partially ordered complete normed linear space such that every 

compact  chain C of  E . Let A, B : E E be two non decreasing operators such that 

 (a) A is partially bounded and partially nonlinear D-contraction, 

 (b) B is partially continuous and partially compact, and 

 (c) there exists an element 0 x E such that 0 0 0x Ax Bx or 0 0 0x Ax Bx . 

 Then the operator equation Ax+ Bx = x has a solution x* in E and the sequence {xn} of successive iterations 
defined by xn+1 = Axn + Bxn, n = 0, 1,…, converges  monotonically to x*. 

 Theorem 3.2. Let ( , ,|| . ||)E be a regular partially ordered complete normed linear space such that the order 

relation   and the norm || · || in E are compatible in every compact chain C of E. Let : T E E be a partially 

continuous, non decreasing, and partially compact operator. If there exists an element 0 x E such that 0 0x Tx
 

or  0 0Tx x ,  then the operator equation. 

           Tx = x has a solution x* in E, and the sequence 0{ }nT x of  successive  iterations converges monotonically to 

x*. 

 Theorem 3.3. Let ( , ,|| . ||)E  be a partially ordered Banach space and let : T E E be a non decreasing and 

partially nonlinear D-contraction. Suppose that there exists an element 0 x E such that 0 0x Tx  or 0 0x Tx . If T 

is continuous or E is regular, then T has a fixed point x*, and the sequence 0{ }nT x of successive iterations 

converges monotonically to x*. Moreover, the fixed point x* is unique if every pair of elements in E has a lower 

and an upper bound. 

 The following useful lemma is obvious and may be found in Dhage [1]. 

 Lemma 3.1. For any function
1( , )L J R , x is a solution to the differential equation 
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   '( ) ( ) ( ), ,
(0) ( ),

   


x t x t t t J
x x T

              (3.7) 

 if and only if it is a solution of the integral equation 

   

0

( ) ( , ) ( )  
T

x t G t s s ds                (3.8) 

 where,  

, 0 ,
1

( , )

, 0 .
1

  




 




  


 


  


s t T

T

s t

T

e
if s t T

e
G t s

e
if t s T

e

          (3.9) 

 Notice that the Green's function G  is continuous and non negative on J J  and therefore, the number 

   : max{| ( , ) |: , [0, ]}  K G t s t s T
 

 exists for all R . For the sake of convenience, we write ( , ) ( , ) G t s G t s  and  K K . 

 Lemma 3.2.  If there exists a function uC (J, R) such that 

   
'( ) ( ) ( ), ,

(0) ( ).

    


 

u t u t t t J

u u t
              (3.10) 

 then   

0

( ) ( , ) ( ) 
T

u t G t s s ds                (3.11) 

 for all tJ, where G(t, s) is a Green's function given by (3.9). 

IV. MAIN RESULT 

 In this section, we prove an existence and approximation result for the AMDE (4.3) on a closed and bounded 

interval J = [a, b] under mixed partial Lipschitz and partial compactness type conditions on the nonlinearities 

involved in it. We place the AMDE (4.3) in the function space ( , )C J R  of continuous real-valued functions 

defined on J. We define a norm || · || and the order relation ≤ in ( , )C J R by 

    || || sup | ( ) |



t J

x x t                 (4.1) 

 and   ( ) ( )  x y x t y t for all t J             (4.2) 

 Clearly, ( , )C J R is a Banach space with respect to above supremum norm and also partially ordered w.r.t. the 

above partially order relation ≤. It is known that the partially ordered Banach space ( , )C J R is regular and 

lattice so that every pair of elements of E has a lower and an upper bound in it. 

 Given a ( , ) z zp ca S M with p is absolutely continuous with respect to the measure μ if  

( ) 0 ( ) 0,E p E E M      consider the periodic boundary value problem (PBVP) for the first order ordinary 

nonlinear abstract measure integro- differential equation (AMIDE), 
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( ) , ( ), ( , ( )) , ,
0

( ) ( ),
0

 
 

          


  





dp
p S f x p S g x p S dx x x z

x x xd
S

x

And p E q E E M

                              (4.3) 

 Where  


dp

d
is Radon–Nikodym derivative of p with respect to μ for some  , 0,  R

 
where :  zg S R R

and :   zf S R R R are continuous functions. q is given known vector measure. A solution of the AMIDE 

(4.3), we mean a differentiable function    ,   z zu ca S M  that satisfies problem (4.3), where ca(Sz, Mz) is the 

space of  all vector measures . 

