Some New Status Indices of Graphs

V.R.Kulli

Department of Mathematics. Gulbarga University, Gulbarga 585106, India

Abstract: In this study, we propose the first and second hyper status indices, sum connectivity status index, product connectivity status index, atom bond connectivity status index, geometric-arithmetic status index, general first and second status indices of a graph and determine their values for some standard graphs, wheel graphs, friendship graphs.

Keywords: hyper status indices, sum connectivity status index, product connectivity status index, atom bond connectivity status index, geometric-arithmetic index, graphs.

Mathematics Subject Classification: 05C05, 05C07, 05C12, 05C35.

1. Introduction

Let *G* be a finite, simple, connected graph with vertex set V(G) and edge set E(G). The edge connecting the vertices *u* and *v* will be denoted by *uv*. The degree $d_G(v)$ of a vertex *v* is the number of vertices adjacent to *v*. The distance d(u, v) between any two vertices *u* and *v* is the length of shortest path connecting *u* and *v*. The status $\Box(u)$ of a vertex *u* in *G* is the sum of distances of all other vertices from *u* in *G*. We refer [1] for undefined terms and notations from graph theory.

A topological index or graph index is a numerical parameter mathematically derived from the graph structure. It is a graph invariant. The graph indices have their applications in various disciplines of Science and Technology, see [2, 3]. Some of the graph indices may be found in [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14].

The first and second status connectivity indices of a graph G are introduced by Ramane et al. in [15], defined as

$$S_1(G) = \sum_{uv \in E(G)} [\sigma(u) + \sigma(v)], \qquad S_2(G) = \sum_{uv \in E(G)} \sigma(u) \sigma(v)$$

We now introduce the first and second hyper status indices of a graph G, defined as

$$HS_1(G) = \sum_{uv \in E(G)} [\sigma(u) + \sigma(v)]^2, \qquad HS_2(G) = \sum_{uv \in E(G)} [\sigma(u)\sigma(v)]^2.$$

We also introduce the connectivity status indices as follows: The sum connectivity status index of a graph *G* is defined as

$$SS(G) = \sum_{uv \in E(G)} \frac{1}{\sqrt{\sigma(u) + \sigma(v)}}$$

The product connectivity status index of a graph G is defined as

$$PS(G) = \sum_{uv \in E(G)} \frac{1}{\sqrt{\sigma(u)\sigma(v)}}$$

The reciprocal product connectivity status index of a graph G is defined as

$$RPS(G) = \sum_{uv \in E(G)} \sqrt{\sigma(u)\sigma(v)}.$$

The general first and second status indices of a graph G are defined as

$$S_1^a(G) = \sum_{uv \in E(G)} \left[\sigma(u) + \sigma(v)\right]^a,\tag{1}$$

$$S_2^a(G) = \sum_{uv \in E(G)} \left[\sigma(u)\sigma(v)\right]^a$$

where *a* is a real number.

Some of the research works on status indices can be found in [16, 17, 18, 19, 20].

In this paper, we introduce some new status indices of a graph. Furthermore, the values of these newly proposed indices for some standard graphs are provided.

(2)

2. Results for Some Graphs

2.1. Complete graph K_n on n vertices.

Theorem 1. The general first status index of a complete graph K_n is

$$S_1^a(K_n) = \frac{n(n-1)}{2} [2(n-1)]^a.$$
(3)

Proof: If K_n is a complete graph with *n* vertices, then $d_{K_n}(u) = n-1$ and $\Box(u) = n-1$ for any vertex *u* in K_n . Thus

$$S_1^a(K_n) = \sum_{uv \in E(G)} [\sigma(u) + \sigma(v)]^a = [(n-1) + (n-1)]^a \frac{n(n-1)}{2}$$
$$= \frac{n(n-1)}{2} [2(n-1)]^a.$$

We obtain the following results by using Theorem 1.

Corollary 1.1. If K_n is a complete graph, then i) $S_1(K_n) = n(n-1)^2$.

1)
$$S_1(K_n) = n(n-1)$$
.
1) $HS_1(K_n) = 2n(n-1)^3$.
1) $SS(K) = \frac{n\sqrt{n-1}}{2n(n-1)^3}$.

iii)
$$SS(K_n) = \frac{n\sqrt{n}}{2\sqrt{2}}$$

Proof: Put $a = 1, 2, -\frac{1}{2}$ in equation (3), we get the desired results.

