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Abstract 

This investigation is concerned with analytical determination of the out-of-plane normal response, the associated 

Airy stress function and the static buckling load of an imperfect, finite but simply-supported toroidal shell segment 

that is statically pressurized. Regular perturbation procedures and asymptotic expansions are freely utilized. In the 

final analysis, a simple implicit equation for obtaining the static buckling load is obtained and the result is 

asymptotic in nature. 

Keywords: Toroidal and Cylindrical shells, Static buckling, Airy Stress Function, Asymptotic and perturbation 
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I. INTRODUCTION 

The toroidal shell segment is an imperfection-sensitive elastic structure that has been studied for sometime now. 

Though its structural configuration resembles that of a cylindrical shell, it however differs from cylindrical shell 

segment in the possession of an inner radius namely a, and an outer radius b. Earlier studies on the structure were 

done by Stein and McElman [1] who investigated the buckling of segments of toroidal shell while Hutchinson [2] 

similarly investigated the initial post buckling of toroidalshell segments. Relatively recent but insightful 

investigations on the subject matter were done by Oyesanya [3, 4], who used asymptotics and perturbation 

techniques to analytically study the various restrictions of the structure. Related studies, though not strictly on 

toroidal shell segments, were initiated by Kriegesman et al. [5], while Hu and Burgue𝑛 o [6] investigated elastic post 

buckling response of axially loaded cylindrical design. In the same token, Kubiak [7, 8] made substantial 

contributions to the subject matter through his investigations on thin-walled structures, while Kolakowski [9, 10] 

treated similar subjects in his investigations on thin-walledcomposite structures. 

Though the formulation here is situated purely on static settings, the technique adopted in this work is similar to 

an earlier study by Lockhart and Amazigo [11], who investigated the dynamic buckling of externally pressurized 

imperfect cylindrical shells. As in Hilburger and Starnes [12], our investigation intends to determine the out-of-plane 

normal displacement of the finite but imperfect toroidal shell segment. We shall, in the static setting, determine the 

static buckling load of the structure, assuming that the structure is pressurized by a compressive static load that is 

either axially or hydrostatically applied. As in [11, 13], our attention shall be focused on a simply-supported toroidal 

shell segment where we shall employ expansions in double Fourier series. 

II. FORMULATION OF THE PROBLEM 

From [3, 4], the normal out-of-plane displacement W(X, Y) and Airy stress function F(X, Y) of a finite imperfect 

toroidal shell segment of length L, satisfies the following equilibrium equation and compatibility equation 
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𝐷∇4𝑊 + 
1

𝑎
𝐹,𝑋𝑋 +

1

𝑏
𝐹,𝑌𝑌 +  𝑝  

1

2
 𝑊 + 𝑊  ,𝑋𝑋 +   1 −

1

2

𝑎

𝑏
  𝑊 + 𝑊  ,𝑌𝑌  = 𝑆 𝑊 + 𝑊 ,𝐹   (1) 

1

𝐸𝑕
∇4𝐹 −

1

𝑎
𝑊,𝑋𝑋 −

1

𝑏
𝐹,𝑌𝑌 = −

1

2
𝑆 𝑊 + 𝑊 ,𝑊                                                               (2) 

0 < 𝑋 < 𝐿,       0 < 𝑌 < 2𝜋                                                                                                    (3) 

𝑊 = 𝑊,𝑋𝑋 = 𝐹 =  𝐹,𝑋𝑋 = 0 𝑎𝑡 𝑋 = 0, 𝜋                                                                             (4) 

Here, X and Y are the axial and circumferential coordinates respectively, E and h are the Young’s modulus and 

thickness respectively, while p is the area density  and the bending stiffness D is given by 𝐷 =  
𝐸𝑕3

12 1−𝜗2 
, where 𝜗 is 

the Poisson’s ratio.𝑊 is the stress-free time-independent continuously differentiable function of X and Y while the 

symmetric bilinear functional S is such that 

𝑆 𝑃, 𝑄 =  𝑃,𝑋𝑋𝑄,𝑌𝑌 + 𝑃,𝑌𝑌𝑄,𝑌𝑌 − 2𝑃,𝑋𝑌𝑄,𝑋𝑌                                                                                (5)  

Similarly, the symbol ∇4 is the two-dimensional biharmonic operator defined by 

∇4≡  
𝜕2

𝜕𝑋2
+

𝜕2

𝜕𝑌2
 

2

                                                                                                                        (6) 

III. NONDIMENSIONALIZATION OF THE GOVERNING EQUATIONS 

We now introduce the following quantities 

𝑥 =
𝜋𝑋

𝐿
,    𝑦 =

𝑌

𝑎
,      𝜖𝑤 =

𝑊 

𝑕
,      𝑤 =  

𝑊

𝑕
                                                                                       (7) 

𝜆 =
𝐿2𝑎𝑝

𝜋2𝐷
,     𝐴 =  

𝐿2 12 1 − 𝜈2 

𝜋2𝑎𝑕
,    𝐻 =  

𝑕

𝑎
                                                                                   (8) 

Here, the symbol 𝜆 is the nondimensional load amplitude and  

𝜉 =
𝐿2

 𝜋𝑎 2
,      𝐾 𝜉 = − 

𝐴

1 + 𝜉
 

2

,   0 < 𝜖 ≪ 1                                                                             (9) 

Here, 𝜖 is a small parameter representing the amplitude of the imperfection and we shall neglect the boundary layer 

effect by assuming that the pre-buckling  deflection is constant. In this way, we assume 

𝐹 = −𝑝𝑎  𝑋2 +
1

2
𝛼𝑌2 +

𝐸𝑕2𝐿2

𝜋2𝑎 1 + 𝜉 2
𝑓                                                                                        (10) 

𝑊 =
𝑝𝑎2 1 − 𝛼𝜈 

𝐸𝑕
+ 𝑕𝑤                                                                                                                      (11) 

The parameter 𝛼 takes the value 𝛼 = 1, if the pressure contributes to axial stress through end plates, but similarly 

takes the value𝛼 = 0, if pressure acts laterally.  

