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Abstract:  

In this paper we explore isomorphy and unitary isomorphy of frames for Hilbert spaces with a view to 

investigating properties of some frames left invariant under these equivalence relations. We will also define new 

equivalences of Hilbert space frames. 
 

Keyword:  analysis operator, dual frame, frame, frame operator, isomorphy, unitary isomorphy, tight frame 

 

 
I. INTRODUCTION 

Frames for Hilbert spaces were introduced in 1952 by Duffin and Schaeffer [10] who used frames as a 

tool in the study of non-harmonic Fourier series. In 1986 Daubechies et al [9] reintroduced the notion of frames 

and observed that frames can be used to find series expansions of functions in the Hilbert space
2 ( )L  . Frames 

are generalizations of orthonormal bases for Hilbert spaces. The main property of frames which makes them so 

useful is their redundancy. Representation of signals using frames is advantageous over basis expansions in a 

variety of practical applications. Recently, many generalizations of frames have been introduced and studied. 

Casazza and Kutyniok [7] introduced the notion of frames for subspaces or fusion frames to have many more 

applications of frames in sensor networks and packet encoding. 

 

Frames are usually preferred because of their redundancy, yet providing stable decompositions, resilience or 

robustness to additive noise and erasure (see [7], [8]), resilience to quantization (see [11]), their numerical 

stability of reconstruction (see [8]), and greater freedom to capture signal characteristics (see [3], [4], [7]). A 

special type of frames, the equal-norm Parseval tight frame has found applications in the design of multiple-

antenna codes (see [12]). 

 
II. PRELIMINARIES 

Let H be a Hilbert space and ( )B H  denote the Banach algebra of bounded linear operators. If ( )T B H , 

then 
*T  denotes the adjointofT , while ( ), ( ),Ker T Ran T M and M 

 stands for the kernel ofT , range of

T , closure of M and orthogonal complement of a closed subspace M of ,H  respectively. Two operators 

( )A B H  and ( )B B K  are said to be similar if there exists an invertible operator ( , )N B H K  such 

that NA BN or equivalently, 
1 ,A N BN  and are unitarily equivalent if there exists a unitary operator 

( , )U B H K such that * .A U BU  Two operators ( )A B H  and ( )B B H  are said to be metrically 

equivalent if ,Ax Bx (equivalently, if 
* * ,A A B B ), for all x H (see [13]). 

An operator ( )T B H  is said to be positive if it is self-adjoint and , 0Ax x  for all x H . 

 

III. HILBERT SPACE FRMAES AND THEIR ASSOCIATED OPERATORS 

Theorem 3.1(Parseval Identity) Let 1{ }n

k kf  be an orthonormal basis for an n-dimensional Hilbert space .H  

Then for any ,f H  

2
2

1

, .
n

k

k

f f f


  
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The Parseval Identity also holds in infinite dimensional Hilbert spaces. 

A subset { }k k Jf   (where J is an indexing set) of a Hilbert space H is said to be complete if every element 

f H  can be represented arbitrarily well in norm by linear combinations of the elements in{ }k k Jf  . A 

complete set { }k k Jf  is said to be over-complete or redundant if removal of an element jf from the set results 

in a complete set or system. That is, if \{ }{ }k k J jf   is still complete. 

Definition 3.2  A sequence of vectors { }k k Jf   in a Hilbert space H is a frame for H if there exists real 

numbers 0     called frame bounds such that for all ,f H  

22 2
, .k

k J

f f f f 


   

 

The numbers  and  are called the lower bound and upper bound of the frame, respectively. They are, 

respectively, the smallest and largets eigenvalues of the frame operator. The numbers , kf f  are called the 

frame coefficients. A frame is a redundant or over-complete (that is, not linearly independnet) coordinate system 

for a vector space that satisfies a Parseval-type norm inequality. Clearly, as set of vectors in a finite dimensional 

Hilbert space is a frame if and only if it is (just) a spanning set. 

 

If ,  then the frame { }k k Jf  is called tight and if 1,   the frame is called a normalized tight frame 

or Parseval. If ,i jf f for all , ,i j J then the frame { }k k Jf  is called an equal-norm or uniform-norm 

frame, and if in addition 1,   it is called a uniform normalized tight frame. If a frame is equal-norm and 

if there exists a 0c  such that , ,j kf f c for all , ,j k J with ,j k then the frame is said to be 

equiangular. 

Clearly, a sequence { }k k Jf  in a Hilbert space H is a tight frame if there exists a number 0  such that 

2 2
, ,k

k J

f f f


     for all .f H  

 

 

Definition 3.3. Given a frame { }k k Jf   for a Hilbert space H , another frame {g }k k J is said to be a dual frame 

of  

{ }k k Jf  if the following reproducing or reconstruction formula holds 

 

, ,g ,k k k k

k J k J

f f f g f f
 

   for all .f H  

We call { }k k Jf   and {g }k k J a pair of dual frames or a dual frame pair. Dual frames are not unique. However, 

if the frame is exact (number of frame vectors is equal to the dimension of the space), then the dual is unique. 

