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Abstract  

         This study was carried out using the monthly (January 2007 to December 2017 with a total of 108 data 

points) reported road traffic crashes along the roads connecting the main city of Enugu State Nigeria. In this 

work, we gave a general overview of the three basic aspects of exponential smoothing models proposed with 

their applications on the cases of road traffic crashes (accident). The relationship between autoregressive 

integrated moving average models and exponential smoothing models was also given. Using a grid search 

method for the estimation of smoothing parameters, the best exponential smoothing models for each of the cases 

was identified based on the Mean square error (MSE), Mean absolute error (MAE) and Mean absolute 

percentage error (MAPE). The Holt-Winter (Triple) exponential smoothing model expounded by [1] yielded 

optimum value in each of the measures for each route since the series exhibit both trend and seasonality.  
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I. INTRODUCTION 
 

    Transportation plays a vital role in social and economic development of a nation, particularly in facilitating 

movement of people, goods and services from one point to another. In other words, the viability of an economy 

to an extent partially depends on the ease of moving people and goods from place to place. Even though modern 

means of transportation spurs the development pace of an economy, it has negative effects on the social life of 

the people. [2] succintly posited that although transportation has liberated man and makes him more mobile, his 

increasing reliance on vehicular movement has conferred great fatalities on him and his activities. These great 

fatalities as pointed out above are the results of traffic crashes along the roads. 

According to [3], the causes of road traffic crashes are multi-factorial and involve the interaction of a number of 

pre-crash factors. These factors can be divided broadly into driver factors, vehicle factors and road way factors. 

Accidents can be caused by a combination of these factors. Driver factors include driver’s behaviour, visibility, 

decision making ability and sensitivity to speed. Drug and alcohol use while driving is an obvious predictor of 

road traffic crash. Human error (driver factor) contributes 64% to 95% traffic crashes in developing countries 

[4]. Road accidents statistics in Nigeria reveal a serious and growing problem with absolute fatality rate and 

casualty figure rising rapidly. To curtail the rate of accident occurence on the roads, viable programs have to be 

introduced by the federal road safety commission and other personels whose operations are traffic centered. To 

come up with such a viable program, the knowledge of the future occurence of road traffic crashes is essential. 

Thus, we adopt exponential smoothing model to study the accident phenomenon and come up with a reliable 

forecast into the future of accident cases along the major roads connecting to the city of Enugu state, Nigeria. 

Exponential smoothing is a forecasting technique for smoothing time series data. This forecast technique 

systematically assigns weights to observations. By the procedure, the forecasts are continually revised in the 

light of more recent signals. One of the basic ideas of smoothing models is to construct forecasts of future 

values as weighted averages of past observations with the more recent observations carrying more weight in 

determining forecasts than observations in the more distant past. By forming forecasts based on weighted 

averages we are using a “smoothing” method [5].  The exponential smoothing (single exponential smoothing) 

procedure has a similar concept as moving averages. Whereas in moving averages the past observations are 

weighted equally, exponential smoothing assigns exponentially (rapidly) decreasing weights as the observation 

get older. That is, recent observations are assigned relatively more weight than the older observations in 

forecasting. In the case of moving averages, the weights assigned to the observations are the same and are equal 

to   𝑁−1. However, in exponential smoothing, there are one or more parameters (smoothing parameters) to be 

determined (or estimated) and these parameters contribute in determining the weights to be assigned to the 

observations. Given a set of time dependent observations, 𝑧𝑡 ; 𝑡 = 1,2, …𝑇, the generation process of the series 

can generally be represented using an additive exponential smoothing model given as follows: 
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𝑧𝑡 = 𝜇𝑡 + 𝛽𝑡 + 𝑠𝑡,𝑚 + 𝜀𝑡                                                                                (1) 

Where 𝜇𝑡  is the time dependent mean (level) term, 𝛽𝑡 is the time dependent slope also known as the trend term, 

𝑠𝑡  𝑚  is the time dependent seasonal term for period 𝑚 (𝑚 = 1, 2, … ,𝑀) and 𝜀𝑡  is the error term. Assuming that 

the series have no trend (𝛽𝑡 = 0) and no seasonal term (𝑆𝑡,𝑚 = 0), the model reduces to single exponential 

smoothing. As the series are being smoothed at each time𝑡, the parameters  𝜇𝑡 , 𝛽𝑡 , 𝑆𝑡,𝑚  are estimated. In other 

words, the estimates of these parameters vary based on time. Because the process is recursive, 

 

 it is necessary to determine the initial estimates first. 
 