Theorem 2. The general second status index of a complete graph K_n is

$$S_2^a(K_n) = \frac{1}{2}n(n-1)(n-1)^{2a}.$$
(4)

Proof: If K_n is a complete graph with *n* vertices, then $d_G(u) = n - 1$, $\Box(u) = n - 1$ for any vertex *u* in K_n . Therefore

$$S_{2}^{a}(K_{n}) = \sum_{uv \in E(G)} [\sigma(u)\sigma(v)]^{a} = [(n-1)(n-1)]^{a} \frac{n(n-1)}{2}$$
$$= \frac{1}{2}n(n-1)(n-1)^{2a}.$$

We establish the following results by using Theorem 2. **Corollary 2.1.** If K_n is a complete graph with *n* vertices, then

i)
$$S_2(K_n) = \frac{1}{2}n(n-1)^3$$
. ii) $HS_2(K_n) = \frac{1}{2}n(n-1)^5$.
iii) $PS_2(K_n) = \frac{1}{2}n$. iv) $RPS(K_n) = \frac{1}{2}n(n-1)^2$.

Proof: Put $a = 1, 2, -\frac{1}{2}, \frac{1}{2}$ in equation (4), we get the desired results.

2.2. Cycle C_n on *n* vertices

Theorem 3. Let C_n be a cycle on n vertices. Then

$$S_{1}^{a}\left(C_{n}\right) = n\left(\frac{n^{2}}{2}\right)^{a}, \quad \text{if } n \text{ is even}, \tag{5}$$
$$= n\left(\frac{n^{2}-1}{2}\right)^{a}, \quad \text{if } n \text{ is odd}. \tag{6}$$

Proof: If C_n is a cycle with *n* vertices, then $d_{C_n}(u) = 2$ for every vertex *u* in C_n .

Case 1. Suppose *n* is even. Then $\sigma(u) = \frac{n^2}{4}$ for any vertex *u* in *C_n*. Therefore

$$S_1^a(C_n) = \sum_{uv \in E(C_n)} [\sigma(u) + \sigma(v)]^a = \left(\frac{n^2}{4} + \frac{n^2}{4}\right)^a n = n \left(\frac{n^2}{2}\right)^a.$$

Case 2. Suppose *n* is odd. Then $\sigma(u) = \frac{n^2 - 1}{4}$ for any vertex *u* in *C_n*. Thus

$$S_{1}^{a}(C_{n}) = \sum_{uv \in E(C_{n})} \left[\sigma(u) + \sigma(v)\right]^{a} = \left(\frac{n^{2} - 1}{4} + \frac{n^{2} - 1}{4}\right)^{a} n = n\left(\frac{n^{2} - 1}{2}\right)^{a}$$

Corollary 3.1. Let C_n be a cycle on n vertices. Then

(i)
$$S_1(C_n) = \frac{1}{2}n^3$$
, if *n* is even,
 $= \frac{1}{2}n(n^2 - 1)$, if *n* is odd.

(ii) $HS_1(C_n) = \frac{1}{4}n^5$, if *n* is even,

$$= \frac{1}{4}n(n^2 - 1)^2, \text{ if } n \text{ is odd.}$$
$$= \sqrt{2}, \qquad \text{if } n \text{ is even}$$

(iii)
$$SS(C_n)$$

$$u = \sqrt{2}$$
, if *n* is even,
 $= n\sqrt{\frac{2}{n^2 - 1}}$, if *n* is odd.

Proof: Put $a = 1, 2, -\frac{1}{2}, \frac{1}{2}$ in equations (5), (6), we get the desired results.

Theorem 4. Let C_n be a cycle on n vertices. Then

$$S_2^a(C_n) = n \left(\frac{n^4}{16}\right)^a, \qquad \text{if } n \text{ is even}, \tag{7}$$
$$= n \left(\frac{\left(n^2 - 1\right)^2}{16}\right)^a, \qquad \text{if } n \text{ is odd.} \tag{8}$$

Proof: If C_n is a cycle with *n* vertices, then $d_{C_n}(u) = 2$ for every vertex *u* in C_n .