 

Definition 3.4 Let{ }k k Jf  be a frame for a Hilbert space H . The operator 
2: ( )A H l   defined by 

{ , },kAf f f for all f H is called the analysis operator of the frame{ }k k Jf  . 

 

Definition 3.5 Let { }k k Jf  be a frame for a Hilbert space H with analysis operator .A The operator 
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* 2: ( )A l H  defined by 
*({ , }) ,k k

k J

A f f f f


 is called the synthesis operator of the frame

{ }k k Jf  . 

 

The analysis and frame operators play a central role in the analysis, reconstruction and recovery of any function 

or signal .f H The analysis operator analysis a signal in terms of the frame by computing its frame 

coefficients. 

 

In an n-dimensional Hilbet space, the synthesis operator of a finite frame 1 1 2{ } { , ,..., }N

k k Nf f f f   can be 

represented as an n N matrix 1 2 ... Nf f f . That is, 
*A  has columns the frame operators .kf This 

operator is usually identified with the frame itself. We call the quotient or ratio
N

n
   the redundancy of the 

frame and is a traditional measure of over-completeness of the frame. 

 

We note that a sequence { }k k Jf  is a frame for a Hilbert space H if and only if the analysis operator 

2: ( )A H l  is well-defined and is a topological isomorphism onto a closed subspace of 
2 ( ).l  The 

following result is a consequence of this fact. 

 

Theorem 3.6 If { }k k Jf  is a frame for a Hilbert space H  with analysis operator
2: ( )A H l  , then the 

following conditions hold. 

 

(a). A  is injective. 

 

(b). ( )Ran A  is closed. 

 

(c). 
*A is surjective. 

 

Definition 3.7 Let { }k k Jf  be a frame for a Hilbert space H with analysis operator .A The operators *S A A

and *G AA  are called the frame operator and Grammian operator, respectively. 

 

By Theorem 3.6, the frame operator :S H H is positive and invertible while the Grammian

2 2: ( ) ( )G l l  is positive but need not be invertible, since its range need not be all of 
2 ( ).l   The 

Grammian operator nd its pseudo-inverse play a crucial role in the process of recovery of a signal f H from 

frame representation. 

 

Proposition 3.8[Frame Reconstruction Formula] Let { }k k Jf  be a frame for a Hilbert space H with analysis 

operator A and frame operator .S Then for all f H  

 
1 1 1 1/2 1/2, , , , .k k k k k k k

k J k J k J k J

f S f f f f S f f f S f f S f S f    

   

        

 

The reconstruction formula shows that all information about a given vector or signal f H is contained in the 

sequence 
1{ , }.kf S f

We note that the choice of coefficients in Proposition 3.8 is not unique, in general. If 

the frame is redundant or over-complete, a typical phenomenon in applications, then there exists infinitely many 

choices of coefficients 
1,k kc f S f in the expansion of .k k

k

f c f The possibility ensures resilience to 
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erasures or noise in a signal f H . A new approach (see [6]) has emerged recently, and has received 

increasing attention, namely choose the coefficient sequence to be sparse in the sense of having only few non-

zero entries, thereby allowing data compression while preserving perfect reconstruction or recoverability. The 

frame 
1{ } { }k k k Jf S f

  is called the canonical dual of { }k k Jf   and its frame operator is denoted by canS . 

 

Proposition 3.9 Let { }k k Jf  be a frame for a Hilbert space H and suppose that {g }k k J is its dual frame. Then 

 

, ,g ,k k k k

k J k J

f f f g f f
 

   for all .f H  

 

 

 

 

 

Lemma 3.10 Let 1{ }n

k kf  be a frame for a finite dimensional Hilbert space H with analysis operator A and 

frame operator S . If ( )T B H , then the analysis operator for the sequence 1{ }n

k kTf   equals *.AT  

 

Proof. Let B be the analysis operator for the sequence 1{ }n

k kTf  . Then 

 

* *

1 1

, , ,
n n

k k k k

k k

Bf f Tf f T f f f AT f
 

    f H  . 

 

 

That is, 
*B AT . 

 

Theorem 3.11([2], Theorem 2.2) If 1{ }n

k kf  is a frame for a N- dimensional Hilbert space H with frame 

operator S and  

( )T B H , then the frame operator for the sequence 1{ }n

k kTf   equals *.TST  

 

Proof. The proof follows from the fact that the frame operator for 1{ }n

k kTf  is given by  

 

* *

1 1

, ( , ) .
n n

k k k k

k k

f Tf Tf T T f f f TST
 

    

 

Alternatively, from Lemma 3.10, the frame operator of 1{ }n

k kTf  is given by  

 

* * * * * * * * *( ) ( ) ( ) .B B AT AT TA AT T A A T TST     

Clearly,  

 

* *

1 1

( , ) , .
n n

k k k k

k k

TST f T T f f f f Tf Tf
 

    

Theorem 3.11 leads to the following consequences. 