On substituting (10) and (11) into (1) – (4), using (7) – (9), the following equations are easily derived 
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∇ 4𝑤 −  𝐾 𝜉  𝑓,𝑥𝑥 + 𝜉𝑟𝑓,𝑦𝑦  + 𝜆  
𝛼

2
 𝑤 + 𝜖𝑤  ,𝑥𝑥 + 𝜉  1 −

𝛼

2
  𝑤 + 𝜖𝑤  ,𝑦𝑦  

=  −𝐾 𝜉 𝐻𝑠 𝑓,𝑤 + 𝜖𝑤                                                                                                            (12) 

∇ 4𝑓 −  1 + 𝜉 2 𝑤,𝑥𝑥 + 𝜉𝑟𝑤,𝑦𝑦  = −
1

2
𝐻 1 + 𝜉 𝑠 𝑤 + 𝜖𝑤 ,𝑤                                                       (13)  

 0 < 𝑥 < 𝜋,       0 < 𝑦 < 2𝜋                                                                                                                      (14) 

𝑤 = 𝑤,𝑥𝑥 = 𝑓 =  𝑓,𝑥𝑥 = 0 𝑎𝑡 𝑥 = 0, 𝜋.                                                                                                   (15) 

𝑤𝑕𝑒𝑟𝑒, 𝑟 =
𝑎

𝑏
. 

A subscript following a comma indicates partial differentiation, while 

∇ 4=  
𝜕2

𝜕𝑥2
+ 𝜉

𝜕2

𝜕𝑦2
 

2

,    𝑠 𝑝, 𝑞 = 𝑝,𝑥𝑥𝑞,𝑦𝑦 + 𝑝,𝑦𝑦𝑞,𝑥𝑥 − 2𝑝,𝑥𝑦𝑞,𝑥𝑦                                            (16) 

IV. CLASSICAL BUCKLING LOAD, 𝛌𝐜 

This is the load that is required to buckle the perfect linear structure and is obtained by neglecting all nonlinearities 

and imperfections in the governing equations. The relevant equations at this stage are 

∇ 4𝑤 −  𝐾 𝜉  𝑓,𝑥𝑥 + 𝜉𝑟𝑓,𝑦𝑦  + 𝜆  
𝛼

2
𝑤,𝑥𝑥 + 𝜉  1 −

𝛼

2
 𝑤,𝑦𝑦  = 0                                                     (17) 

∇ 4𝑓 −  1 + 𝜉 2 𝑤,𝑥𝑥 + 𝜉𝑟𝑤,𝑦𝑦  = 0                                                                                                      (18)  

𝑤 = 𝑤,𝑥𝑥 = 𝑓 = 𝑓,𝑥𝑥 = 0 𝑎𝑡 𝑥 = 0, 𝜋                                                                             

For the solution of (17) and (18), we have 

 𝑤, 𝑓 =  𝑎𝑚𝑘 , 𝑏𝑚𝑘  𝑠𝑖𝑛𝑚𝑥𝑠𝑖𝑛 𝑘𝑦 + ∅𝑚𝑘                                                                                             (19) 

where, ∅𝑚𝑘  is an inconsequential phase and  𝑎𝑚𝑘 , 𝑏𝑚𝑘  ≠  0, 0 . Substituting (19) in (18) yields 

𝑏𝑚𝑘 =
− 1 + 𝜉 2𝑚2𝑎𝑚𝑘

 𝑚2 + 𝜉𝑘2 2 +  1 + 𝜉 2𝜉𝑟2𝑘2
                                                                                                   (20) 

Now substituting (20) into (17) and simplifying, yields 

 𝑚2 + 𝜉𝑘2 2 − 𝜆  
𝛼𝑚2

2
+ 𝜉𝑘2  1 −

𝛼

2
  −

𝐾 𝜉  𝑚2 + 𝜉𝑘2𝑟  1 + 𝜉 2

 𝑚2 + 𝜉𝑘2 2 +  1 + 𝜉 2𝜉𝑟𝑘2
= 0                           (21) 

Batdorf, as cited in [11], had assumed that k varies continuously and so assumed the condition for classical buckling 

load as  

𝑑𝜆

𝑑𝑘
= 0                                                                                                                                            (22) 

Thus, If 𝑘 = 𝑛 is the value of k at the maximization (22), the classical buckling load 𝜆𝑐  is 



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 65 Issue 10 - Oct 2019 

 

ISSN: 2231-5373                                     http://www.ijmttjournal.org                                 Page 18 