Case 1. Suppose *n* is even. Then $\sigma(u) = \frac{n^2}{4}$ for any vertex *u* in *C_n*. Hence

$$S_{2}^{a}(C_{n}) = \sum_{uv \in E(C_{n})} [\sigma(u)\sigma(v)]^{a} = \left(\frac{n^{2}}{4} \times \frac{n^{2}}{4}\right)^{a} n = n \left(\frac{n^{4}}{16}\right)^{a}.$$

Case 2. Suppose *n* is odd. Then $\sigma(u) = \frac{n^2 - 1}{4}$ for any vertex *u* in *C_n*. Thus

$$S_{2}^{a}(C_{n}) = \sum_{uv \in E(C_{n})} \left[\sigma(u)\sigma(v)\right]^{a} = \left(\frac{n^{2}-1}{4} \times \frac{n^{2}-1}{4}\right)^{a} n = n \left(\frac{(n^{2}-1)^{2}}{16}\right)^{a}$$

Corollary 4.1. Let C_n be a cycle on n vertices. Then

(i)
$$S_2(C_n) = \frac{1}{16}n^5$$
, if *n* is even,

$$=\frac{1}{16}n(n^2-1)^2$$
, if *n* is odd.

(ii)
$$HS_2(C_n) = \frac{1}{256}n^9$$
, if *n* is even
= $\frac{1}{256}n(n^2-1)^4$, if *n* is odd.

(iii)
$$PS(C_n) = \frac{4}{n}$$
, if *n* is even,

$$= \frac{4n}{n^2 - 1}, \qquad \text{if } n \text{ is odd.}$$

(iv)
$$RPS(C_n) = \frac{1}{4}n^3, \qquad \text{if } n \text{ is even,}$$
$$= \frac{1}{4}n(n^2 - 1), \qquad \text{if } n \text{ is odd.}$$

Proof: Put $a = 1, 2, -\frac{1}{2}, \frac{1}{2}$ in equations (7), (8), we get the desired results.

2.3. Complete bipartite graph $K_{p,q}$

Theorem 5. The general first status index of a complete bipartite graph $K_{p,q}$ is

$$S_{1}^{a}(K_{p,q}) = pq \left[3(p+q) - 4 \right]^{a}.$$
(9)

Proof: Let $K_{p,q}$ be a complete bipartite graph with p+q vertices and pq edges. The vertex set of $K_{p,q}$ can be partitioned into two independent sets V_1 and V_2 such that for every edge uv in $K_{p,q}$, $u \square V_1$ and $v \square V_2$. Thus d(u) =q, d(v) = p. Then

$$\Box(u) = q + 2(p-1)$$
 and $\Box(v) = p + 2(q-1)$.

Therefore

$$S_{1}^{a}(K_{p,q}) = \sum_{uv \in E(K_{p,q})} [\sigma(u) + \sigma(v)]^{a} = [q + 2(p-1) + p + 2(q-1)]^{a} pq$$

= $pq[3(p+q)-4]^{a}$.

We obtain the following results by using Theorem 1. **Corollary 5.1.** If $K_{p,q}$ is a complete bipartite graph, then

i)
$$S_1(K_{p,q}) = 3pq(p+q) - 4pq.$$

ii) $HS_1(K_{p,q}) = pq[3(p+q) - 4]^2$

iii)
$$SS(K_{p,q}) = \frac{1}{\sqrt{3(p)}}$$

iii) $SS(K_{p,q}) = \frac{pq}{\sqrt{3(p+q)-4}}$. **Proof:** Put $a = 1, 2, -\frac{1}{2}$ in equation (9), we get the desired results.

Theorem 6. The general second status index of a complete bipartite graph $K_{p,q}$ is

$$S_{2}^{a}(K_{p,q}) = \left[(p+2q-2)(q+2p-2) \right]^{a} pq.$$
(10)

Proof: Let V_1 and V_2 be two independent vertex partitions of $K_{p,q}$ such that $u \square V_1$ and $v \square V_2$. Hence d(u) = q and d(v) = p. The graph $K_{p,q}$ has p+q vertices and pq edges. Then

$$\Box(u) = q + 2(p-1)$$
 and $\Box(v) = p + 2(q-1)$.
Thus

$$S_{2}^{a}(K_{p,q}) = \sum_{uv \in E(K_{p,q})} [\sigma(u)\sigma(v)]^{a} = [(q+2p-2)(p+2q-2)]^{a} pq$$

We obtain the following results by using Theorem 6. **blary 6.1**. If $K_{r,i}$ is a complete bipartite graph, then then

Corollary 6.1. If
$$K_{p,q}$$
 is a complete bipartite graph, t
i) $S_2(K_{p,q}) = pq(p+2q-2)(q+2p-2).$
ii) $HS_2(K_{p,q}) = pa(p+2q-2)^2(q+2p-2)^2.$

$$\frac{11}{11} \frac{11}{11} \frac{11}{2} \frac{1}{11} \frac{1}{2} \frac{1}{11} \frac{1}{11}$$

iii)
$$PS(K_{p,q}) = \frac{pq}{\sqrt{(p+2q-2)(q+2p-2)}}.$$

iv)
$$RPS(K_{p,q}) = pq\sqrt{(p+2q-2)(q+2p-2)}.$$

Proof: But $q=1, 2, 16, 16$ in equation (10), we obtain the

Proof: Put $a = 1, 2, -\frac{1}{2}, \frac{1}{2}$ in equation (10), we obtain the desired results.