 

Corollary 3.12If 1{ }n

k kf  is a tight frame for a N- dimensional Hilbert space H with frame operator S and  
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( )T B H , then the frame operator for the sequence 1{ }n

k kTf   is a scalar multiple of *.TT  Moreover, if 

1{ }n

k kf  is Parseval, then the frame operator for 1{ }n

k kTf  is *.TT  

Corollary 3.12 Let 1{ }n

k kf  be a frame for a Hilbert space H with frameoperator S . The canonical dual frame 

operator satisfies 1.canS S  

 

Proof. For every ,f H we have 

 

1 1 1 1 1 1 1

1 1 1

, , , .
n n n

can

k k k k k k

k k k

S f f f f f S f S f S S f f f S SS f S f      

  

       
 

 

Therefore 1.canS S  

 
IV. ISOMORPHY AND UNITARY ISOMORPHY OF FRAMES 

There are several commonly used notions of equivalence among frames. There are frames, although 

they are technically different, are considered to be the “same” in some sense. First we explore the more general 

notions of isomorphy and unitary isomorphy of frames, associated operators and their properties. 

 

Definition 4.1 Two frames 1{ }n

k kf    and 1{ }n

k kf   for an N-dimensional Hilbert space H  are said to 

be isomorphic if there is an invertible operator :T H H  such that for all ,kg   we have k kg Tf , 

for all 1,2,...,k n . 

Definition 4.2 Two frames 1{ }n

k kf    and 1{ }n

k kf   for an N-dimensional Hilbert space H  are said to 

be unitarily isomorphic if there is a unitary operator :U H H  such that for all ,kg   we have

k kg Uf , for all 1,2,...,k n . 

 

Remark. Balan in [1] has used the term F-equivalent to mean isomorphic. We note also that in the literature, 

thevterms similarity and unitary equivalence have been used in place of isomorphy and unitary isomorphy, 

respectively. In this paper, we adopt the latter and reserve the terms similar and unitary equivalence to bounded 

linear operators. We also note that isomorphy and unitary isomorphy are equivalence relations in the set of 

frames .F We also note that isomorphy of frames is order-dependent, is the sense that the order in which the 

frames vectors are arranged matters. 

 

Example 4.3 If { }ne is an orthonormal basis for an N-dimensional Hilbert space H , then the sets 

1 2{0, , ,..., }ne e e and  

1 2{ ,0, ,..., }ne e e are two non-similar frames for H , although they are the same set. 

 

Definition 4.4 Let 1{ }n

k kf    be a frame for a Hilbert space H with frame operator .S The sequence 

1/2

1{ }can n

k kS f

   is also a frame, called the canonical tight frame. 

Remark. We note that the canonical tight frame 
1/2

1{ }can n

k kS f

     is a Parseval frame that inherits 

properties of the original frame 1{ }n

k kf   .An interesting result in the context of frame isomorphy is that 

any Parseval frame derived from a frame is isomorphic to it. 

 

Theorem 4.5 Let 1{ }n

k kf    be a frame for a Hilbert space H with frame operator .S  Then the Parseval 
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frame 
1/2

1{ }can n

k kS f

   is isomorphic to 1{ }n

k kf   . 

 

Proof. The proof follows from Definition 4.1 by letting 1/2.T S  

 

Lemma 4.6 Let 1{ }n

k kf    and 1{ }n

k kg    be isomorphic Parseval frames for a Hilbert space H . Then 

they are unitarily isomorphic. 

 

Lemma 4.6 says that the notions of isomrphy and unitary isomorphy coincide for Parseval frames. 

 

Theorem 4.7 Every tight frame 1{ }n

k kf    for a Hilbert space H  with frame bound 1  can be rescaled 

to a Parseval frame. 

 

Proof. Suppose that 1{ }n

k kf   is a tight frame with frame bound 1  . Then 

 
2

2

1

, ,
n

k

k

f f f


 for all .f H  

Thus, 

 

1



2
2

1

, ,
n

k

k

f f f


 for all .f H  

 

Pulling the factor 
1


 into the sum, we have 

 
2 2

2

1 1

1 1
, ,

n n

k k

k k

f f f f f
  

   for all .f H  

 

Remark. Theorem 4.7 says that given a frame, it is always possible to find a frame isomorphic to it. 

 

Theorem 4.8 The Grammian matrix G for an frame 1{ }n

k kf    is given by  

1 1 1 2 1

2 1 2 2 2

.

1 2

, , ... ,

, , ,
( , )

, , ,

n

n

j k m n

n n n n

f f f f f f

f f f f f f
G f f

f f f f f f



 
 
  
 
 
  





   



 

 

Proof. The proof follows from the fact that 
*,G AA  where 

*A  has columns the frame operators .kf  

 

Remark. Theorem 4.8 says that the entries of the Grammian matrix are the inner products between the frame 

elements. 

