A New Approach of Multiplication with Verification

Sushankar Das
Assistant Teacher
Zadonang Memorial M.E. School Dima Hasao District, Assam, India.

Abstract

In this paper we prove with verification the result of multiplication of multi-digit numbers by a new method. The method is mainly based on two steps, namely step 1 and step 2 , after adding these steps we find the result or product. This new method may be used in general and may be named as two step method of Multiplication.

Key words - Two step method, prove with verification, direct vertical multiplication, cross multiplication, using block and omitting block.

I. INTRODUCTION

The new method is a formal method of multiplication. This method is the shortest and easiest method comparing with other formal methods of multiplication. The important characteristic of this method is that we can easily verify the result (subtracting step 2) and find multiplicand and multiplier reversing the path.

The method is neither a Vedic or a Trachtenberg"s method nor the lattice method of multiplication. This method is somewhat similar only in respect of the name of the application of technique i.e. vertical and crosswise as used in Vedic or Jakow Trachtenberg method of rapid arithmetic. New method maintain the similar rule as we apply in the lattice method for step 1 and follow an independent cross-multiplication technique for step 2.

II. PROCEDURE

Here, we discuss how the new technique applied in the method. We write the numbers one above the other, aligning place value as in the usual method of multi-digit multiplication. We put „zero" or „zeros" to equalize the vertical digits if necessary and follow the given instructions for-

Step 1: We multiply vertical digits directly one by other and write the results using two digit numbers i.e. $0 \times 0=00$ or $1 \times 2=02$. If we put a " 0 " (zero) to equalize digits it results only one " 0 " zero i.e. $3 \times 0=0$, instead of $3 \times 0=00$, because putting zero has no actual value.

Step 2: Firstly put " 0 " (zero) on ones place below step 1 and write down only the results of ones place after by adding various partial product of cross multiplication from tens place to the left. We keep the other digit or digits as carry number and add the carry number with the next partial product and thus in the same away as long as necessary, after final calculation, we put down all the digits in their respective place.

III. EXPLAINING WITH EXAMPLES

Now we discuss the new method in the context of several examples with verification.
Example 1-Multiply two digits by one digit Suppose, we wish to multiply 27 by 4, we write it out in this form

27
$\times 04$ put a zero to equalize digits
028 step 1: direct vertical multiplication $2 \times 0=0$ and $7 \times 4=28$
+080 step 2: cross multiplication $2 \times 4+0 \times 7=08+00=08$, zero putted in ones place
108 result
Verification of the result can be done by subtracting the step 2 from the final result:

$$
\begin{array}{cl}
\text { given: } 27 \times 4 & =108 \\
\text { Step 2: } 080 & =080 \\
\text { Step 1: } & =028
\end{array}
$$

Pairing from the right we have 0 and 28 for 028 . Factorizing as per question (vertical digits)

$$
\begin{aligned}
& 0=2 \times 0 \text { (putting " } 0 \text { "c, zero has no value) } \\
& 28=7 \times 4
\end{aligned}
$$

Setting in order we get: $108=27 \times 04$.
For this example 2 digits $\times 1$ digit $=3$ digits Note that final result is a 3 digit number because it is a product of two and one digit.

Example 2-Multiply two digits by two digits Suppose we multiply 77 by 77. We write it out in this form and do it

77	
$\times \quad 77$	
4949	step 1: direct vertical multiplication
+980	step 2: cross multiplication, '0' putted on ones place
5929	result

Step 1: Direct vertical multiplications give $7 \times 7=49$ and $7 \times 7=49$.
Step 2: Cross multiplication and putting " 0 " on ones place

$$
\begin{aligned}
& \text { tens place: }=7 \times 7+7 \times 7=49+49=98 \text {, (980) } \\
& \therefore \text { step 2 }
\end{aligned}
$$

Verification of the result can be done by subtracting the step 2 from the final result.

$$
\text { Given, } 77 \times 77=5929
$$

Step $2=980$
Step $1=4949$
Pairing from the right we have 49 and 49 for 4949 . Factorizing as per question (vertical digits)

$$
\begin{aligned}
49 & =7 \times 7 \\
49 & =7 \times 7
\end{aligned}
$$

Setting in order, we get: $5929=77 \times 77$. For this example, two digits \times two digits $=$ Four digits
Example 3-Multiply three digits by three digits Suppose we multiply 546 by 378 . We write it out in this form and do it

$$
\begin{array}{r}
546 \\
\times 378 \\
\hline 152848 \\
\text { step 1: }
\end{array}
$$

Step 1: Direct vertical multiplications give $5 \times 3=15,4 \times 7=28$ and $6 \times 8=48$.