𝜆𝑐 =
 𝑚2 + 𝜉𝑛2 2 −

𝐾 𝜉  𝑚2+𝜉𝑛2𝑟  1+𝜉 2

 𝑚2+𝜉𝑛2 2+ 1+𝜉 2𝜉𝑟𝑛2

𝛼𝑚2

2
+  1 −

𝛼

2
 𝜉𝑟𝑛2

                                                                                             (23) 

On substituting for 𝐾 𝜉  from (9) and letting ζ = 𝜉𝑛2, we get for 𝑚 = 1, 

 

𝜆𝑐 =  1 + ζ 2 +

𝐴2 1+ζ𝑟 

 1+ζ 2+ 1+𝜉 2ζ𝑟

𝛼

2
+  1 −

𝛼

2
 ζr

                                                                                        (24) 

Thus, the displacement and corresponding Airy stress function are 

 𝑤, 𝑓 =   1,
− 1 + ξ 2

 1 + ζ 2 +  1 + 𝜉 2ζ𝑟
 𝑎1𝑛𝑠𝑖𝑛𝑥𝑠𝑖𝑛 𝑛𝑦 + ∅1𝑛                                                  (25) 

V. STATIC DEFORMATION 

We now let 

 
𝑤

𝑓
 =   

𝑤(𝑖)

𝑓(𝑖)
 

∞

𝑖=1

𝜖𝑖                                                                                                                   (26) 

Substituting (26) into (12) and (13) and simplifying yields 

𝑂 𝜖  

∇ 4𝑤 1 −  𝐾 𝜉  𝑓,𝑥𝑥
 1 

+ 𝜉𝑟𝑓,𝑦𝑦
 1 

 + 𝜆  
𝛼

2
 𝑤 1 + 𝜖𝑤  

,𝑥𝑥
+ 𝜉  1 −

𝛼

2
  𝑤 1 + 𝜖𝑤  

,𝑦𝑦
 = 0   27 

∇ 4𝑓 1 −  1 + 𝜉 2 𝑤,𝑥𝑥
 1 

+ 𝜉𝑟𝑤,𝑦𝑦
 1 

 = 0                                                                                         28 

  

𝑂 𝜖2 

 
 
 

 
 ∇ 4𝑤(2) −  𝐾 𝜉  𝑓,𝑥𝑥

 2 
+ 𝜉𝑟𝑓,𝑦𝑦

 2 
 + 𝜆  

𝛼

2
 𝑤 1 + 𝑤  

,𝑥𝑥
+ 𝜉  1 −

𝛼

2
 𝑤,𝑦𝑦

 1 
 

=  −𝐾 𝜉 𝐻 𝑠 𝑓 1 , 𝑤 1  +  𝑠 𝑓 1 , 𝑤                                                                                                (29) 

∇ 4𝑓(1) −  1 + 𝜉 2 𝑤,𝑥𝑥
 2 

+ 𝜉𝑟𝑤,𝑦𝑦
 2 

 = −
1

2
𝐻 1 + 𝜉  𝑠 𝑤(1), 𝑤(1) +  𝑠 𝑤(1), 𝑤                   (30) 

  

𝑂 𝜖3 

 
 
 

 
 ∇ 4𝑤(3) −  𝐾 𝜉  𝑓,𝑥𝑥

 3 
+ 𝜉𝑟𝑓,𝑦𝑦

 3 
 + 𝜆  

𝛼

2
𝑤,𝑥𝑥

 3 
+ 𝜉  1 −

𝛼

2
 𝑤,𝑦𝑦

 3 
 

=  −𝐾 𝜉 𝐻 𝑠 𝑓 1 , 𝑤 2  +  𝑠 𝑓 2 , 𝑤 1  + 𝑠 𝑓 2 , 𝑤                                  (31)

∇ 4𝑓(3) −  1 + 𝜉 2 𝑤,𝑥𝑥
 3 

+ 𝜉𝑟𝑤,𝑦𝑦
 3 

 = −
1

2
𝐻 1 + 𝜉  𝑠 𝑤(1), 𝑤(2) +  𝑠 𝑤(2), 𝑤(1) +  𝑠 𝑤(2), 𝑤      (32) 

  

𝑤(𝑖) = 𝑤,𝑥𝑥
 𝑖 = 𝑓(𝑖) = 𝑓,𝑥𝑥

 𝑖 = 0, 𝑎𝑡 𝑥 = 0, 𝜋                                                                                  (33) 

As noted by Lockhart and Amazigo [11], any time independent stress-free normal displacement 𝑤 (𝑥, 𝑦), satisfying 

reasonable smoothness conditions, can be expanded in a double Fourier series. Thus, if the edge effects are 

neglected and the origin of the circumferential coordinate is appropriately chosen, such a series takes the form 
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𝑤  𝑥, 𝑦 =  𝑎 𝑠𝑖𝑛𝑥𝑠𝑖𝑛𝑛𝑦 +    𝑎 𝑚𝑘 𝑠𝑖𝑛𝑘𝑦 + 𝑏 𝑚𝑘𝑐𝑜𝑠𝑘𝑦 𝑠𝑖𝑛𝑚𝑥               (34𝑎)

∞

𝑚=1,𝑘=0
(𝑚,𝑘)≠(1,𝑛)

 

or 

𝑤  𝑥, 𝑦 =   𝑎 𝑚𝑘 𝑠𝑖𝑛𝑘𝑦 + 𝑏 𝑚𝑘 𝑐𝑜𝑠𝑘𝑦 𝑠𝑖𝑛𝑚𝑥                                                             (34𝑏)