 
V. MAIN RESULTS 

Theorem 5.1 Two frames for a Hilbert space H are unitarily isomorphic if and only if their Grammians are 

equal. 

 

Proof.  Suppose that 1{ }n

k kf    and 1{ }n

k kg    are unitarily isomorphic. Then ,k kg Uf for some 
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unitary operator ( ).U B H By Theorem 4.8, the Grammian 

 

,g , , .j k j k j kG g Uf Uf f f G      

 

Conversely, suppose .G G  Then ,g , , ,j k j k j Kg f f Uf U   for some unitary operator 

( ).U B H Therefore .k kg Uf This proves proves that the frames are unitarily isomorphic. 

Remark. Theorem 5.1 shows that unitary isomorphy preserves the Grammian of a frames. In fact, the Grammian 

characterizes the equivalence class of a frame. 

 

Corollary 5.2 Let 1{ }n

k kf    and 1{ }n

k kg   be frames for an N-dimensional Hilbert space H with 

analysis operators A and ,B respectively. Then the following conditions are equivalent. 

 

(a).  and  are unitarily isomorphic. 

 

(b). ( ) ( ).Ran A Ran B  

 

(c). 
* *( ) ( ).Ker A Ker B  

 

Proof. (a) (b): Suppose that and  are unitarily isomorphic. By Theorem 5.1, * *.AA BB  Therefore,  

 

* *( ) ( ) ( ) ( ).Ran A Ran AA Ran BB Ran B    

(b) (c): We use the fact that 
*( ) ( )Ker T Ran T   for any ( ).T B H  So if ( ) ( ),Ran A Ran B then 

* *( ) ( ) ,Ker A Ker B  which implies that 
* *( ) ( ).Ker A Ker B  

 

(c) (a): We prove by contradiction. Suppose that 
* *( ) ( )Ker A Ker B but and  are not unitarily 

isomorphic. Then .G G   This implies that 
* *( ) ( ).Ker BB Ker AA This implies that 

* *( ) ( ),Ker B Ker A  which is a contradiction to the assumption that
* *( ) ( )Ker A Ker B . This proves the 

claim. 

 

Remark. Unlike the Grammian operator, we note that unitary isomorphy need not preserve the frame operator of 

a frame. The next result characterizes the unitary isomorphy of two frames in terms of their frame operators. 

 

Theorem 5.3 Unitarily isomorphic frames have unitarily equivalent frame operators. 

 

Proof. Suppose 1{ }n

k kf    and 1{ }n

k kg   are unitarily isomorphic frames and suppose that 

1{ }n

k kf   has frame operator .S Then we have ,k kg Uf for some unitary operator ( ).U B H  By 

Theorem 3.11, the frame operator of  is 
*,USU which is unitarily equivalent to .S  

 

The following result gives a condition when unitarily isomorphic frames have the same frame operator. 

 

Theorem 5.4 Unitarily isomorphic tight frames for a Hilbert space H the same frame operator. 

 

Proof. Suppose 1{ }n

k kf    and 1{ }n

k kg   are unitarily isomorphic tight frames with frame operators S  
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and ,S respectively. Tightness of the frames implies that 1S I   and 2S I   for some 

1 20 , .    Using Theorem 5.3, unitary isomorphy of the frames implies unitary equivalence of the 

frames operators. This means that  
*

1 2 2( ) .S I U I U I S       This proves the claim. 

Remark. We define a new relation, called duality of finite frames. Recall that 1{ }n

k kf    and 1{ }n

k kg    

are a dual pair if and only if , ,g ,k k k k

k J k J

f f f g f f
 

     for all .f H We denote this relation by

dual

  . 

 

Theorem 5.5 Duality of frames 1{ }n

k kf    and 1{ }n

k kg   for a Hilbert space H  is an equivalence 

relation. 

Proof. Clearly ,
dual

  since , .k k

k J

f f f f


 This shows that 
dual

 is reflexive. Now suppose
dual

  . Then 

, ,g ,k k k k

k J k J

f f f g f f
 

   for all .f H This shows that 
dual

  implies that .
dual

  This 

shows that 
dual

  is symmetric. Finally, suppose 1{ }n

k kh   is another frame for H . Suppose that 
dual

   and 

.
dual

  Then , ,g ,k k k k

k J k J

f f f g f f
 

    and ,g , .k k k k

k J k J

f f h f h g
 

   This implies 

that , , .k k k k

k J k J

f f f g f h g
 

    Equating the coefficients, we have that , ,k kf f f h  for all 

.k J  Therefore , ,k k

k J

f f h f


 which proves that .
dual

  Thus 
dual

 is transitive. This proves that 
dual

 is 

an equivalence relation.  