 The AMIDE (4.3) is well-known and includes 

   
  0

0

( , ( )), ,

( ) ( ),


   

  

x x

dp
p S f x p S x x z

d
p E q E E M

            (4.4) 

   
  0( , ( )) , ,


    






x

x x

S

dp
p S g x p S ds x x z

d            (4.5) 

 and    0, ( ) , ,
 
    
 

  



x

x x

S

dp
p S f x p S dx x x z

d            (4.6) 

 as special cases. That is, the results in this paper include results for the differential equations (4.4),(4.5), and 

(4.6) on 0x z .The existence and uniqueness of solutions of the nonlinear AMIDE (4.3) under usual compactness 

and Lipschitz type conditions have been discussed  in this paper. 

 Definition 4.1. An operator T from a normed linear space E into itself is compact if T (E) is a relatively 

compact subset of E. We say that T is totally bounded if for any bounded subset S of E, T (S) is a relatively 

compact subset of E. If T is continuous and totally bounded, then it is called completely continuous on E. 

 Remark 4.1. Suppose that T is a non decreasing operator on E into itself. Then T is a partially bounded or 

partially compact if T (C) is a bounded or relatively compact subset of E for each chain C in E. 

Remark 4.2. Note that every compact mapping on a partially normed linear space is partially compact, and 

every partially compact mapping is partially totally bounded. However, the reverse implications do not hold. 

Every completely continuous mapping is partially completely continuous. Every partially completely 

continuous mapping is partially continuous and partially totally bounded, but the converse may not be true. 

 Remark 4.3. The regularity of E in Theorem 3.2 above may be replaced with a stronger continuity condition of 

the operator T on E. 

 The following hybrid fixed point theorems will be used to prove some of our existence and uniqueness results 

for the solutions of the AMIDE (4.3). We need the following notion of a D-function in these theorems. 

 Definition 4.2. An upper semi-continuous and non decreasing function :   R R  is called a D-function 

provided  (0) 0  . 

 Remark 4.4. We remark that hypothesis (a) of Theorem 3.2 implies that operator A is partially continuous on E. 

The regularity of E in above Theorem3.2 may be replaced with a stronger continuity condition of the operators 
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A and B on E which is a result proved in Dhage [4]. Again, the compatibility of the order relation   and the 

norm || · ||in every compact chain of E holds if every partially compact subset of E possesses the compatibility 

property with respect to  and || · ||. 

 4.1 . Existence Theorems and Uniqueness theorem 

 The equivalent integral form of the HIDE (4.3) is considered in the function space C(J, R) of continuous real-

valued functions defined on J. We define a norm || · || and the order relation   in C(J,R)by 

   
|| || sup | ( ) |


x x t

t J
 

 and  x y if and only if  ( ) ( )x t y t  for  all t J . 

 Clearly, C(J, R) is a Banach space with respect to above supremum norm and is also partially ordered w.r.t. the 

above partially order relation  . It is known that the partially ordered Banach space C(J, R) is regular and is a 
lattice, so every pair of elements in the space has an upper and a lower bound in the space. The next lemma 

concerning the compatibility of sets in C(J,R) follows by an application of the Arzella-Ascoli theorem. 

 We need the following definition. 

 Definition 4.3. A differentiable function ( , ) z zu ca S M  is a lower solution of the AMIDE (4.3) if it satisfies 

   
( ) , ( ), ( , ( )) ,

 
   
 

  



xS

du
u x f x u x g x u x dx

d

 

 for all 0x x z . Similarly, ( , ) z zv ca S M  an upper solution to the AMIDE (3.1) is defined on 0x z  by reversing 

the above inequalities. 

 We  consider  the following set of  hypothesis: 

 (H1)  There exists a constant Mf  > 0 such that | ( , ( ), ( ) |x y ff x p S p S M for all 0x x z and x R . 

 (H2)  The function ( , ( ), ( )x yf x p S p S is a  monotone  non decreasing  in x and y for each 0x x z . 

 (H3)  The function g(x,p(Sx)) is monotone non decreasing in x for each 0x x z . 

 (H4)  The AMIDE (4.1) has a lower solution ( , ) z zu ca S M . 