II. SINGLE EXPONENTIAL SMOOTHING 
 

     Single exponential Smoothing does not fare well in a series of data which has trend. This is so because it 

assumes that data fluctuates around a reasonable stable mean. By the assumption of the model, the series have 

only level and random component thus, the general model equation reduces to 

𝑧𝑡 = 𝜇𝑡 + 𝜀𝑡                                                                                                                                                  (2) 

 It is used for short range forecasting and this situation exposes the shortfalls of single exponential smoothing. 
 

III.  DERIVATION OF THE SINGLE EXPONENTIAL SMOOTHING FORMULA 
 

       Let the smoothing parameter for single exponential smoothing be denoted as 𝛼. Also, let the smoothed 

level that estimates 𝜇𝑡  in (2) be denoted as 𝐿𝑡 .  The weighted expression for 𝐿𝑡  is 

𝐿𝑡 = 𝛼𝑧𝑡 + 𝛼 1 − 𝛼 𝑧𝑡−1 + 𝛼 1 − 𝛼 2𝑧𝑡−2 + 𝛼 1 − 𝛼 3𝑧𝑡−3 + 𝛼 1 − 𝛼 4𝑧𝑡−4                 (3) 

It follows that, 

𝐿𝑡−1 = 𝛼𝑧𝑡−1 + 𝛼 1 − 𝛼 𝑧𝑡−2 + 𝛼 1 − 𝛼 2𝑧𝑡−3 + 𝛼 1 − 𝛼 3𝑧𝑡−4                                           (4) 

Multiplying (4) by  1 − 𝛼 , we have 
𝐿𝑡−1 1 − 𝛼 = 𝛼 1 − 𝛼 𝑧𝑡−1 + 𝛼 1 − 𝛼  1 − 𝛼 𝑧𝑡−2 + 𝛼 1 − 𝛼  1 − 𝛼 2𝑧𝑡−3 + 𝛼 1 − 𝛼  1 − 𝛼 3𝑧𝑡−4                                                                                               

(5) 

Subtracting equation (5) from equation (3), implies that  

𝐿𝑡 = 𝛼𝑧𝑡 +  1 − 𝛼 𝐿𝑡−1                                                                                                                            (6) 

For single (simple) exponential smoothing, (6) is used to smoothen the series and it is called the smoothing 

equation for (SES). The h-step ahead prediction equation therefore becomes   𝑧 𝑡+ℎ = 𝐿𝑡−1+ℎ ;  ℎ =
1, 2, 3, . .. . 
This forecast model is restricted to short term forecasting, mostly one step ahead. With the use of the simple 

exponential smoothing procedure, each smoothed observation is expressed as a weighted average of present 

observation and previous smoothed value. The smoothing parameter 𝛼  can take any value between  and . If 

𝛼 = 0, the new smoothed value (forecast) is expressed as the immediate past smoothed value (𝐿𝑡−1). This 

implies that all the smoothed values will be constant and equal to the initial starting value. However, if 𝛼 = 1, 

the previous smoothed value is ignored and the new smoothed value becomes equivalent to the present (current) 

observation. Since when𝛼 = 1,𝐿𝑡 = 𝑍𝑡 , it is assumed that smoothing is silent since there is no parameter to 

weigh the observations. Values of the smoothing parameter (𝛼) close to one have less of a smoothing effect 

and gives heavier weight to recent changes in the data, while values of 𝛼  closer to zero have a greater 

smoothing effect and are less responsive to recent changes. Generally, the large values of 𝛼 actually reduces the 

level of smoothing. The single exponential smoothing model has an equivalent Box-Jenkins ARIMA model 

given as ARIMA (0, 1, 1). That is 1 − 𝐵 𝑧𝑡 =  1 − 𝜃𝐵 𝜀𝑡 , where 𝑧𝑡  is the series, 𝐵 is a backward shift 

operator, 𝜃(𝜃 = 1 − 𝛼) is the parameter associated with the moving average part of the model, and 𝜀𝑡  is the 

white noise. This relationship will be established later in this work. 
 