 

Remark. The Grammian of a tight frame 1{ }n

k kf   is an orthogonal projection 
* : .G AA P P   The 

columns of P give a canonical copy of   and so the kernel of P is the space of linear dependence between 

vectors in . This leads to the following result. 

 

Proposition 5.6 Let 1{ }n

k kf    be a tight frame for an N-dimensional Hilbert space H  with Grammian

.G P Then ( ) ( ).dep Ker P   

 

Proof. Since the Grammian of a tight frame 1{ }n

k kf    is an orthogonal projection, we have  

 

1 2

1 1

( ) { ( , , , ) : 0} { : 0} : ( ).
n n

n n

n k k k k

k k

Ker P a a a a F Pa a Pe a F Pa a f dep

 

           

 

Remark. Proposition 5.6 says that for a tight frame the Grammian is determined by its kernel. It also says that 

P is the orthogonal projection onto ( ) .dep   We also note that from the definition that if  is a basis for

H , then ( ) {0}.dep    

 

Theorem 5.7 Let 1{ }n

k kf    and 1{ }n

k kg   be unitarily isomorphic frames for a Hilbert space H . Then 

( ) ( ).dep dep    
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Proof. The proof follows easily from Theorem 5.1 and the definition of the notion of linear dependence. 

 

Remark. Theorem 5.7 can be relaxed as follows. 

 

Theorem 5.8 Let 1{ }n

k kf    and 1{ }n

k kg   be finite frames for a Hilbert space H with analysis operator 

A and ,A respectively. Then the following conditions are equivalent. 

 

(a).   and  are isomorphic. 

 

(b). ( ) ( ).dep dep    

 

Proof. (a) (b): Suppose that   and  are isomorphic. Then there exists an invertible operator ( )Q B H

such that k kg Qf for all 1,2, , .k n   Thus the synthesis operator for   is 

* [g ] [ ] [ ].k k kA Qf Q f    Using the fact that the Grammian of  is a projection P P  and the fact 

that 
* *( ) ( )Ker AA Ker A for any bounded linear operator A and the definition, we have 

 
* *( ) ( ) ( [ ] ([ ]) ( ) ( ) ( ).k kdep Ker A Ker Q f Ker f Ker A Ker P dep           

(b) (a):  Suppose that ( ) ( ).dep dep   Using the fact that 
* *A A P    and 

*( ) ( ) ,Ran P Ker A 

  we have that 
* : ( )A Ran P H   is invertible. Similarly, 

* : ( )A Ran P H   is 

invertible. This means that 
* * 1

( ) ( ): ( )( ) :Ran P Ran PQ A A H H
 



   is invertible. Using the fact that 

* * ,k k kf A e A P e    where { }ke is an orthonormal basis for 
2 ( ),l J {1,2, }J n  , we have  

 
* * *( ) .k k k k kQf QA P e A P e A e g         

 

This shows that k kg Qf . Therefore the frames are isomorphic. 

 

Theorem 5.9 Unitarily isomorphic frames have the same frame bounds. 

 

Proof. Suppose that 1{ }n

k kf    and 1{ }n

k kg    are unitarily isomorphic frames for a Hilbert space H . 

Then k kg Uf some unitary operator ( ).U B H Suppose 1{ }n

k kf   has S as its frame operator. By 

Corollary 3.11, 1{ }n

k kg   has frame operator *.USU  Corollary 5.3 shows that the frame operators are 

unitarily equivalent and hence have the same spectrum. That is 
*( ) ( )S USU  and therefore the lower and 

upper frame bounds are the same. 

 

Remark. We note that Theorem 5.9 need not be true if we replace unitary isomorphy with isomorphy. This is 

because isomorphy of frames need not imply similarity of their frame operators. The following example 

illustrates this fact. 

 

Example 5.10 Consider the frame 
3

1

1 0 0
{ } { , , }

0 1 1
k kf 

     
        

     
for 2.H    Let 

0 1

1 0
U

 
  
 

and 

2 0
.

0 2
Q

 
  
 

 Clearly both U and Q are invertible and in addition, U is unitary. So the sequences 
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1{ }n

k kUf    and 1{ }n

k kQf  are frames for H . The frames  and   are unitarily isomorphic while 

  and are isomorphic. A simple computation gives the corresponding frame operators as  

1 0
,

0 2
S

 
  
 

2 0
,

0 1
S

 
  
 

and
4 0

.
0 4

S

 
  
 

 

By inspection, the frame bounds for  are 1, 2    and are the same for .  But the frame bound bound 

for  is 4.   This shows that unlike unitary isomorphy of frames, frame isomorphy need not preserve 

frame bounds. From Example 5.10, we also note that frame isomorphy need not preserve tightness. In Example 

5.10  is a tight frame, while  is not, although they are similar frames. 

 

Remark. For frames which are not tight, isomorphy of frames is weaker than unitary isomorphy of frames. Thus 

 

Unitary Isomorphy Isomorphy, 

 

But the converse is not true, in general. 