3. Results for wheel graphs

A wheel W_n is the join of C_n and K_1 . Clearly W_n has n+1 vertices and 2n edges. A graph W_4 is depicted in Figure 1.

Figure 1. Wheel graph W_4

Let W_n be a wheel with n+1 vertices and 2n edges. In W_n , there are two types of edges as follows: $E_1 = \{uv \square E(W_n) \mid d_{W_n}(u) = d_{W_n}(v) = 3\}, \qquad |E_1| = n.$ $E_2 = \{uv \square E(W_n) \mid d_{W_n}(u) = 3, d_{W_n}(v) = n\}, \qquad |E_2| = n.$

Thus there are two types of status edges as given in Table 1.

$\Box(u), \ \Box(v) \setminus uv \ \Box \ E(W_n)$	(2n-3, 2n-3)	(n, 2n - 3)
Number of edges	n	n
Table 1. Status edge partition of W_n		

Theorem 7. The general first status index of a wheel graph W_n is

$$S_1^a(W_n) = (4n-6)^a n + (3n-3)^a n.$$
⁽¹¹⁾

Proof: By using equation (1) and Table 1, we deduce

$$S_1^a(W_n) = \sum_{uv \in E(W_n)} [\sigma(u) + \sigma(v)]^a$$

= $(2n - 3 + 2n - 3)^a n + (n + 2n - 3)^a n = (4n - 6)^a n + (3n - 3)^a n.$

Corollary 7.1. If W_n is a wheel graph with n+1 vertices and 2n edges, then i) $S_1(W_n) = 7n^2 - 9n$.

i) $S_1(W_n) = 7n^2 - 9n.$ ii) $HS_1(W_n) = 25n^3 - 66n^2 + 45n.$

iii) $SS(W_n) = \frac{n}{\sqrt{4n-6}} + \frac{n}{\sqrt{3n-3}}.$

Proof: Put $a = 1, 2, -\frac{1}{2}$ in equation (11), we get the desired results.

Theorem 8. The general second status index of a wheel graph W_n is

$$S_2^a(W_n) = (2n-3)^{2a} n \times (2n^2-3n)^a n.$$

Proof: By using equation (2) and by using Table 1, we derive

$$S_{2}^{a}(W_{n}) = \sum_{uv \in E(W_{n})} [\sigma(u)\sigma(v)]^{a}$$

= $[(2n-3)(2n-3)]^{a} n + [n(2n-3)]^{a} n = (2n-3)^{2a} n + (2n^{2}-3n)^{a} n$
From Theorem 8, we establish the following results.

Corollary 8.1. If W_n is a wheel graph with n+1 vertices and 2n edges, then

i)
$$S_2(W_n) = 6n^3 - 15n^2 + 9n.$$

ii)
$$HS_2(W_n) = (2n-3)^4 n + (2n^2 - 3n)^2 n.$$

iii)
$$PS(W_n) = \frac{n}{2n-3} + \frac{n}{\sqrt{n(2n-3)}}.$$

iv)
$$RPS(W_n) = n(2n-3) + n\sqrt{n(2n-3)}.$$

Proof: Put $a = 1, 2, -\frac{1}{2}, \frac{1}{2}$ in equation (12), we obtain the desired results.

(12)

4. Results for friendship graphs

A friendship graph F_n is the graph obtained by taking $n \Box 2$ copies of C_3 with a vertex in common. A graph F_4 is shown in Figure 2.

Figure 2. A friendship graph F_4

A friendship graph F_n has 2n+1 vertices and 3n edges. There are two types of edges as follows: $E_1 = \{uv \square E(F_n) \mid d_{F_n}(u) = d_{F_n}(v) = 2\}, \qquad |E_1| = n.$

$$E_2 = \{ uv \Box E(F_n) \mid d_{F_n}(u) = 2, \ d_{F_n}(v) = 2n \}, \qquad |E_2| = 2n$$

Hence there are two types of status edges as given in Table 2.