IV.   DOUBLE EXPONENTIAL SMOOTHING 
 

      This procedure is specifically used for series assumed to have level, trend and noise but no seasonality. The 

general model equation is given as  

𝑧𝑡 = μt + βt + εt                                                                                                                                                  

(7) 

For the fact that it has two basic components: level and trend, the smoothing equation is split into two: one for 

the level and the other for the trend. Let 𝐿𝑡  and 𝑇𝑡  be the smoothed values that estimates the level and the trend 

respectively. Therefore,  
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𝐿𝑡 = 𝛼𝑧𝑡 +  1 − 𝛼 𝐿𝑡−1              

(8) 

                             

(9) 

Where 𝛼  and 𝜏  (each lying between  and ) are the smoothing parameters for the level and the trend 

respectively. After smoothing the level at time 𝑡 and the trend at time 𝑡 with the two smoothing equations (8 & 

9) above, respectively, the h-step ahead forecast can then be made using a prediction equation 

𝑧 𝑡+ℎ = 𝐿𝑡−1+ℎ +  
𝜏

1−𝛼
 𝐵𝐿𝑡+ℎ +  

1−𝜏

1−𝛼
 𝑇𝑡−1+ℎ ;  ℎ = 1,2,3…     (10) 

𝐵 is a backward shift operator such that  𝐵𝐿𝑡 = 𝐿𝑡 − 𝐿𝑡−1       (11) 

Also, the double exponential smoothing model has ARIMA (0, 2, 2) model equivalence. This relationship will 

also be established later in this work. 
 

V. HOLT-WINTER (TRIPLE) EXPONENTIAL SMOOTHING 
 

    This is third order exponential smoothing which is the recursive application of an exponential filters three 

times. The smoothing method is used when the series shows level, trend and seasonality. To handle seasonality, 

we have to add a third parameter 𝛾 and introduce a third equation to take care of seasonality with seasonal 

length, m=12 (since we are considering monthly series). The general model equation is given as 

𝑍𝑡 = 𝜇𝑡 + 𝛽𝑡 + 𝑆𝑡,𝑚 + 𝜀𝑡 .                                                                                                                             (12) 

Let m be the length of the season. The seasonal indices are defined such that they sum to zero. That 

is 𝑆𝑡 = 0𝑚
𝑡=1 . 

The model has three smoothing equations which are defined as follows; 

                (13) 

           

(14) 

                                                        (15) 

The h-step prediction equation is 𝑧 𝑡+ℎ =  
𝜏−𝛾

1−𝛼−𝛾
 𝐿𝑡+ℎ +

 
1−𝛼−𝜏

1−𝛼−𝛾
 𝐿𝑡−1+ℎ +  

2−𝛼−𝜏

1−𝛼−𝛾
 𝑇𝑡−1+ℎ −  

𝛼+𝛾+1

1−𝛼−𝛾
 𝑆𝑡−𝑚+ℎ  , h=1,2,…           

     (16)  

 that is forecasting z  h-steps ahead by using the last available estimated level state and incrementing it by h 

times using the last available trend while at the same time adding the last available smoothed seasonal factor, 

𝑆𝑡−𝑚+ℎ  that matches the month of the forecast horizon. 
 

VI.  DETERMINATION OR CHOOSING OF INITIAL/ STARTING VALUES 
 

     In order to implement these methods mentioned above, the user must provide starting values for the level 𝐿𝑡 , 
trend 𝑇𝑡and seasonal indices 𝑆𝑡  at the beginning of the series in order to initiate the updating procedure. There 

are many different ways of choosing these initial values. 

For simple exponential smoothing, the initial value can be determined by taking the average of observations in 

the first year or simply setting  𝐿𝑜=𝑧1(the first observation). 

In double exponential smoothing, we set 𝐿𝑜=𝑧1 and 𝑇0 = 𝑧2-𝑧1 

For Holt-Winter, we set 𝐿𝑜  equal to the average observation in the first year. That is  

𝐿0 =
1

𝑚
 𝑧𝑡

𝑚

𝑖=1

 

where m is the number of seasons in the year. The starting value for the trend 

𝑇0 =
1

𝑚
  𝑧𝑚+𝑖 − 𝑧𝑖 

𝑚

𝑖=1

 

Finally, the seasonal index starting value (𝑆0) can be calculated as follows 

0 0

1 1 0 1 1 0

,

, ...,

m
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VII. CHOOSING THE BEST VALUE FOR THE SMOOTHING CONSTANT 
 

    The accuracy of the forecasting depends on the smoothing constant. The user must also provide values for the 

three smoothing parameters(𝛼, 𝜏, 𝛽). There are two general ways of selecting the parameters. The first is to 

estimate them by minimizing sum function of the forecast errors of the historical data. The second is simply 

guestimate (an estimate that combines reasoning with guessing). Selecting a smoothing constant is basically a 

matter of judgment or trial and error, using forecast errors to guide the decision. The goal is to select a 

smoothing constant that balances the benefits of smoothing random variations with the benefits of responding to 

real changes if and when they occur. The smoothing constant serves as the weighting factor. When α is close to 

1, the new forecast will include a substantial adjustment for any error that occurred in the preceding forecast. 