Step 2: Cross multiplication and putting " 0 " on ones place

$$
\begin{aligned}
\text { Tens place: } & 6 \times 7+8 \times 4=42+32=74 . \text { Write } 4 \text { carry } 7(40) \\
\text { Hundred place: } & 6 \times 3+8 \times 5+7=18+40+7=65 \text {, write } 5 \text { carry } 6(540) \\
\text { Thousand place: } & 4 \times 3+7 \times 5+6=12+35+6=53,(53540) \\
\therefore \text { Step } 2= & 53540
\end{aligned}
$$

Verification of the result can be done by subtracting the step 2 from the final result.

$$
\begin{array}{cc}
\text { Given, } 546 \times 378= & 206388 \\
\text { Step } 2= & 53540 \\
\text { Step } 1= & 152848
\end{array}
$$

Pairing from the right we have 15,28 and 48 for 152848 . Factorizing as per question (vertical digits)

$$
\begin{aligned}
\therefore & =5 \times 3 \\
28 & =4 \times 7 \\
48 & =6 \times 8
\end{aligned}
$$

Setting in order, we get: $206388=546 \times 378$. For this example, 3 digits $\times 3$ digits $=6$ digits

Example 4-Multiply four digits by four digits Suppose we multiply 2324 by 3212. We write it out in this form and do it

$$
\begin{aligned}
& 2324 \\
& \\
& \hline \\
& \hline 06060208 \text { step 1: }
\end{aligned} \text { direct vertical multiplications }
$$

Step 1: Direct vertical multiplication give $2 \times 3=06,3 \times 2=06,2 \times 1=01$ and $4 \times 2=08$.
Step 2: Cross multiplication and putting " 0 " on ones places

$$
\begin{array}{cl}
\text { Tens places: } & 4 \times 1+2 \times 2=04+04=08 \text {, write } 8 \text { carry } 0(80) \\
\text { Hundreds place: } & 4 \times 2+2 \times 3+0=08+06+0=14 \text {, write } 4 \text { carry } 1(480) \\
\text { Thousands place: } & 4 \times 3+2 \times 2+2+1 \times 3+1=12+04+04+03+01=24, \\
& \text { write } 4 \text { carry } 2(4480) \\
& \\
\text { 10000s place: } & 2 \times 3+1 \times 2+2=06+02+2=10, \text { write } 0 \text { carry } 1(04480) \\
\text { 100000s place: } & 3 \times 3+2 \times 2+1=09+04+1=14,(1404480) \\
\text { Step } 2= & 1404480
\end{array}
$$

Verification of the result can be done by subtracting the step 2 from the final result.

$$
\begin{aligned}
\text { Given, } 2324 \times 3212 & =07464688 \\
\text { Step } 2 & =1404480 \\
\text { Step } 1 & =06060208
\end{aligned}
$$

Pairing from the right we have $06,06,02$ and 08 for 06060208 . Factorizing as per question (vertical digits)

$$
\begin{array}{ll}
6 & =2 \times 3 \\
6 & =3 \times 2 \\
2 & =2 \times 1 \\
8 & =4 \times 2
\end{array}
$$

Setting in order, we get: $07464688=2324 \times 3212$. For this example, 4 digits $\times 4$ digits $=8$ digits

Example 5-Multiply ftve digits by ftve digits Suppose we multiply 34205 by 23617. We write it out in this form and do it

34205

+ 23619
$06 \overline{12120045}$ step 1: direct vertical multiplications
+195767850 step 2: cross multiplications
0807887895 result
Step 1: Direct vertical multiplications give $3 \times 2=06,4 \times 3=12,2 \times 6=12,0 \times 1=00$ and $5 \times 9=45$.
Step 2: Cross multiplication and putting " 0 " on ones place