 (H5)  There exists a constant  L > 0 such that 0 ( , ) ( , ) ( )   g t x g t y L x y
 

                       for all 0x x z  and x, yR with x y. 

 (H6)  There exists D-functions 1  and 2  such that 

   1 2 1 2 1 1 1 2 2 20 ( , ( ), ( ) ( , ( ), ( )) ( ) ( )     x x y yf x p S p S f x p S p S x y x y 
 

       for all 1 2 1 2, , , x x y y R  with 1 1x y  and 2 2x y . Moreover, 1 2( ) [ ( ) ( )]    r KT r LTr r
 

      for each r > 0. 

       Our main existence result in this section is contained in the following theorem. 

 Theorem 4.1. Assume that conditions 1 4( ) ( )H H  hold. Then the AMIDE (4.3) has a solution x* defined on 

0x z  and the sequence 1{ }n np  of successive approximations defined by 

   0 ,x u
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   1

0

( ) ( , ( )) , ( ), ( , ( )) ,

 
 
 
 

 
x

T

n x n x n

S

p x G x p S f x p S g x p x dx dx         (4.7) 

 for all 0x x z , converges monotonically to x*. 

 Proof . The AMIDE (4.3) is equivalent to the nonlinear integral equation 

   0

0

( ) ( , ( )) , ( ), ( , ( )) ,
 
  
 
 

 
x

T

x n x n

S

p x G x p S f x p S g x p x dx dx x x z        (4.8) 

 Set E = ca (Sz, Mz). Then, from Lemma 3.1 it follows that every compact chain in E possesses the compatibility 

property with respect to the norm || · || and the order relation   in E. Define the operator T by 

   0

0

( ) ( , ( )) , ( ), ( , ( )) ,
 
  
 
 

 
x

T

x n x n

S

Tp x G x p S f x p S g x p x dx dx x x z .      (4.9) 

 From the continuity of the integral, it follows that T maps E into itself. The AMIDE (3.1) is then equivalent to 

the operator equation 

         0( ) ( ), . x xTp S p S x x z                (4.10) 

 Through a series of steps, we shall show that the operator T satisfies all the conditions of Theorem 3.2 on  E. 

 Step I: T  is a non decreasing operator on E. 

 Let x, yE with  x y. Then, from (H2), we obtain 

   0

0

( ) ( , ( )) , ( ), ( , ( )) ,
 
  
 
 

 
x

T

x n x n

S

Tp x G x p S f x p S g x p x dx dx x x z

 

     
0

( , ( ) , ( ), ( , ( ))
 
 
 
 

 
x

T

x y y

S

G x p S f x p S g x p S dx dx  

     ( ),Tp y
 

 for all 0x x z . This shows that T is a non decreasing operator on E. 

 Step II: T is partially continuous operator on E. 

 Let {pn} be a sequence of points of a chain C in E such that np p  for all nN. Then, by the dominated 

convergence theorem, 

   
0

lim ( ) lim ( , ( )) , ( ), ( , ( ))
 

  
  

  
  

 
x

T

n x n n
n n

S

Tp x G x p S f x p x g x p x dx dx

 

      
0

( , ( )) lim , ( ), ( , ( ))

x

T

x n n
n

S

G x p S f x p x g x p x dx dx


  
  

  
  

 
 

      
0

( , ( )) , ( ), ( , ( ))

x

T

x x x

S

G x p S f x p S g x p S dx dx
 
 
 
 

   

      = Tp(x) , 
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 for all 0x x z . This shows that {Tpn} converges to Tp  point wise on 0 .x z  

 Next, we show that { }nTp  is an equi continuous sequence of functions in E. Let 1 2 0,x x x z  withx1 < x2. 

 Then  2 1| ( ) ( ) |n nTp x Tp x
 

    2

0

( , ( )) , ( ), ( , ( ))

x

T

x n n

S

G x p S f s x s g x p x dx dx
 
 
 
 

 
 

    

1

0

( , ( )) , ( ), ( , ( ))

x

T

x n n

S

G x p S f s x s g x p x dx dx
 
 
 
 

 
 

    

2 1

0

[ ( , ( )) ( , ( )] , ( ), ( , ( ))

x

T

x x n n

S

G x p S G x p S f x p x g x p x dx dx
 
  
 
 

 
 

    

2 1

0

| ( , ( )) , ( ) | , ( ), ( , ( ))

x

T

x x n n

S

G x p S Gx p S f x p x g x p x dx dx
 
  
 
 

   

    2 1

0

| ( , ( )) ( , ( )) |

T

f x xM G x p S G x p S dx 
 

    0  as 1 2 ,x x
 

 uniformly for all n N . This shows that the convergence nTp Tp  uniformly and hence, T is a partially 

continuous operator on E. 