When α is close to 0, the new forecast is very similar to the old forecast. The smoothing constant is not an 

arbitrary choice. Low values of α gives less weight to recent data while higher values of α permit the more 

recent data to have a greater influence on the predictions. In practice, the smoothing constant is chosen by a grid 

search within the parameter space.  That is, different solutions for α are tried starting, for example, with α = 0.1 

to α = 0.9, with increment of 0.1. The value of α with the smallest MAE, MSE or MAPE is chosen for use in 

producing the future forecasts. 
 

VIII. DISCUSSIONS ON THE RESULTS OF THE EXPONENTIAL SMOOTHING MODELS 
 

    In previous section, we established that there is seasonality in the series of each of the routes. This informs 

the use of Holt-Winter (Triple) exponential smoothing model which will inculcate the seasonality that is visible 

in the series. Here, the analysis was run using the non-adaptive technique for additive triple exponential 

smoothing model. The non-adaptive technique uses the data set to build the model and establish smoothing 

factors. Since it is non-adaptive, once the optimum smoothing factors α, τ and γ are established, they are not 

modified again. In this research work, a grid search was adopted to identify the optimum smoothing factors 

(that is the smoothing factors that gives minimum MAE, MSE, SSE and MAPE). However, we still considered 

single and double exponential smoothing models assuming that there is no seasonality. The essence of doing 

this is to know whether the model (single or double) will perform better if seasonal component is ignored. We 

are applying the models on the cases of road traffic crashes along three routes: Enugu-Abakeliki(ENU-ABK), 

Nsukka-9thmiles (NSK-9MILE) and Enugu-Onitsha (ENU-ONITSHA), connecting Enugu State, Nigeria. The 

results are given in the table below: 
 

IX.  TABLE 1: SINGLE EXPONENTIAL SMOOTHING MODEL FOR THE ROUTES 
 

ROUTES 

 

SMOOTHING 

FACTORS 

                         

                                PERFORMANCE MEASURES 

 ∝ MAE MSE SSE MAPE 

ENU-ABK 0.3 2.9189 16.3905 1770.17 ∞ 

NSK-9MILE 0.4 2.7829 15.3718 1660.16 ∞ 

ENU-ONITSHA 0.2 3.2404 19.3095 2085.43 47.4046 

 
X. TABLE 2:  DOUBLE   EXPONENTIAL SMOOTHING MODEL FOR THE ROUTES 

 

ROUTES 

 

SMOOTHING FACTORS 

 

                      PERFORMANCE MEASURES 

 ∝ Τ MAE MSE SSE MAPE 

ENU-ABK 0.3 0.1 2.9531 17.2853 1866.81 ∞ 

NSK-9MILE 0.4 0.1 2.8496 16.4398 1775.50 ∞ 

ENU-ONITSHA 0.2 0.1 3.3121 20.9090 2258.17             45.2986 

 

XI.  TABLE 3: HOLT-WINTER (TRIPLE) EXPONENTIAL SMOOTHING MODEL FOR THE 

ROUTES 
 

ROUTES 

 

SMOOTHING FACTORS 

 

                   PERFORMANCE MEASURES 

 ∝ Τ Γ MAE MSE SSE MAPE 

ENU-ABK 0.3 0.1 0.1 2.8879 14.9525 1614.87 ∞ 

NSK-9MILE 0.5 0.1 0.1 2.5364 12.5325 1353.51 ∞ 

ENU-ONITSHA 0.2 0.1 0.1 3.0174 14.8241 1601.00          42.5465 
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The results of the exponential smoothing models put in the table above shows that the Holt-winter exponential 

smoothing model forecasts each of the series better as it yields minimum values of the model performance 

measures considered in the work. As stated earlier, H-W exponential smoothing model acknowledges the 

presence of seasonal effects in the series. Therefore, it gives better results since we have been able to establish 

in previous section that the rate of accident occurrence is generally, seasonal. 
 

XII. ESTABLISHMENT OF THE RELATIONSHIPS BETWEEN ARIMA AND EXPONENTIAL 

SMOOTHING MODELS 
 

    Exponential smoothing and ARIMA models are the two most widely used approaches to time series 

forecasting. They provide complementary approaches to a problem. While exponential smoothing models were 

based on a description of trend and seasonality in the data, ARIMA models aim to describe the autocorrelations 

in the data. ARIMA model has been pioneered by [6]. These models are intended for the forecasting of traffic 

flow data and have since been successfully used.  

