On βg^* Closed Sets in Topological Ordered Spaces

C.Dhanapakyam^{*1}, K.Indirani^{#2}

^{*1} Assistant Professor, Department of Mathematics Rathnavel subramaniam College of Arts & Science, Coimbatore, India ^{#2}Associate Professor, Nirmala College for women Red fields, Coimbatore, India

Abstract

The aim of this paper is to introduce a new class of closed sets in topological ordered spaces called increasing βg^* -closed sets, decreasing βg^* -closed sets and balance d βg^* -closed sets and obtain some of its characteristics.

Keywords - $i\beta g^*$ -closed set, $d\beta g^*$ -closed set, $b\beta g^*$ -closed set

I. INTRODUCTION

Leopoldo Nachbin [6] initiated the study of topological ordered spaces. A topological ordered spaces is a triple (X, τ, \leq) where ' τ ' is a topology on X and ' \leq ' is a partial order on X. For any $x \in X$, $[x, \rightarrow] = \{y \in X/x \leq y\}$ and $[\leftarrow, x] = \{y \in X/y \leq x\}$. A subset A of a topological ordered space (X, τ, \leq) is said to be increasing if A = i(A) and decreasing if A = d(A) where $i(A) = \bigcup_{a \in A} [a, \rightarrow]$ and $d(A) = \bigcup_{a \in A} [a, \leftarrow, a]$. A subset of a topological ordered space (X, τ, \leq) is said to be balanced if it is both increasing and decreasing. Veerakumar[7] introduced the study of i-closed, d-closed and b-closed sets in 2001. Levine[4] introduced the concept of generalized closed sets in topological spaces. Andrijevic[1] introduced the concept of β -open sets in 1986. The author[2] introduced βg^* -closed sets in topological spaces in 2016.[Throughout this paper x=i,d,b]

II. PRELIMINARIES

Throughout this paper (X, τ, \leq) represent topological ordered spaces on which no separation axioms are assumed unless otherwise mentioned. For any subset A of a space(X, τ, \leq), cl(A) and int(A) denote the closure of A and interior of A respectively.

Definition 2.1 A subset A of a space (X, τ) is called

1) a regular open set[3] if A=int(cl(A)) and regular-closed if A=cl(int(A)).

2) a β -open set [1] if A \subset cl(int(cl(A))) and β -closed if int(cl(int(A))) \subset A.

3) a semi-open set[5] if $A \subset cl(int(A))$ and semi-closed if $int(cl(A)) \subset A$.

Definition 2.2. A subset A of a topological space (X, τ) is called

1.Generalized closed (briefly g-closed) [4] if $cl(A) \subset U$ whenever $A \subset U$ and U is open.

Definition 2.3.[7]

A subset A of a topological space (X,τ,\leq) is called

(i)an iclosed set if A is an increasing set and closed set.

(ii)a dclosed set if A is a decreasing set and closed set.

(iii)a belosed set if A is both an increasing and decreasing set and a closed set.

III. xβG^{*}-CLOSED SETS

Definition 3.1: A subset A of (X, τ) is called βg^* -closed set if $gcl(A) \subset U$ whenever $A \subset U$ and U is β open.

Definition 3.2: A subset A of (X,τ, \leq) is called $i\beta g^*$ closed set if it is both increasing and βg^* closed set. **Remark 3.3:** \emptyset and X are $i\beta g^*$ closed subset of (X,τ, \leq) . **Theorem 3.4:** Every iclosed set is an $i\beta g^*$ closed set but not conversely. **Proof:** Every closed set is a βg^* closed[3]. Then every iclosed set is an $i\beta g^*$ closed set. *Example 3.5:*Let X={a,b,c}, τ ={X, ϕ , {a}, \leq = (*a*, *a*), (*b*, *b*), (*c*, *c*), (*a*, *b*), (*b*, *c*), (*a*, *c*)} clearly (X, τ , \leq) is a topological ordered space. i βg^* closed sets are ={{c}, {b,c}, X, ϕ }, iclosed sets are ={{b,c}, X, ϕ }. Let A={c}. clearly A is an i βg^* closed but not an iclosed set in X.

Theorem 3.6: Every increasing regular closed set is $i\beta g^*$ closed but not conversely.

Proof: Every regular closed set is βg^* closed set[3]. Then every ir closed is an $i\beta g^*$ closed set.