∞

𝑚=1,𝑘=0

 

𝑤𝑖𝑡𝑕 𝑏 1𝑛 = 0                                                                                                 (34𝑐) 

However, in this work, we shall take 

𝑤  𝑥, 𝑦 =  𝑎 𝑠𝑖𝑛𝑚𝑥𝑠𝑖𝑛𝑛𝑦                                                                                                            (35) 

Throughout the analysis, we shall use the fact that if, for example, 

𝑤  𝑥, 𝑦 =    𝑙1𝑐𝑜𝑠𝑞𝑦 + 𝑙2𝑠𝑖𝑛𝑞𝑦 𝑠𝑖𝑛𝑝𝑥                                                                     (36𝑎)

∞

𝑝=1,𝑞=0

 

𝑡𝑕𝑒𝑛 

∇ 4𝑤 =    𝑝2 + 𝜉𝑞2 2 𝑙1𝑐𝑜𝑠𝑞𝑦 + 𝑙2𝑠𝑖𝑛𝑞𝑦 𝑠𝑖𝑛𝑝𝑥                                    (36𝑏)

∞

𝑝=1,𝑞=0

 

Any integration with respect to x shall have 0 and π as the lower and upper limits respectively while integration with 

respect to y shall have 0 and 2π as the lower and upper limits respectively. 

Solution of Equations of Order 𝝐 

Let 

 
𝑤(1)

𝑓(1)
 =    

𝑤1
(1)

𝑓1
(1)  𝑠𝑖𝑛𝑝𝑥𝑐𝑜𝑠𝑞𝑦 +  

𝑤2
(1)

𝑓2
(1)  𝑠𝑖𝑛𝑝𝑥𝑠𝑖𝑛𝑞𝑦 

∞

𝑝=1,𝑞=0

                                      (37) 

We now substitute (37) into (28) and get, using (36b) 

    𝑝2 + 𝜉𝑞2 2𝑓1
(1)

+  1 + ξ 2 𝑞2𝑟𝜉 − 𝑝2 𝑤1
(1) 𝑠𝑖𝑛𝑝𝑥𝑐𝑜𝑠𝑞𝑦

∞

𝑝=1,𝑞=0

+    𝑝2 + 𝜉𝑞2 2𝑓2
(1)

+  1 + ξ 2 𝑞2𝑟𝜉− 𝑝2 𝑤2
(1) 𝑠𝑖𝑛𝑝𝑥𝑠𝑖𝑛𝑞𝑦 = 0                 (38)  

Multiplying (38) first by 𝑠𝑖𝑛𝑚𝑥𝑐𝑜𝑠𝑛𝑦 and next by 𝑠𝑖𝑛𝑚𝑥𝑠𝑖𝑛𝑛𝑦, and for 𝑝 = 𝑚, 𝑞 = 𝑛 in each case, we simplify to 

get 

𝑓1
(1)

=  
− 1 + ξ 2 𝑛2𝑟𝜉 − 𝑚2 𝑤1

(1)

 𝑚2 + 𝜉𝑛2 2
,       𝑓2

(1)
=  

− 1 + ξ 2 𝑛2𝑟𝜉 − 𝑚2 𝑤2
(1)

 𝑚2 + 𝜉𝑛2 2
          (39) 
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Next, assuming (37) in (27) and multiplying through, first by 𝑠𝑖𝑛𝑚𝑥𝑐𝑜𝑠𝑛𝑦 and after by 𝑠𝑖𝑛𝑚𝑥𝑠𝑖𝑛𝑛𝑦, we get, using 

(39) and for 𝑝 = 𝑚, 𝑞 = 𝑛, 

𝑤1
(1)

= 0,       𝑤2
(1)

=
𝜆𝑎  

𝛼𝑚2

2
+ 𝜉𝑛2  1 −

𝛼

2
  

𝜑1

                                                                      (40) 

where, 

𝜑1 =    𝑚2 + 𝜉𝑛2 2 +   
𝑚𝐴

1 + ξ
 

2

+ 𝑛2𝑟𝜉  1 + ξ 2  
𝑛2𝑟𝜉 − 𝑚2

 𝑚2 + 𝜉𝑛2 2
 − 𝜆  

𝛼𝑚2

2
+ 𝜉𝑛2  1 −

𝛼

2
         (41) 

So far, it follows that 

 
𝑤(1)

𝑓(1)
 =  

1

−𝜑0

 𝑤2
(1)

𝑠𝑖𝑛𝑚𝑥𝑠𝑖𝑛𝑛𝑦                                                                                             (42𝑎) 

where, 

𝜑0 =  1 + ξ 2  
𝑛2𝑟𝜉−𝑚2

 𝑚2+𝜉𝑛2 2
 (42b) 

Solution of Equations of Order 𝝐𝟐 

We shall now let  

 
𝑤(2)

𝑓(2)
 =    

𝑤1
(2)

𝑓1
(2)  𝑠𝑖𝑛𝑝𝑥𝑐𝑜𝑠𝑞𝑦 +  

𝑤2
(2)

𝑓2
(2)  𝑠𝑖𝑛𝑝𝑥𝑠𝑖𝑛𝑞𝑦 

∞

𝑝=1,𝑞=0

                                                         (43) 