 Step III: T is partially compact operator on E. 

 Let C be an arbitrary chain in E. We will show that T (C) is a uniformly bounded and equicontinuous set in E. 

To show that T (C) is uniformly bounded, let x C . Then, 

   

0

| ( ) | ( , ( )) , ( ), ( , ( ))
 
 
 
 

 
x

T

x x x x

S

Tp S G x p S f x p S g x p S dx dx

 

     
0

( , ( )) , ( ), ( , ( ))

x

T

x x x

S

G x p S f x p S g x p S dx dx
 
 
 
 

 
 

     

TMK f
 

     
,r
 

 for all 0x x z . Taking the supremum over x, we obtain || ||Tx r  for all .x C Hence, T (C) is a uniformly 

bounded subset of E. 

 To show that T (C) is an equicontinuous set in E, let 1 2 0,x x x z with 1 2x x . Then 

   2 1| ( ) ( ) |Tp x Tp x
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   2 1

0 0

( , ( )) , ( ), ( , ( )) ( , ( )) , ( ), ( , ( ))
   
   
   
   

   
x x

T T

x x x x x x

S S

G x p S f x p S g x p S dx dx G x p S f x p S g x p S dx dx  

   

2 1

0

[ ( , ( ) ( , ( )] , ( ), ( , ( ))

x

T

x x x x

S

G x p S G x p S f x p S g x p S dx dx
 
  
 
 

 
 

   

2 1

0

| ( , ( ) ( , ( ) | , ( ), ( , ( ))

x

T

x x x x

S

G x p S G x p S f x p S g x p S dx dx
 
  
 
 

 
 

   

2 1

0

| ( , ( )) ( , ( )) |

T

f x xM G x p S G x p S dx 
 

   0  as  1 2x x , 

 uniformly for all .x C Hence T (C) is compact subset of E and consequently T is a partially compact operator 

on E into itself. 

 Step IV: u satisfies the operator inequality .u Tu  

 Since condition (H4) holds, u is a lower solution of (3.1) defined on 0x z so that 

   

0

( ) , ( ), ( , ( ))

( ) ( ),

 
   

  


  


x

x x

S

du
u x f x p S g x p S dx

d

u E q E E M


           (4.11) 

 for all 0x x z . Applying Lemma 3.2 to the inequality (4.11), we obtain 

   ( ) ( , ( )) , ( ), ( , ( )) ,
 
 
 
 

 
x x

x x x

S S

u x G x p S f x p S g x p S dx dx

         (4.12) 

 for all 0x x z . This shows that u is a lower solution of the operator equation x = Tx. 

 Thus, T satisfies all the conditions of Theorem 3.2, and in view of Remark 2.11, we can conclude that the 

operator equation Tx = x has a solution. Thus, the integral equation and the AMIDE (4.3) has a solution x* 

defined on 0 .x z Furthermore, the sequence {pn} of successive approximations defined by (4.7) converges 

monotonically to x*. This completes the proof of the theorem. 

 We illustrate our result with the following example. 

 Example 3.8. Consider the following AMIDE 

   
0

0

( ) tanh ( ) tanh ( , ( )) , ,

( ) ( ),

 
     

   


  


x

x x x

S

dp
p S xp S g x p S dx x x z

d

p E q E E M

       (4.13) 

 where :  zg S R R  is the function defined by 

   
1, 0,

( , ( ))
1 log( 1), 0

 
 

  
x

x if x
g x p S

x if x
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 Here, 1, 1,  c  and f (x, p(Sx),p(Sy)) = tanhp(Sx)+ tanhp(Sy). Clearly, the functions f and g are continuous on 

       SzR, and f satisfies (H1) with Mf = 2. Moreover, g(x,p(Sx)) a is non decreasing in x for each 0x x z ,and  

    f (x, p(Sy)) is non decreasing in x and y for each 0x x z , so conditions (H2) and (H3) are satisfied. 