 

Theorem 5.11 A frame 1{ }n

k kf   for a Hilbert space H  with a frame operator S , its canonical dual 

1

1{ }n

k kS f

   and its canonical tight frame 
1/2

1{ }can n

k kS f

  are isomorphic frames. Moreover, they are 

unitarily isomorphic if and only if 1{ }n

k kf   is Parseval. 

 

Proof. The proof of the first claim follows from Theorem 5.8 and Theorem 5.9. The proof of the second claim 

follows from Lemma 4.6. 

 

Theorem 5.12 Two Parseval frames 1{ }n

k kf    and 1{ }n

k kg   are unitarily isomorphic and only if they 

are isomorphic. 

 

Proof. We prove the converse. The other direction is clear for all frames. Isomorphy of 1{ }n

k kf    and 

1{ }n

k kg   implies existence of an invertible operator ( )T B H such that ,k kg Tf for all 1,2,..., .k n

By ([2], Theorem 2.2) and Corollary 3.11 and the fact that the frames are Parseval implies that the frame 

operator of 1{ }n

k kg   is 
* *( ) .T I T TT I   This implies that T is an isometry. Invertibility of T then 

implies that T where U is a unitary operator. Therefore .k kg Uf  This proves that the frames are unitarily 

isomorphic. 

 

Remark. The Proof in Theorem 5.12 is equivalent to the following direct one: For all ,f H we have 

 
2 2 2

2 2* *

1 1 1

, , ,g .
n n n

k k k

k k k

T f T f f f Tf f f
  

      

 

This proves that 
*T  is an isometry. That is, * .TT I Invertibility then implies that T is unitary. The result 

now follows by letting ,T U for some unitary ( ).U B H  

 

Remark. We note that if a frame is unitarily isomorphic to a Parseval frame, then it is also a Parseval frame. We 

also note that every Riesz basis is isomorphic to an orthonormal basis for a Hilbert space. 

 

The following result characterizes finiteisomorphic frames in terms of the Grammians of their canonical tight 

frames. 
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Proposition 5.13 Let 1{ }n

k kf    and 1{ }n

k kg   be finite frames for a Hilbert space H with analysis 

operators A and ,B respectively. Then the following are equivalent. 

 

(a).  and  are  isomorphic. 

 

(b). ( ) ( ).can canGram Gram    

 

(c). ( ) ( ).Ran A Ran B Equivalently, 
* *( ) ( ).Ker A Ker B  

 

Proof. (a)  (b): Suppose that  and  are  isomorphic and that the frame operator of 1{ }n

k kg   is .S  

Then there exists an invertible operator Q  such that k kg Qf for all .k  So 

 
1/2 1/2 1/2 1/2( ) ,can can

k k k k kg Qf QS S f QS S f Tf T       for all ,k  

 

Where 
1/2T QS is invertible. Hence { }.can

kTf   For convenience, we denote the synthesis operator by 

.canC Then  

* * *( ) (C ) .can canS T C T TT I     

 

Using the fact that { }can

kTf   is a tight frame if and only if 
2S c I   for some 0,c  we conclude that T

is a unitary operator. Thus  Is unitarily isomorphic to 
can .  Therefore ( ) ( ).can canGram Gram    

(b) (c): Since : ( )can canP Gram    and : ( )can canP Gram    are orthogonal projections, they are 

determined by the ranges, then 
can canP P   if and only if ( ) ( ),Ran A Ran B  or equivalently, 

* *( ) ( ).Ker A Ker B  

 

(c)  (a): This follows immediately from Corollary 5.2, since unitary isomorphy implies isomorphy. We give a 

rigorous proof. First note that 

 

* *

1 1 1

,g , , .
n n n

k k k k k k

k k k

Bf f f f Tf f T f f f AT f
  

       

This shows that 
*( ) ( ) ( ).Ran B Ran AT Ran A  For convenience, we let 

 

( ) ( ) ,Ran A Ran B M   

 

where M is a closed subspace of 
2 ( ).l   Since

*A  and 
*B are invertible when restricted to M , the operator 

* * 1( ) :MT B AA A H M   is onto and hence invertible on M . Therefore 

* *( ) ( ) {0}.A M B M    Thus 
* *

k k kf A e A Pe   and 
* * ,k k kg B e B Pe  where { }ke  is the 

standard basis for 
2 ( ).l   Therefore  

 
* * * * 1 * *( ) ( ) .k k k M M k k kTf TA e TA Pe B AA AA Pe B Pe g      
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That is, ,k kg Tf  which implies that the frames are isomorphic. 

 

Remark. Proposition 5.13 shows that finite frames are isomorphic if and only if their canonical Grammians are 

equal. It also says that finite frames are isomorphic if and only if their analysis operators have the same range. 