On substituting on the right hand sides of equations (29) and (30), we get 

∇ 4𝑤(2) −  𝐾 𝜉  𝑓,𝑥𝑥
 2 

+ 𝜉𝑟𝑓,𝑦𝑦
 2 

 + 𝜆  
𝛼

2
𝑤,𝑥𝑥

 2 
+ 𝜉  1 −

𝛼

2
 𝑤,𝑦𝑦

 2 
 

= −𝐾 𝜉 𝐻𝜑0𝑚𝑛2  𝑤2
 1 2

+ 𝑎 𝑤2
 1 

  𝑐𝑜𝑠2𝑚𝑥 + 𝑐𝑜𝑠2𝑛𝑦                                                      (44) 

∇ 4𝑓(2) −  1 + 𝜉 2 𝑤,𝑥𝑥
 2 

+ 𝜉𝑟𝑤,𝑦𝑦
 2 

 =
1

2
𝐻 1 + 𝜉 𝑚𝑛2  𝑤2

 1 2
+ 𝑎 𝑤2

 1 
  𝑐𝑜𝑠2𝑚𝑥 + 𝑐𝑜𝑠2𝑛𝑦                      (45) 

Now substituting (43) into (45), using (36b) and simplifying, we get 

    𝑝2 + 𝜉𝑞2 2𝑓1
(2)

+ 𝑞2𝑟𝜉2 −  1 + ξ 2𝑝2𝑤1
(2) 𝑠𝑖𝑛𝑝𝑥𝑐𝑜𝑠𝑞𝑦

∞

𝑝=1,𝑞=0

+    𝑝2 + 𝜉𝑞2 2𝑓2
(2)

+ 𝑞2𝑟𝜉2 1 + ξ 2𝑝2𝑤2
(2)

 𝑠𝑖𝑛𝑝𝑥𝑠𝑖𝑛𝑞𝑦 

=
1

2
𝐻 1 + 𝜉 𝑚𝑛2  𝑤2

 1 2
+ 𝑎 𝑤2

 1 
  𝑐𝑜𝑠2𝑚𝑥 + 𝑐𝑜𝑠2𝑛𝑦                                                         (46) 

We multiply (46) by 𝑠𝑖𝑛𝑚𝑥𝑐𝑜𝑠2𝑛𝑦 and for 𝑝 = 𝑚, 𝑞 = 2𝑛, integrate to get (for m odd) 

𝑓1
(2)

=

−2𝐻 1+𝜉 𝑚𝑛2

𝜋
 𝑤2

 1 2
+ 𝑎 𝑤2

 1 
 −  1 + 𝜉 2 4𝑛2𝑟𝜉 − 𝑚2 𝑤1

(2)

 𝑚2 + 4𝑛2𝜉 2
                                                   (47𝑎) 

Let 
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𝜑2 =
2𝐻 1 + 𝜉 𝑚𝑛2

𝜋 𝑚2 + 4𝑛2𝜉 2
 ,      𝜑7 =

 1 + 𝜉 2 4𝑛2𝑟𝜉 − 𝑚2 

𝜋 𝑚2 + 4𝑛2𝜉 2
                               (47𝑏) 

∴     𝑓1
(2)

= − 𝜑2  𝑤2
 1 2

+ 𝑎 𝑤2
 1 

 + 𝜑7𝑤1
 2 

                                                  (47𝑐) 

Next, we multiply (46) by 𝑠𝑖𝑛𝑚𝑥𝑠𝑖𝑛2𝑛𝑦 and simplify to get 

𝑓2
(2)

= −𝜑7𝑤2
 2 

                                                                                                         (48) 

Using (36b), we next multiply (44) by 𝑠𝑖𝑛𝑚𝑥𝑐𝑜𝑠2𝑛𝑦 and integrate and for 𝑝 = 𝑚, 𝑞 = 2𝑛 (m odd) we get, after 

simplification 

𝑤1
(2)

=
−  

2𝐴

 1+𝜉 
 

2 𝐻𝜑0𝑚𝑛2

𝜋
+ 𝜑2   

𝐴𝑚

 1+𝜉 
 

2

+ 4𝑛2𝜉   𝑤2
 1 2

+ 𝑎 𝑤2
 1 

 

 𝑚2 + 4𝑛2𝜉 2 + 𝜑7   
𝐴𝑚

 1+𝜉 
 

2

+ 4𝑛2𝜉 − 𝜆  
𝛼𝑚2

2
+ 4𝜉𝑛2  1 −

𝛼

2
  

                               (49𝑎) 

We now assume the following: 

𝜑9 =    
2𝐴

 1 + 𝜉 
 

2 𝐻𝜑0𝑚𝑛2

𝜋
− 𝜑2   

𝐴𝑚

 1 + 𝜉 
 

2

+ 4𝑛2𝜉                                             (49𝑏) 

𝜑10 =    𝑚2 + 4𝑛2𝜉 2 + 𝜑7   
𝐴𝑚

 1 + 𝜉 
 

2

+ 4𝑛2𝜉 − 𝜆  
𝛼𝑚2

2
+ 4𝜉𝑛2  1 −

𝛼

2
                    (49𝑐) 

∴    𝑤1
(2)

=
𝜑9

𝜑10

 𝑤2
 1 2

+ 𝑎 𝑤2
 1 

                                                                                         (49𝑑)  

Similarly, multiplying (44) by 𝑠𝑖𝑛𝑚𝑥𝑠𝑖𝑛2𝑛𝑦and integrating as usual, yields 

𝑤2
 2 

= 0                                                                                                     (50) 