 Finally, the AMIDE (4.13) has a lower solution u defined by u(x) = –2ex on. Thus, all the hypotheses of 

Theorem 4.1 are satisfied, and so (4.13) has a solution x* defined on 0 ,x z  and the sequence {pn} defined by 

   0 ,x u
 

   

1 1

1

0 0

( ) ( , ( )) tanh ( ) ( , ( )) tanh ( , ( ( ))

 
  
 
 

  
x

n x n x x n x

S

p x G x p S p S dx G x p S g x p S dx dx

 

 for all 0x x z , converges monotonically top*, where G(x,p(Sx)) is a Green's function associated with the 

homogeneous PBVP 

   
0( ) 0, ,

( ) 0,

x

dp
p S x x z

d

p E




   


 

              (4.14) 

 given by 

   

1

, 0 1
1

( , ( ))

, 0 1.
1

 




  

 
 


   

x

x

S x

x

x S x

x

e
if S x

e
G x p S

e
if x S

e

          (4.15) 

 Next, we prove a uniqueness theorem for the AMIDE (4.3) under the weaker partially Lipschitz condition. We 

will need the following conditions. 

 Theorem 4.2. Assume that conditions (H4) - (H6) hold. Then the AMIDE (4.3) has a unique solution x* defined 

on 0 ,x z and the sequence {pn} of successive approximations defined by (4.7) converges monotonically to x*. 

 Proof. Set E = ca(Sz,Mz). Clearly, E is a lattice w.r.to. the order relation   and so lower and upper bounds exist 
for every pair of elements in E. Define the operator T by (4.9). Then, the AMIDE (4.3) is equivalent to the 

operator equation (4.10). We shall show that T satisfies all the conditions of Theorem3.3. 

 Clearly, T is a non decreasing operator from E into itself. We wish to show that the operator T is a partially 

nonlinear D-contraction on E, so let , x y E  with .x y Then, by (H5) and (H6), 

   | ( ) ( ) |Tp x Tp y
 

   
0

( , ( )) , ( ), ( , ( ))

x

T

x x x

S

G x p S f x p S g x p S dx dx
 
 
 
 

 
0

( , ( )) , ( ), ( , ( ))

x

T

x y y

S

G x p S f y p S g y p S dy dy
 
 
 
 

 
 

   0

( , ( )) , ( ), ( , ( ))

x

T

x x x

S

G x p S f x p S g x p S dx
 
 
 
 

  , ( ), ( , ( ))

x

y y

S

f x p S g x p S dx dx
 
 
 
 


 

   

1 2

0

( , ( )) ( ( ) ( )) [ ( , ( )) ( , ( ))]

x

T

x x y x y

S

G x p S p S p S g x p S g x p S x ds 
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1 2

0

( , ( ) ( ( ) ( )) [ ( ( ) ( )) ]

x

T

x x y x y

S

G x p S p S p S L p S p S dx dx 
  
     

  
  

 
 

   

1 2

0

( , ( )) (| ( ) ( ) |) | ( ) ( ) |

x

T

x x y x y

S

G x p S p S p S L p S p S dx dx 
  
     

  
  

 
 

   

1 2

0

(|| ||) || ||

x

T

S

K x y L x y dx dx 
  
     

  
  

 
 

   

1 2

0

[ (|| ||) ( || ||)]

T

K x y LT x y dx    
 

   

||)(|| yx

 
 for all 0x x z , where 1 2( ) [ ( ) ( )] , 0     r KT r LTr r r . 

 Taking the supremum over x, we obtain 

   || || (|| ||)   Tx Ty x y
 

 for all , x y E with .x y As a result, T is a partially nonlinear D-contraction on E. Furthermore, as in the proof 

of Theorem 4.1, it can be shown that the function u given in condition (H4) satisfies the operator inequality 

u Tu on 0 .x z  Now a direct application of Theorem 3.3 yields that the AMIDE (4.3) has a unique solution x*, 

and the sequence {pn} of successive approximations defined by (4.7) converges monotonically to p*. 

 To illustrate this theorem, we present the following example. 

 Example4.1.We consider the following AMIDE 

   

1 1
0

0

1
( ) tan ( ) tan ( , ( )) , ,

2

( ) ( ),

 
  
      

      
  


x

x x x

S

dp
p S p S g x p S dx x x z

d

p E q E E M

      (4.16) 

 where :  zg S R R is the function defined by 

   

1 0,

( , ( ))
1 , 0.