As stated earlier, the simple/single exponential smoothing is optimal for an ARIMA (0,1,1) model while double 

exponential smoothing(two parameter model) model is optimal for an ARIMA (0,2,2) model. The 3-parameter 

Holt-Winters method with additive seasonality is so complicated that it would never be identified in practice [7]. 

The multiplicative Holt-Winter does not have an ARIMA equivalent at all. These relationships (that is ARIMA 

equivalence to exponential smoothing) can be proved using their innovation state space model. Each model 

consists of a measurement equation that describes the observed data and some transition equations that describe 

how the unobserved components or states (level, trend, seasonal) change over time.   

 For simple exponential smoothing,  

         We have that The ARIMA model equivalence to simple exponential smoothing is ARIMA (0, 1, 1) 

written as (1 ) (1 )
t t

B Z B    , where θ =1-α.                    

   (17) 

Here we try to prove the relationship using the innovation state space model and the transition equation.   

𝑧𝑡 = 𝜇𝑡−1 + 𝜀𝑡  this is the innovation state space model and (1-B)𝜇𝑡 = 𝛼𝜀𝑡 (Transition equation) . Apply 

the difference operator (1-B) to both sides of innovation state space model 

(1-B)𝑧𝑡 =  1 − 𝐵 𝜇𝑡−1 + (1 − 𝐵)𝜀𝑡           

(18) 

(1-B)𝑧𝑡 = 𝛼𝜀𝑡−1 + 𝜀𝑡 -𝜀𝑡−1         (19) 

(1-B)𝑧𝑡= 𝛼𝜀𝑡−1 − 𝜀𝑡−1 + 𝜀𝑡    =  𝜀𝑡 − (1 − 𝛼) 𝜀𝑡−1      (20) 

Let (1 − 𝛼) = 𝜃 

(1-B)𝑧𝑡 = 𝜀𝑡 - 𝜃𝜀𝑡−1          (21) 

(1-B)𝑧𝑡 = (1-𝜃𝐵)𝜀𝑡           (22) 
 

 For double exponential smoothing: 

          The ARIMA equivalence to double exponential smoothing is the ARIMA (0, 2, 2) model written as  

(1-B)2Zt  = (1-θB)2ԑt , where θ =1-α         (23) 

Given  𝑧𝑡 = 𝜇𝑡−1 + 𝛽𝑡−1 + 𝜀𝑡   then the innovation state space model for double exponential smoothing is  

(1-B)𝜇𝑡 = 𝛽𝑡−1 + 𝛼𝜀𝑡            (24) 

(1-B)𝛽𝑡= 𝜏𝜀𝑡            (25) 

 To create the relationship, multiply both sides of ISSM by (1 − 𝐵)2  and apply the transition 

equations appropriately. 