 

We define the traditional notion of redundancy Re ( )d  of a frame 1{ }N

k kf    for an n-dimensional 

Hilbert space H as the quotient .
N

n
  This however, is a customary and crude quantitative notion of 

redundancy. For literature on other quantitative notions of redundancy (see [6], [7]). In any case, it is known that 

the redundancy of an over-complete frame is greater than 1. 

 

Remark. We note that unitary isomorphy of frames preserves redundancy of frames. However, equality of 

redundancy does not, in general, translate to unitary isomorphy. 

 

Example 5.14 Consider the frames 1 1 2{ , , }e e e  and 1 2 2{ , , }e e e  , where { }ke denotes the 

orthonormal basis for 2.H    Then 
3

Re ( ) Re ( ) .
2

d d     However, the frames are not unitarily 

isomorphic, since 

 

1 1 0 1 0 0

( ) 1 1 0 0 1 1 ( ).

0 0 1 0 1 1

Gram Gram

   
   

    
   
      

 

 

Note that although the Grammians are not equal, they are similar as operators, with the similarity being 

implemented by 

0 0 1

1 0 0 .

0 1 0

N

 
 

 
 
  

 

 

Let { :F    is a frame}  be the set of frames for a finite dimensional Hilbert space .H  

Define a relation 

red

 on F by 

red

  if and only if Re ( ) Re ( ).d d    

Theorem 5.15

red

 is an equivalence relation on F . 

 

Proof. Trivial and hence omitted. 

 

Theorem 5.15 says that searching for a frame which possesses a predetermined redundancy function is 

equivalent to searching for the equivalence class. Frames which have the same redundancy in a Hilbert space 

will be called 

red

 -equivalent. 

 

Corollary 5.16 Let  and  be frames for a finite dimensional Hilbert space .H Suppose and  are 

normalized with frame operators S  and ,S respectively. Then the following conditions are equivalent. 

 

(a). Re ( ) Re ( ).d d    

 

(b). .S S   

Corollary 5.16 says that 

red

 -equivalent frames must have the same number of non-zero frame vectors. 
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Theorem 5.17 Unitarily isomorphic and isomorphic frames are 
red

 -equivalent.  

 

In particular, orthonormal bases and Riesz bases are 
red

 -equivalent.  

 

Definition 5.18 Let 1{ }N

k kf   be a collection of unit vectors for an n-dimensional Hilbert space .H The 

frame potential of  is the number  

 
2

,

1 1

.
k k

i j

i j

f f

 

 


 

 

 

The frame potential gives an intuitive idea of the configurations of the vectors in a tight frame. This notion can 

be extended to any collection of vectors with varied norms. The inner product between vectors gives a quantity 

describing the orthogonality of the vectors. For more literature on frame potential (see [4]). 

 

Theorem 5.19 All tight frames 1{ }N

k kf      in a finite dimensional Hilbert space has the same frame 

potential. 

Lemma 5.20 If 1{ }k

i if    is a tight frame of unit vectors in ,n then the frame potential of  is

2

.
k

n
 


 

Proof.  Since   is a tight frames of unit vectors, the frame bound is .
k

n
  By definition of a tight frame, we 

then have  
2 2 2 2

, ,

1 1 1 1 1 1

( ) .
k k k k k k

i j i j i

i j i j i i

k
f f f f f

n
 

     

         


 

 

Remark. First, recall that ( ) ( ),tr S tr G where *S A A  and *.G AA The frame potential of a frame 

1{ }k

i if    can be described in terms of the trace and the Grammian matrix G  as 

 
2 2

2 2

, ,

1 1 1 1 1

( ) ,
k k k k k

i j i j i

i j i j i

f f G tr G 

    

      


 

 

Where i  are the eigenvalues of G . 

 

The next result shows that unitary isomorphy preserves frame potential. 

 

Lemma 5.21 Unitarily isomorphic frames in a finite dimensional Hilbert space have equal frame potential. 

 

Proof. Suppose that 1{ }k

i if    is a frame for a Hilbert space .H Let 1{ }k

i ig   , where i ig Uf  for all 

1,2, ,i n  and some unitary operator ( ).U B H  Then 

 
2 2

, ,

1 1 1 1

.
k k k k

i j i j

i j i j

Uf Uf f f 

   

     
 

 

 

Given two M N matrices A and ,B we define the Hilbert-Schmidt trace inner product as 
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*

.
, ( ).

H S
A B tr AB This inner product induces the Hilbert-Schmidt norm 

.
.

H S
 or the Frobenius norm on 

the vector space of all M N matrices.   Using this distance notion we define a distance function on the space 

of frames { :F    is a frame} . 