1




 
 



x

if x

g x p S x
if x

x                                    

 

 Here, 1 11
1, 1, ( , ( ), ( )) [tan ( ) tan ( )].

2

    x y x yc f x p S p S p S p S  Clearly, the functions f and g are 

continuous on zS R R   and zS R , respectively. The function f satisfies (H1) with 
2


fM and it is easy to 

show that g satisfies (H5) with L = 1. Moreover, f (x, p(Sx), p(Sy)) is non decreasing in x and y for each 0 .x x z  

To show that f satisfies (H6) on zS R R  , let x1, x2, y1, y2R be such that 1 1x y  and 2 2x y . Then, 

   
1 2 1 2

0 ( , ( ), ( )) ( , ( ), ( )) x x y yf x p S p S f x p S p S
 

    1 1 2 2

1 1 1 11
tan ( ) tan ( ) tan ( ) tan ( )

2

       
 x y x yp S p S p S p S
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1 1 2 2

2 2
1 2

1 1
. .

2 21 1

 
 

   

x y x y

 

    

1 1 1 2 2 2( ) ( )    x x y
 

 for all 0x x z  and for some 1 1 1  x y  and 2 2 2  x y , where 1  and 2  are D-functions defined by 

1 2
1

1
( )

2 1
 

 

r
r  and  2 2

2

1
( )

2 1
 

 

r
r for 10   , 2  r  Furthermore, 

   1 2 1 2 2

1
[ ( ) ( )] .[ ( ) ( )] ,

2 1
      



r
KT r LTr r r r  

 where 1 2min{ , }    .Finally, the AMIDE (4.17) has a lower solution ( ) 4  xu x e  defined on 0 .x z Thus, all 

the hypotheses of Theorem 4.2 are satisfied and so we conclude that the AMIDE (4.16) has a unique solution x* 

defined on 0 .x z . In addition, the sequence {pn} defined by 

   0 ,x u
 

   

1
1

1

0

1
( ) ( , ( )) tan ( )

2


  n x n xp x G x p S p S dx

1
1

0 0

1
( , ( )) tan ( , ( ))

2


 

  
 
 

 
s

x n xG x p S g x p S dx dx  

 for all 0 ,x x z  converges monotonically to x*, where G(x, p(Sx)) is a Green's function associated with the 

homogeneous PBVP (4.14) given by (4.15). 

 4.2. Linear Perturbations of the First Type  

           we consider the nonlinear AMIDE 

   

1

0

2

0

( ) , ( ), ( , ( ))

, ( ), ( , ( )) ,

( ) ( ),

 
   

   


  
    

 











t

x x x

t

x x

dp
p S f x p S g x p S dx

d

f x p S g x p S dx

p E q E




          (4.17) 

 for all 0 ,x x z , where 1 2, :   zf f S R R R  and :  zg S R R  are continuous functions. 

 By a solution of the AMIDE (4.1) we mean a function ( , ) z zP ca S M  that satisfies equation (4.1), where 

( , )z zca S M  is the usual Banach space of continuously differentiable real-valued functions defined on 0 .x z  

 We will need the following definition. 

 Definition 4.4.  A differentiable function ( , ) z zu ca S M  is said to be a lower solution of the AMIDE (4.1) if it 

satisfies 
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1

0

2

0

( ) , ( ), ( , ( ))

, ( ), ( , ( )) ,

(0) ( )

 
   

   


  
    

 











t

t

du
u x f x u x g x u x dx

d

f x u x g x u x dx

u u T




 

 for all 0 .x x z
 
Similarly, an upper solution ( , ) z zv ca S M to the AMIDE (4.1) is defined on 0x z by reversing 

the above inequalities. 

 Theorem 4.3. Assume that (H1)-(H3) hold with f replaced by f2, and let (H1) and (H5) - (H6) hold with f  

replaced by f1. If (H7) holds, then the AMIDE (4.1) has a solution x* defined on E and the sequence {pn} of 

successive approximations defined by 

   0 ,x u
 

   1 1

0

( ) ( , ( )) ( , ( ), ( , ( ))

 
 
 
 

 
x

T

n x n n

S

p x G x p S f x p x g x p x dx dx  

     2

0

( , ( )) ( , ( ), ( , ( )) ,
 
 
 
 

 
x

T

x n x n

S

G x p S f x p S g x p x dx dx

        (4.18) 

 for 0 ,x x z  converges monotonically to x*, where G(x,p(Sx)) is a Green's function defined by (3.5) onE. 