It follows at this stage that 

 
𝑤(2)

𝑓(2)
 =  

𝑤1
(2)

𝑓1
(2)  𝑠𝑖𝑛𝑚𝑥𝑐𝑜𝑠2𝑛𝑦                                                                         (51)  

Solution of Equations of Order 𝝐𝟑 

We next substitute on the right hand sides of (31) and (32) and simplify to get 

∇ 4𝑤(3) −  𝐾 𝜉  𝑓,𝑥𝑥
 3 

+ 𝜉𝑟𝑓,𝑦𝑦
 3 

 + 𝜆  
𝛼

2
 𝑤 3 + 𝑤  

,𝑥𝑥
+ 𝜉  1 −

𝛼

2
 𝑤,𝑦𝑦

 3 
 

= −𝑚2𝑛2𝐾 𝜉 𝐻 9𝑠𝑖𝑛3𝑛𝑦 − 𝑠𝑖𝑛𝑛𝑦 − 𝑐𝑜𝑠2𝑚𝑥𝑠𝑖𝑛3𝑛𝑦 + 9𝑐𝑜𝑠2𝑚𝑥𝑠𝑖𝑛𝑛𝑦  2𝑤2
 1 

𝑤1
 2 

+ 𝑎 𝑤2
 1                                                                                                                 (52) 

∇ 4𝑓(3) −  1 + 𝜉 2 𝑤,𝑥𝑥
 3 

+ 𝜉𝑟𝑤,𝑦𝑦
 3 

 

= −
1

8
𝑚2𝑛2𝐻 1 + 𝜉  9𝑠𝑖𝑛3𝑛𝑦 − 𝑠𝑖𝑛𝑛𝑦 − 𝑐𝑜𝑠2𝑚𝑥𝑠𝑖𝑛3𝑛𝑦 + 9𝑐𝑜𝑠2𝑚𝑥𝑠𝑖𝑛𝑛𝑦  2𝑤2

 1 
𝑤1

 2 

+ 𝑎 𝑤2
 1                                                        (53)  



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 65 Issue 10 - Oct 2019 

 

ISSN: 2231-5373                                     http://www.ijmttjournal.org                                 Page 22 

Let  

 
𝑤(3)

𝑓(3)
 =    

𝑤1
(3)

𝑓1
(3)  𝑠𝑖𝑛𝑝𝑥𝑐𝑜𝑠𝑞𝑦 +  

𝑤2
(3)

𝑓2
(3)  𝑠𝑖𝑛𝑝𝑥𝑠𝑖𝑛𝑞𝑦  

∞

𝑝=1,𝑞=0

                                   (54) 

On substituting (54) into (53), multiplying through by 𝑠𝑖𝑛𝑚𝑥𝑠𝑖𝑛𝑛𝑦, we get, for 𝑝 = 𝑚, 𝑞 = 𝑛 (and for m odd) 

𝑓2(𝑛)
(3)

=
𝐻 1 + 𝜉 

𝑚𝑛2

2𝜋
 2𝑤2

 1 
𝑤1

 2 
+ 𝑎 𝑤1

 2 
 −  1 + 𝜉 2 𝑛2𝑟𝜉 − 𝑚2 𝑤2(𝑛)

(3)

 𝑚2 + 𝑛2𝜉 2
               (56𝑎)  

Let 

𝜑3 =
𝐻 1 + 𝜉 𝑚𝑛2𝜑9

2𝜋 𝑚2 + 𝑛2𝜉 2𝜑10

                                                                                       (56𝑏) 

Then, we have 

𝑓2(𝑛)
(3)

= 𝜑3  2𝑤2
 1 3

+ 3𝑎 𝑤2
 1 2

+ 𝑎 𝑤2
 1 

 − 𝜑0𝑤2 𝑛 
 3 

                                        (56𝑐) 

Similarly, by multiplying (53) by 𝑠𝑖𝑛𝑚𝑥𝑠𝑖𝑛3𝑛𝑦 and for 𝑝 = 𝑚, 𝑞 = 3𝑛, we integrate to get 

𝑓2(3𝑛)
(3)

= − 

9𝐻 1+𝜉 𝑚𝑛2

2𝜋
 2𝑤2

 1 
𝑤1

 2 
+ 𝑎 𝑤1

 2 
 +  1 + 𝜉 2 9𝑛2𝑟𝜉 − 𝑚2 𝑤2 3𝑛 

 3 

 𝑚2 + 9𝑛2𝜉 2
                          (57𝑎) 

Let 

𝜑11 =
9𝐻 1 + 𝜉 𝑚𝑛2 𝜑9

𝜑10

2𝜋 𝑚2 + 9𝑛2𝜉 2
,   𝜑12 =

 1 + 𝜉 2 9𝑛2𝑟𝜉 − 𝑚2 

 𝑚2 + 9𝑛2𝜉 2
                                                              (57𝑏) 

∴     𝑓2(3𝑛)
(3)

=  −𝜑11  2𝑤2
 1 3

+ 3𝑎 𝑤2
 1 2

+ 𝑎 𝑤2
 1 

 + 𝜑12𝑤2 3𝑛 
 3 

                                      (57𝑐) 

To determine 𝑤(3), we now substitute into (52), multiply through by 𝑠𝑖𝑛𝑚𝑥𝑠𝑖𝑛𝑛𝑦 and for 𝑝 = 𝑚, 𝑞 = 𝑛 (m odd), 

we simplify to get 

𝑤2(𝑛)
(3)