 

Definition 5.22 Let 1{ }k

i if    and 1{ }k

i ig   be finite frames for an n-dimensional Hilbert space .H The 

frame distance between them is 

 

 

.
( , ) .F H S

d      

 

Clearly, the frame distance is a metric on the space of frames .F  

 

Definition 5.23 Let 1{ }k

i if    and 1{ }k

i ig   be finite frames for an n-dimensional Hilbert space H with 

analysis operators A  and ,B respectively. The Grammian distance between them is 

 

.
( , ) ( ) ( ) ,G H S

d Gram Gram       

where
*( )Gram A A  and 

*( ) .Gram B B   

 

Clearly, the Grammian distance is a pseudo-metric on the space of frames F because unitary isomorphy of 

and  implies ( ) ( ),Gram Gram    which means that ( , ) 0.Gd     

 

We also define a distance in terms of unitary isomorphy of frames. 

 

 Definition 5.24 Let 1{ }k

i if    and 1{ }k

i ig   be finite frames for an n-dimensional Hilbert space .H

Theisomorphy distance between them is 

 

.'
'

( , ) inf ' ' ,I H S
d

 
 

      

where denotes unitary isomorphy. Clearly, the isomorphy distance is a pseudo-metric on the space of frames 

F since  ( , ) 0Id     whenever  and  are unitarily isomorphic. 

Definition 5.25  Two frames 1{ }k

i if    and 1{ }k

i ig    for an n-dimensional Hilbert space H  are said to 

be switching equivalent if there is a unitary operator ( )U B H  and a permutation  of the set 

{1,2,..., }J k  such  

(j) ,jf Ug for all .j J  

 

Theorem 5.26 TwoParseval frames 1{ }k

i if    and 1{ }k

i ig    for an n-dimensional Hilbert space H are  

switching equivalent if and only if there exists a permutation  of the index set {1,2,..., }J k  such  

, (i), (j)( ) ( ) .i jGram Gram      

 

Proof. Define a matrix    

 
1, (i) j

,
0,

{
if

i j
otherwise

P P
 

   
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Let A an B  be the analysis operators of the frames  and , respectively. Suppose also that  and  are 

switching equivalent. Then there exists a unitary operator ( )U B H  and a permutation  of the set 

{1,2,..., }J k  such (j) ,jf Ug  for all .j J  Thus 
* * *,A UB P  where ( )U B H is unitary. This is 

equivalent to  

 

* * * * * *( ) ( ( )) .Gram AA PBU UB P PBB P P Gram P       

 

 

 

 

Thus the Grammians are identical up to conjugation by a permutation matrix. Therefore  

 

, (i), (j)( ) ( ) .i jGram Gram      

Conversely, suppose that , (i), (j)( ) ( ) .i jGram Gram      Then  

 

(i) (j) (i) (j), , , .i jf f g g Ug Ug      

 

Therefore (j) ,jf Ug  for all .j J This proves that the frames are switching equivalent. 

 

Remark. Note that if P I in the proof of Theorem 5.26, then the Grammians of the frames are equal, which 

by Theorem 5.1, means that the frames are unitarily isomorphic. This shows that switching equivalence is 

weaker than unitary isomorphy of frames. 

 

The next result shows that unitary isomorphy preserves tightness of frames. 

 

Theorem 5.27 If two tight frames 1{ }k

i if    and 1{ }k

i ig    for an n-dimensional Hilbert space H are 

unitarily isomorphic then they have the same tightness. 

 

Proof. Suppose 1{ }k

i if   is   tight. Then 
1

1
, ,

k

i i

i

f f f f
 

   for all .f H  Taking inner product 

with f we get 

2
2

1 1

1 1
, , , , .

k k

i i i

i i

f f f f f f f f f
  

     

Now suppose ,i ig Uf  for some unitary operator ( )U B H . Then using the fact that * 1U U  , we get 

 

1 1 *

1 1 1

1 1 1
, , ( ) ,

k k k

i i i i i i

i i i

f f f f f U Uf f U f Uf f
  

 

  

    
 

1 *

1

1
( ) ,

k

i i

i

U f Uf f






   

1 *

1

1
, ( )

k

i i

i

f Uf U f






   
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1

1
,

k

i i

i

f Uf Uf
 

   

 

1




1

,g .
k

i i

i

f g


  

Taking inner product with f gives  

2
2

1 1

1 1
, ,g ,g ,g .

k k

i i i

i i

f f f f f f
  

     

 

 

This shows that the frame 1{ }k

i ig    is also   tight. 

 

Remark. Theorem 5.27 can easily be proved by invoking Corollary 3.1 and the fact that unitay equivalence of 

operators preserves norms: 
22 2 2* .S f USU f Sf f     

 
VI. CONCLUSION 

Frame isomorphy and unitary isomorphy can be used to determine equivalence classes of some Hilbert 

space frames. There are at most finitely many frame equivalence classes, which means that the problem of 

determining, for instance, tight frames reduces to the problem of finding representatives for each equivalence 

class and determining which of these equivalence classes is optimal in application. Some classes of frames are 

enticing to frame theorists and experts because their properties make calculations easier. Knowledge about the 

frame operators and synthesis operators and their properties is crucial in classifying frames. 
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