Tens place: $\quad 5 \times 1+9 \times 0=05+00=05$, write 5 carry $0(50)$
Hundreds place: $5 \times 6+9 \times 2+0=30+18+0=48$, write 8 carry 4 (850)
Thousands place: $\quad 5 \times 3+9 \times 4+0 \times 6+1 \times 2+4=15+36+00+02+4=57$, write 7 carry 5 (7850)
10000s place: $\quad 5 \times 2+9 \times 3+0 \times 3+1 \times 4+5=10+27+00+04+5=46$,
write 6 carry 4 (67850)
100000s place: $\quad 0 \times 2+1 \times 3+2 \times 3+6 \times 4+4=00+03+06+12+4=37$,
write 7 carry 3 (767850)
1000000s place: $2 \times 2+6 \times 3+3=04+18+3=25$,
write 5 carry 2 (5767850)
10000000s place: $\quad 4 \times 2+3 \times 3+2=08+09+2=19,(195767850)$
$\therefore \quad$ Step $2=195767850$
For this example, 5 digits $\times 5$ digits $=10$ digits
Example 6-Multiply six digits by six digits Suppose we multiply 534672 by 482935 . We write it out in this form and do it

534672
X 482935
202108542110 step 1: direct vertical multiplications
+55803280210 step 2: cross multiplications 258211822320 result

Step 1: Direct vertical multiplications give $5 \times 4=20,3 \times 8=24,4 \times 2=08,6 \times 9=54,7 \times 3=21$ and $2 \times 5=10$.

Step 2: Cross multiplication and putting "o" on ones place
Tens place: $2 \times 3+5 \times 7=06+35=41$, write 1 carry 4 (10)
Hundreds place: $2 \times 9+5 \times 6+4=18+30+4=52$, write 2 carry 5 (210)
Thousands place: $2 \times 2+5 \times 4+7 \times 9+3 \times 6+5=04+20+63+18+5=110$,write 0 carry 11 (0210)

10000s place: $2 \times 8+5 \times 3+7 \times 2+2+3 \times 4+11=16+15+14+12+11=110$
write 8 carry 6 (80210)
100000s place: $2 \times 4+5 \times 5+7 \times 8+3 \times 3+6 \times 2+9 \times 4+6=152$,
write 2 carry 15 (280210)
1000000s place: $7 \times 4+3 \times 5+6 \times 8+9 \times 3+15=133$, write 3 , carry 13 (3280210)
10000000 s place: $6 \times 4+9 \times 5+4 \times 8+2 \times 3+13=24+45+32+06+13=120$,
write 0 , carry 12 (03280210)
100000000s place: $4 \times 4+2 \times 5+12=38$, write 8 , carry 3 (803280210)

1000000000s place: $3 \times 4+8 \times 5+03=12+40+03=55$, (55803280210)
\therefore Step $2=55803280210$
For this example, 6 digits $\times 6$ digits $=12$ digits
Example 7-Multiply seven digits by seven digits Suppose we multiply 3456789 by 5234210 . We write it out in this form and do it

$$
3456789
$$

$\times \underline{5234210}$
15081524140800 step 1: direct vertical multiplications +3012035410830 step 2: cross multiplications 18093559551690 result

Step 1: Direct vertical multiplications give $3 \times 5=15,2 \times 4=08,5 \times 3=15,6 \times 4=24,7 \times 2=14,8 \times$ $1=08$ and $9 \times 0=00$.

Step 2: Cross multiplication and putting " 0 " on ones place
Tens place: $\quad 1 \times 9+8 \times 0=09$, write 9 carry $0(90)$

Hundreds place: $\quad 9 \times 2+0 \times 7+0=18$, write 8 carry 1 (890)

Thousands place:	$9 \times 4+0 \times 6+8 \times 2+1 \times 7+01=60$, write 0 carry $6(0890)$
10000s place:	$9 \times 3+0 \times 5+8 \times 4+1 \times 6+6=71$, write 1 carry 7 (10890)
100000s place:	$9 \times 2+0 \times 4+8 \times 3+1 \times 5+6 \times 2+4 \times 7+7=94$ write 4 carry 9 (410890)
1000000s place:	$9 \times 5+0 \times 3+8 \times 2+1 \times 4+7 \times 3+2 \times 5+9=105$ write 5 , carry 10 (5410890)
10000000s place:	$3 \times 1+5 \times 8+4 \times 2+2 \times 7+5 \times 4+3 \times 6+10=113$ write 3 , carry 11 (35410890)
100000000s place:	$3 \times 2+5 \times 7+4 \times 4+2 \times 6+11=0$,

write 0 , carry 8 (035410890)

1000000000 s place: $3 \times 4+5 \times 6+4 \times 3+2 \times 5+8=72$, write 2 , carry $7(2035410890)$

10000000000s place: $\quad 3 \times 3+5 \times 5+7=41$, write 1 , carry $4(12035410890)$