=
−𝐻𝐾(𝜉)𝑚𝑛2

𝜋𝜑1

 𝑓2
(1)

𝑤1
 2 

+ 𝑓1
(2)

𝑤2
 1 

+ 𝑓1
(2)

𝑎  

+
𝐻 1 + 𝜉 𝑚𝑛2

2𝜋 𝑚2 + 𝑛2𝜉 2𝜑1

   
𝐴𝑚

 1 + 𝜉 
 

2

+ 𝑛2𝑟𝜉  2𝑤2
 1 

𝑤1
 2 

+ 𝑎 𝑤1
 2 

              (58𝑎) 

After carefully simplifying (58a), we get 

𝑤2(𝑛)
(3)

=
1

𝜑1

  𝜑14 +
2𝜑13𝜑9

𝜑10

 𝑤2
 1 3

+ 𝑎  2𝜑14 +
3𝜑13𝜑9

𝜑10

 𝑤2
 1 2

+ 𝑎 2  𝜑14 +
𝜑13𝜑9

𝜑10

 𝑤2
 1 

     (58𝑏)  

where, 

𝜑13 =
𝐻 1 + 𝜉 𝑚𝑛2

2𝜋 𝑚2 + 𝑛2𝜉 2
  

𝐴𝑚

 1 + 𝜉 
 

2

+ 𝑛2𝑟𝜉                                                          (58𝑐) 
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𝜑14 =
𝐻  

𝐴

 1+𝜉 
 

2

𝑚𝑛2  𝜑2 +
𝜑7𝜑9

𝜑10
 

𝜋 𝑚2 + 𝑛2𝜉 2
                                                             (58𝑑)  

Following (58b – d), we further let 

𝑄1 =  𝜑14 +
2𝜑13𝜑9

𝜑10

 ,       𝑄2 =  2𝜑14 +
3𝜑13𝜑9

𝜑10

 ,        𝑄3 =  𝜑14 +
𝜑13𝜑9

𝜑10

               (58𝑒) 

In this case, we get 

𝑤2(𝑛)
(3)

=
1

𝜑1

 𝑄1𝑤2
 1 3

+ 𝑄2𝑎 𝑤2
 1 2

+ 𝑄3𝑎 
2𝑤2

 1 
                                          (58𝑔) 

Next, we substitute into (52), multiply by 𝑠𝑖𝑛𝑚𝑥𝑠𝑖𝑛3𝑛𝑦 and for 𝑝 = 𝑚, 𝑞 = 3𝑛 (m odd), simplify to get  

𝑤2(3𝑛)
(3)

=  

−9𝐻𝐾(𝜉)𝑚𝑛2

𝜋
 𝑓2

(1)
𝑤1

 2 
+ 𝑓1

(2)
𝑤2

 1 
+ 𝑎 𝑓1

(2) + 9𝐻𝑚𝑛2 1 + 𝜉 2    
𝐴𝑚

 1+𝜉 
 

2

+ 9𝑛2𝑟𝜉  2𝑤2
 1 

𝑤1
 2 

+ 𝑎 𝑤1
 2 

  

𝜑15

     (59𝑎) 

where, 

𝜑15 =  𝑚2 + 9𝑛2𝜉 2 +   
𝐴𝑚

 1 + 𝜉 
 

2

+ 9𝑛2𝑟𝜉  1 + 𝜉 2 9𝑛2𝜉 − 𝑚2 

− 𝜆  
𝛼𝑚2

2
+ 9𝜉𝑛2  1 −

𝛼

2
                                                                             (59𝑏) 

After simplifying (59a), we get 

𝑤2(3𝑛)
(3)

=  2𝜑16 − 𝜑17  𝜑2 +
𝜑9

𝜑10

 𝜑0 + 𝜑7   𝑤2
 1 3

+  3𝜑16 − 𝜑17  
𝜑9𝜑7

𝜑10

+
𝜑9

𝜑10

 𝜑0 + 𝜑7 + 2𝜑2  𝑎 𝑤2
 1 2

+   𝜑16 − 𝜑17  
𝜑9𝜑7

𝜑10

+ 𝜑2  𝑎 
2𝑤2

 1 
                                                           (60𝑎) 

where, 

𝜑16 =
9𝐻𝑚𝑛2 1 + 𝜉 2    

𝐴𝑚

 1+𝜉 
 

2

+ 9𝑛2𝑟𝜉  
𝜑9

𝜑10

𝜋𝜑15

                                    (60𝑏) 

𝜑17 =
−9𝐻  

𝐴

1+𝜉
 

2

𝑚𝑛2

𝜋𝜑15

                                                                                  (60𝑐) 

We now let 

𝑄4 = 2𝜑16 − 𝜑17  𝜑2 +
𝜑9

𝜑10

 𝜑0 + 𝜑7                                                     (61𝑎) 
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𝑄5 =  3𝜑16 − 𝜑17  
𝜑9𝜑7

𝜑10

+
𝜑9

𝜑10

 𝜑0 + 𝜑7 + 2𝜑2                                (61𝑏) 

𝑄6 = 𝜑16 − 𝜑17  
𝜑9𝜑7

𝜑10

+ 𝜑2                                                                        (61𝑐) 