 Proof. Set E = ca(Sz, Mz). Then, from Lemma 3.1 it follows that every compact chain in E possesses the 

compatibility property with respect to the norm || · || and the order relation   in E. By Lemma 3.1, the AMIDE 
(4.1) is equivalent to the nonlinear integral equation 

   1

0 0

( ) ( , ( )) , ( ), ( , ( ))
 

  
 
 

 
T s

x xp x G x p S f s x s g x p S dx dx

 

      

2 0

0 0

( , ( ) , ( ), ( , ( )) , ,

T s

x x xG x p S f x p S g x p S dx dx x x z
 

  
 
 

        (4.19) 

 where G(x, p(Sx))  is a Green's function defined by (3.5) on E. Define the operators A and B on E by 

   1 0

0 0

( ) ( , ( )) , ( ), ( , ( )) , ,

T s

x x xAp x G x p S f x p S g x p S dx dx x x z
 

  
 
 

         (4.20) 

 and  2 0

0 0

( ) ( , ( )) , ( ), ( , ( )) , ,

T s

x x xBp x G x p S f x p S g x p S dx dx x x z
 

  
 
 

               (4.21) 

 Clearly, , : .A B E E Also, the AMIDE (4.1) is equivalent to the operator equation 

   0( ) ( ) ( ), .Ap x Bp x p x x x z                 (4.22) 

 it can be shown that the operator A is a partially bounded and nonlinear D-contraction and B is a partially 

continuous and partially compact operator on E. Furthermore, as in the proof of Theorem4.1, it can be shown 

that the function u given in condition (H4) satisfies the operator inequality  u Au Bu on E. A direct 

application of Theorem 3.1 yields that the operator equation  Ax Bx x has a solution x. Consequently, the 
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AMIDE (4.1) has a solution x*, and the sequence 1{ }n np  defined by (4.2) converges monotonically to p. Hence 

the result. 

 Example 4.2.Consider the following AMIDE 

   

1
0

0

( ) tan ( ) tanh ( , ( )) , ,

( ) ( ),


 
     

   


  


x

x x x

S

dp
p S p S g x p S dx x x z

d

p E q E E M

        (4.23) 

 where : zg S R R   is the function defined by 

   
2

1, 0
( , ( ))

1, 0

 
 

 
x

x if x
g x p S

x if x
 

 Here, 
1

11, 1, ( , ( ), ( )) tanx yc f x p S p S x     and 2 ( , ( ), ( )) tanh .x yf x p S p S y  Then the function f1 satisfies 

 (H1) with 
1 2


fM and satisfies (H6) with 1 2

( ) ,0 ,
1

    
 

r
r r and 2 ( ) 0 r . Now f2 satisfies (H1) with 

2
1fM and is non decreasing in y, so (H2) holds. Similarly, g satisfies (H3). Finally, ( ) 3 xu x e   for all 

0x x z  is a lower solution of the AMIDE (4.7) on E, and so (H7) is satisfied. Therefore, by Theorem 4.3, the 

AMIDE (4.7) has a solution x* on E, and the sequence 1{ }n np 
  defined by 

   ( ) 3 ,xp x e 
 

   

1
1

1

0

( ) ( , ( )) tan ( )n x np x G x p S p x dx
  

1

0 0

( , ( )) tanh ( , ( ))

s

x nG x p S g x p x dx dx
 

  
 
 

 
 

        for each 0x x z , converges monotonically to x*, where G(x,p(Sx)) is a Green's function associated with  

        the  homogeneous PBVP (4.14) given by (4.15). 

 Remark 4.5. We note that if the AMIDE (4.3) or (4.1) has a lower solution u as well as an upper. 

       Solution v  such that u v , then the corresponding solutions *x  and x* of the AMIDE (4.3) or (4.1) satisfy 

* *x x  and they are the minimal and maximal solutions in the vector segment [ , ]u v  of the Banach space  

         E = ca (Sz, Mz). This is because the order relation   defined by (3.2) is equivalent to the order relation defined 

by the order cone  ( , )| ( ) 0   z z zK p ca S M p E forallE M  which is a closed set in ca(Sz, Mz). Thus, 

Dhage iteration method is also useful for proving the maximal and minimal solutions in a vector segment of the 

partially ordered Banach space E. 
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