(1 − 𝐵)2𝑧𝑡  =(1 − 𝐵)2𝜇𝑡−1 + (1 − 𝐵)2𝛽𝑡−1 + (1 − 𝐵)2𝜀𝑡  

If (1-B)𝜇𝑡 = 𝛽𝑡−1 + 𝛼𝜀𝑡  then (1-B)𝜇𝑡−1 = 𝛽𝑡−2 + 𝛼𝜀𝑡−1 

(1 − 𝐵)2𝜇𝑡−1=(1 − 𝐵) 𝛽𝑡−2 + 𝛼(1 − 𝐵)𝜀𝑡−1 

For (1 − 𝐵)2𝛽𝑡−1, we know that (1-B)𝛽𝑡= 𝜏𝜀𝑡  

Therefore (1-B)𝛽𝑡−1 =  𝜏𝜀𝑡−1 ⟹ (1 − 𝐵)2𝛽𝑡−1 = 𝜏(1 − 𝐵)𝜀𝑡−1 

(1 − 𝐵)2𝑧𝑡 =  1 − 𝐵 𝛽𝑡−2 +  𝛼(1 − 𝐵)𝜀𝑡−1+ 𝜏 1 − 𝐵 𝜀𝑡−1 + 𝜀𝑡 − 2𝜀𝑡−1 + 𝜀𝑡−2 

Since (1-B)𝛽𝑡= 𝜏𝜀𝑡  

 1 − 𝐵 𝛽𝑡−2= 𝜏𝜀𝑡−2 

(1 − 𝐵)2𝑧𝑡 =  𝜏𝜀𝑡−2 + 𝛼 𝜀𝑡−1 − 𝜀𝑡−2 + 𝜏 𝜀𝑡−1 − 𝜀𝑡−2 + 𝜀𝑡 − 2𝜀𝑡−1 + 𝜀𝑡−2 

=  𝜏𝜀𝑡−2 + 𝛼𝜀𝑡−1 − 𝛼𝜀𝑡−2 + 𝜏𝜀𝑡−1 − 𝜏𝜀𝑡−2 + 𝜀𝑡 − 2𝜀𝑡−1 + 𝜀𝑡−2 

                  = 𝜀𝑡 +  𝛼 + 𝜏 − 2 𝜀𝑡−1 + (𝜏 − 𝛼 − 𝜏 + 1)𝜀𝑡−2 
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                  = 𝜀𝑡 −  2 − 𝛼 − 𝜏 𝜀𝑡−1 + (1 − 𝛼)𝜀𝑡−2 

                 =  𝜀𝑡 −  2 − 𝛼 − 𝜏 𝜀𝑡−1 − (𝛼 − 1)𝜀𝑡−2 

                     𝑖𝑓 𝜃1 = 2 − 𝛼 − 𝜏, 𝜃2 =  𝛼 − 1 

Therefore (1 − 𝐵)2𝑧𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 ⟹ (1-𝜃1𝐵 − 𝜃2𝐵
2)𝜀𝑡     (26) 

 

XIII. FOR HOLT-WINTER EXPONENTIAL SMOOTHING 
 

     The 3-parameter Holt-Winters method with additive seasonality is so complicated that it would never be 

identified in practice [7]. The multiplicative Holt-Winter does not have an ARIMA equivalent at all. 

All exponential smoothing methods need some estimation of smoothing parameters which is either α, 𝛽, τ. The 

minimization of the mean square error is the common method of estimating these parameters and this is 

normally done through the grid search method.  

Emperically, the relationship established above can be pictured in the performance measures of the two models 

(Exponential smoothing and ARIMA model) 
 

XIV. TABLE 4: COMPARISON TABLE FOR SINGLE EXPONENTIAL SMOOTHING MODEL 

AND ARIMA (0, 1, 1) 
ROUTES Exponential Smoothing Model ARIMA Model 

 MAE RMSE MAPE MAE RMSE MAPE 

ENU-ABK 2.9189 4.048 ∞ 2.87 4.107 64.143 

NSK-9MILE 2.7829 3.9206 ∞ 2.839 3.916 67.966 

ENU-ONITSHA 3.2404 4.3943 47.4046 3.274 4.515 47.172 

 
XV. TABLE 5: COMPARISON TABLE FOR DOUBLE EXPONENTIAL SMOOTHING MODEL 

AND ARIMA (0, 2, 2) 
ROUTE Exponential Smoothing Model ARIMA Model 

 MAE RMSE MAPE MAE RMSE MAPE 

ENU-ABK 2.9531 4.158 ∞ 3.177 4.555 63.378 

NSK-9MILE 2.8496 4.055 ∞ 2.945 4.322 66.611 

ENU-ONITSHA 3.3121 4.573 45.298 3.577 5.377 46.163 

 
XVI. SUMMARY 

 

    Holt-Winter (Triple) exponential smoothing model expounded by [1] is also used when the series under study 

exhibit both trend and seasonality. These informed the use of the two approaches, in addition to the other two 

forms of exponential smoothing models to study cases of Road traffic crashes (RTC) in some selected routes in 

Enugu state, Nigeria.  

On the other hand, the series were smoothed (remove irregularities from the series) using three different 

exponential smoothing methods. The first one (single exponential smoothing method) assumed that the series 

has no trend, the second one (double exponential smoothing method) assumed that the series has trend while the 

third one (Holt-winter (Triple) exponential smoothing method) has the assumption that the series has both trend 

and seasonality. From the result of the exponential smoothing modeling, the acknowledgment of the presence of 

seasonality improves the performance of the model. This is obvious in the result of the Holt- Winters 

exponential smoothing model.  

 Even as the smoothing models are reliable for forecasting, it has some inherent shortfalls. As a modeling 

technique, exponential smoothing methods have a significant shortfall emanating from not having an objective 

statistical identification and diagnostic checking system for evaluating the “goodness” of competing exponential 

smoothing models. Because of these shortfalls, exponential smoothing models are statistically regarded as ad 

hoc models. 
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