It follows that 

𝑤2(3𝑛)
 3 

= 𝑄4𝑤2
 1 3

+ 𝑄5𝑎 𝑤2
 1 2

+  𝑄6𝑎 
2𝑤2

 1 
                                                (62)  

So far, the normal displacement 𝑤(3)(𝑥, 𝑦) and corresponding Airy stress function 𝑓(3)(𝑥, 𝑦) at this order of 

perturbation are  

 
𝑤(3)

𝑓(3)
 =  

𝑤2(𝑛)
(3)

𝑓
2(𝑛)

(3)
 𝑠𝑖𝑛𝑚𝑥𝑠𝑖𝑛𝑛𝑦 +  

𝑤2(3𝑛)
(3)

𝑓
2(3𝑛)

(3)
 𝑠𝑖𝑛𝑚𝑥𝑠𝑖𝑛3𝑛𝑦                  (63) 

Generally, it follows that 

 
𝑤(𝑥, 𝑦)

𝑓(𝑥, 𝑦)
 = 𝜖  

1

𝜑0

 𝑤2
(1)

𝑠𝑖𝑛𝑚𝑥𝑠𝑖𝑛𝑛𝑦 + 𝜖2  
𝑤1

(2)

𝑓1
(2)  𝑠𝑖𝑛𝑚𝑥𝑐𝑜𝑠2𝑛𝑦

+ 𝜖3   
𝑤2(𝑛)

(3)

𝑓
2(𝑛)

(2)
 𝑠𝑖𝑛𝑚𝑥𝑠𝑖𝑛𝑛𝑦 +  

𝑤2(3𝑛)
(3)

𝑓
2(3𝑛)

(2)
 𝑠𝑖𝑛𝑚𝑥𝑠𝑖𝑛3𝑛𝑦 + ⋯         (64) 

 

VI. STATIC BUCKLING LOAD, 𝛌𝐒 

To determine the static buckling load 𝜆𝑆, we shall use only the buckling modes that are strictly in the shape of 

imperfection as in (35). As in Lockhart and Amazigo [11], the condition for static buckling is 

𝑑𝜆

𝑑𝑤
= 0                                                                                                    (65) 

where, it is tacitly implied that the displacement 𝑤(𝑥, 𝑦) is an embodiment of the load parameter 𝜆. Amazigo[12] 

and Amazigo and Ette [13] had earlier shown that the application of equation (65) should be preceded by a reversal 

of the series (64) which we now embark by first letting 

𝑐1 = 𝑤2
(1)

𝑠𝑖𝑛𝑚𝑥𝑠𝑖𝑛𝑛𝑦,      𝑐3 = 𝑤2(𝑛)
(3)

𝑠𝑖𝑛𝑚𝑥𝑠𝑖𝑛𝑛𝑦 

∴     𝑤 = 𝜖𝑐1 + 𝜖3𝑐3 + ⋯                                                                                    (66𝑎) 

To reverse the series, we write 

𝜖 = 𝑤𝑑1 + 𝑤3𝑑3 + ⋯                                                                                          (66𝑏) 

By substituting for 𝑤from (66a) in (66b), and equating the coefficients of powers of 𝜖, we get 

  𝑑1 =
1

𝑐1
,           𝑑3 = −

𝑐3

𝑐1
4                                                                                        (66𝑐) 
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The maximization (65) is better accomplished using (66b) to get the value of the displacement at static buckling, 

namely 𝑤𝑆, as 

𝑤𝑆 =   
𝑐1

3

3𝑐3

                                                                                                         (67𝑎) 

The static buckling load 𝜆𝑆 is next determined by determining (66b) at static buckling to get 

𝜖 =
2

3
 

𝑐1

3𝑐3

                                                                                                           (67𝑏) 

On simplification, (67b) gives 

  𝑚2 + 𝑛2𝜉 2 +   
𝐴𝑚

 1 + 𝜉 
 

2

+ 𝑛2𝑟𝜉  1 + 𝜉 2  
𝑛2𝑟𝜉 − 𝑚2

 𝑚2 + 𝑛2𝜉 2
 − 𝜆𝑆  

𝛼𝑚2

2
+ 𝜉𝑛2  1 −

𝛼

2
   

3 2 

=
3 3

2
𝜆𝑆 𝑎 𝜖  

𝛼𝑚2

2
+ 𝜉𝑛2  1 −

𝛼

2
   𝑄1𝑄7                                             (68𝑎) 

where, 

𝑄7 =  1 +  
𝑄2

𝑄1

  
𝑎 

𝑤2
(1)

 +  
𝑄3

𝑄1

  
𝑎 

𝑤2
(1)

 

2

                                                  (68𝑏)  

 

Equations (68a, b) give an implicit expression for determining 𝜆𝑆. The result is asymptotic in nature, all depending 

on the smallness of the perturbation parameter 𝜖 in relation to unity. Similar results on cubic and quadratic – cubic 

elastic model structures were obtained by Budiansky and Hutchinson [14]. 

 

VII. CONCLUSION 

We have employed regular perturbation procedures and asymptotic expansions to evaluate the  

out–of–plane normal deflection and corresponding Airy stress function of a statically loaded, finite, imperfect 

toroidal shell segment that has simply – supported boundary conditions. We have similarly determined the static 

buckling load 𝜆𝑆 of the structure and the result is asymptotic in nature. It is expected that similar procedures can be 

utilized to analyze cases of dynamic loading of the same and similar structures. 
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