Example 3.7: Let X={a,b,c}, $\tau = \{X, \phi, \{a\}\}, \leq = \{(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\}$ clearly (X, τ, \leq) is a topological ordered space. i β g^{*} closed sets are ={{c}, {b,c}, X, ϕ }, irclosed sets are ={X, ϕ }. Let A={c}or{b,c}.clearly A is an i β g^{*} closed but not an irclosed set in X.

Definition 3.8: A subset A of (X,τ, \leq) is called $d\beta g^*$ closed set if it both decreasing and βg^* closed set.

Theorem 3.9: Every d closed set is an $d\beta g^*$ closed set but not conversely.

Proof: Every closed set is a βg^* closed. By theorem[3]. Then every dclosed set is an $d\beta g^*$ closed set.

Example 3.10:Let X={a,b,c}, τ ={X, ϕ , {a}}, \leq = (*a*, *a*), (*b*, *b*), (*c*, *c*), (*a*, *b*), (*b*, *c*), (*a*, *c*)} clearly (X, τ , \leq) is a topological ordered space. d β g^{*} closed sets are ={{a},{a,b},X, ϕ },dclosed sets are ={X, ϕ }. Let A={a}or{a,b} .clearly A is an d β g^{*} closed but not an dclosed set in X.

Theorem 3.11: Every decreasing regular closed set is $d\beta g^*$ closed but not conversely.

Proof: Every regular closed set is βg^* closed set[3]. Then every dr closed is an $d\beta g^*$ closed set.

Example 3.12: Let X={a,b,c}, $\tau={X,\phi, \{a\}}, \leq = {(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)}$ clearly (X,τ, \leq) is a topological ordered space. $d\beta g^*$ closed sets are ={{a},{a,b},X, \phi}, drclosed sets are ={X, \phi}. Let A={a}or{a,b}.clearly A is an $d\beta g^*$ closed but not an drclosed set in X.

Definition 3.13: A subset A of (X,τ, \leq) is called $b\beta g^*$ closed set if it both increasing and decreasing βg^* closed set.

Theorem 3.14: Every belosed set is an $b\beta g^*$ closed set but not conversely.

Proof: Every closed set is a βg^* closed. By theorem[3]. Then every bclosed set is an $b\beta g^*$ closed set.

*Example 3.15:*Let X={a,b,c}, τ ={X, ϕ , {a}}, $\leq = (a, a), (b, b), (c, c)$ } clearly (X, τ , \leq) is a topological ordered space. $b\beta g^*$ closed sets are ={{a},{b},{c},{a,b},{b,c},{a,c},X, ϕ }, bclosed sets are ={{b,c},X, ϕ }. Let A={c}. clearly A is an $b\beta g^*$ closed but not an bclosed set in X.

Theorem 3.16: Every bregular closed set is $b\beta g^*$ closed but not conversely.

Proof: Every regular closed set is βg^* closed set[3]. Then every br closed is an $b\beta g^*$ closed set.

Example 3.17: Let X={a,b,c}, τ ={X, ϕ , {a}}, \leq = {(*a*, *a*), (*b*, *b*), (*c*, *c*)} clearly (X, τ , \leq) is a topological ordered space. b β g^{*} closed sets are ={{a},{b},{c},{a,b},{b,c},{a,c},X, ϕ }, brclosed sets are ={X, ϕ }. Let A={a}.clearly A is an b β g^{*} closed but not an brclosed set in X.

IV. CONCLUSION

In this paper, we have introduced increasing βg^* -closed sets, decreasing βg^* -closed sets and balanced βg^* - closed sets and established their relationship with some of its characteristics in topological ordered spaces.

REFERENCES

- [1] Andrijevic.D, Semi-preopen sets, Mat. Vesnik 38(1986), 24-32.
- [2] C.Dhanapakyam ,K.Indirani,On βg^* closed sets in topological spaces Int. J. App. Research (2016),388-391
- [3] Kuratowski, Topology I, Hafner, New York, 1958.
- [4] Levine.N, generalized closed sets in topology, Rend.circ.at.Palermo,19(1970),89-96.
- [5] N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [6] Nachbin.L,Topology and order,D.Van Nostrand Inc.,Princeton, New Jersey(1965).
- [7] M.K.R.S. Veerakumar, Homeomorphisms in topological ordered spaces, Acta Ciencia Indica, XXVIII(M)(1)2002,67-76.