100000000000s place: $\quad 3 \times 2+5 \times 4+4=30,(3012035410890)$
\therefore Step $2=3012035410890$
For this example, 7 digits $\times 7$ digits $=14$ digits

IV. CONCLUSION

From the above examples it is clear that when we use 1 digit $\quad x 1$ digit $=2$ digit without neglecting \quad " 0 " before the result or product in the case of multiplication then we find the sum of the digits of the multiplicand and multiplier are equal to the total digits of the product. If we use $a_{1}, b_{1}, c_{1}, d_{1}, e_{1}$ etc are unknown digits of multiplicand and $a_{2}, b_{2}, c_{2}, d_{2}, e_{2}$ etc are unknown digits of multiplier then we find the following formula in this form where we find place value of step 1 are in 2 digits using blocks. We must keep the place value of step 2 are in 1 digit in each block forwarding other digit or digits as carry number from the block of tens place to the second left most block respectively and before final calculation we omit the block symbols. We then add these two steps to find final product or result.

1. $\left(a_{1} b_{1}\right)\left(a_{2} b_{2}\right)=a_{1} \cdot a_{2}\left|b_{1} \cdot b_{2}+\left(a_{1} \cdot b_{2}+a_{2} \cdot b_{1}\right)\right| 0$
2. $\quad\left(a_{1} b_{1} c_{1}\right)\left(a_{2} b_{2} c_{2}\right)=a_{1} \cdot a_{2}\left|b_{1} \cdot b_{2}\right| c_{1} \cdot c_{2}+\left(a_{1} \cdot b_{2}+a_{2} \cdot b_{1}\right)\left|\left(b_{1} \cdot c_{2}+b_{2} \cdot c_{1}\right)\right| 0$
3. $\left(a_{1} b_{1} c_{1} d_{1}\right)\left(a_{2} b_{2} c_{2} d_{2}\right)=a_{1} \cdot a_{2}\left|b_{1} \cdot b_{2}\right| c_{1} \cdot c_{2}\left|d_{1} \cdot d_{2}+\left(a_{1} \cdot b_{2}+a_{2} \cdot b_{1}\right)\right|\left(a_{1} \cdot c_{2}+\right.$ $\left.a_{2} \cdot c_{1}\right)\left|\left(a_{1} \cdot d_{2}+a_{2} \cdot d_{1}\right)+\left(b_{1} \cdot c_{2}+b_{2} \cdot c_{1}\right)\right|\left(b_{1} \cdot d_{2}+b_{2} \cdot d_{1}\right) \mid\left(c_{1} \cdot d_{2}+\right.$ $\left.c_{2} \cdot d_{1}\right) \mid 0$
4. $\quad\left(a_{1} b_{1} c_{1} d_{1} e_{1}\right)\left(a_{2} b_{2} c_{2} d_{2} e_{2}\right)=a_{1} \cdot a_{2}\left|b_{1} \cdot b_{2}\right| c_{1} \cdot c_{2}\left|d_{1} \cdot d_{2}\right| e_{1} \cdot e_{2}+\left(a_{1} \cdot b_{2}+a_{2} \cdot b_{1}\right) \mid$ $\left(a_{1} \cdot c_{2}+a_{2} \cdot c_{1}\right)\left|\left(a_{1} \cdot d_{2}+a_{2} \cdot d_{1}\right)+\left(b_{1} \cdot c_{2}+b_{2} \cdot c_{1}\right)\right|\left(a_{1} \cdot e_{2}+a_{2} \cdot e_{1}\right)+\left(b_{1} \cdot d_{2}+\right.$ $\left.b_{2} \cdot d_{1}\right)\left|\left(b_{1} \cdot e_{2}+b_{2} \cdot e_{1}\right)+\left(b_{1} \cdot c_{2}+b_{2} \cdot c_{1}\right)\right|\left(c_{1} \cdot e_{2}+c_{2} \cdot e_{1}\right)\left|\left(d_{1} \cdot e_{2}+d_{2} \cdot e_{1}\right)\right| 0$
and so on.

REFERENCES

[1] Text book in mathematics for class VI, VII, VIII. SCERT, Assam, India.
[2] https://en.wikipedia.org/wiki/Multiplication_algorithm\#Lattice_multiplication
[3] https://drtayeb.files.wordpress.com/2011/05/trachtenberg-system.pdf
[4] Purduecer, https://www.instructables.com/id/Vedic-Multiplication/
[5] Pradeep Kumar, https://www.youtube.com/playlist?list=PLslHpAcLS1CQbU41jY0VYV3P77hSm-02N