$\Box(u), \ \Box(v) \setminus uv \ \Box \ E(F_n)$	(4n-2, 4n-2)	(2n, 4n-2)
Number of edges	n	2n

Table 2. Status edge partition of F_n

Theorem 9. The general first status index of a friendship graph F_n is

 $S_1^a(F_n) = (8n-4)^a n + (6n-2)^a 2n.$

Proof: By using equation (1) and Table 2, we obtain

$$S_1^a(F_n) = \sum_{uv \in E(F_n)} [\sigma(u) + \sigma(v)]^a$$

= $(4n - 2 + 4n - 2)^a n + (2n + 4n - 2)^a 2n = (8n - 4)^a n + (6n - 2)^a 2n.$

Corollary 9.1. Let F_n be a friendship graph with 2n+1 vertices and 3n edges. Then i) $S_1(F) = 20n^2 - 8n$

i)
$$HS_1(F_n) = 100n^3 - 88n^2 + 20n$$
.

iii)
$$SS(F_n) = \frac{n}{2\sqrt{2n-1}} + \frac{2n}{\sqrt{6n}}$$

Proof: Put $a = 1, 2, -\frac{1}{2}$ in equation (13), we get the desired results.

Theorem 10. The general second status index of a friendship graph F_n is

$$S_{2}^{a}(F_{n}) = (4n-2)^{2a} n + (8n^{2}-4n)^{a} 2n.$$
⁽¹⁴⁾

Proof: From equation (2) and by using Table 2, we have

$$S_{2}^{a}(F_{n}) = \sum_{uv \in E(F_{n})} [\sigma(u)\sigma(v)]^{a}$$

= $[(4n-2)(4n-2)]^{a} n + [2n(4n-2)]^{a} 2n = (4n-2)^{2a} n + (8n^{2}-4n)^{a} 2n.$
We obtain the following results by using Theorem 10.

Corollary 10.1. Let F_n be a friendship graph with 2n+1 vertices and 3n edges. Then

- i) $S_2(F_n) = 32n^3 24n^2 + 4n$.
- ii) $HS_2(F_n) = (4n-2)^4 n + (8n^2 4n)^2 2n.$

(13)

iii)
$$PS(F_n) = \frac{n}{4n-2} + \frac{n}{\sqrt{n(2n-1)}}$$

iv)
$$RPS(F_n) = n(4n-2) + 4n\sqrt{n(2n-1)}.$$

Proof: Put $a = 1, 2, -\frac{1}{2}, \frac{1}{2}$ in equation (14), we obtain the desired results.

References

- [1] V.R.Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India (2012).
- [2] Gutman and O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin (1986).
- [3] V.R. Kulli, Multiplicative Connectivity Indices of Nanostructures, LAP LEMBERT Academic Publishing (2018).
- [4] V.R. Kulli, Neighborhood Dakshayani indices, International Journal of Mathematical Archive, 10(7) (2019) 23-31.
- [5] V.R. Kulli, On KV indices and their polynomials of two families of dendrimers, International Journal of Current Research in Life Sciences, 7(9) (2018) 2739-2744.
- [6] V.R.Kulli, The Gourava indices and coindices of graphs, Annals of Pure and Applied Mathematics, 14(1) (2017) 33-38.
- [7] V.R. Kulli, Revan indices of oxide and honeycomb networks, International Journal of Mathematics and its Applications, 5(4-E) (2017) 663-667.
- [8] V.R. Kulli, Dakshayani indices, Annals of Pure and Applied Mathematics, 18(2) (2018) 139-146.
- [9] B. Basavanagoud, P. Jakkannavar, Kulli-Basava indices of graphs, Inter. J. Appl. Engg. Research, 14(1) (2018) 325-342.
- [10] S. Ediz, Maximal graphs of the first reverse Zagreb beta index, TWMS J. Appl. Eng. Math. 8 (2018) 306-310.
- [11] P. Kandan, E. Chandrasekaran, M. Priyadharshini, The Revan weighted szeged index of graphs, Journal of Emerging Technologies and Innovative Research, 5(9) (2018) 358-366.
- [12] A. M. Naji, N. D. Soner, I. Gutman, On leap Zagreb indices of graphs, Commun. Comb. Optim. 2(2) (2017) 99-107.
- [13] I. Gutman, V.R. Kulli, B. Chaluvaraju and H. S. Boregowda, On Banhatti and Zagreb indices, Journal of the International Mathematical Virtual Institute, 7 (2017) 53-67.
- [14] B. Zhou and N. Trinajstic, On a novel connectivity index, J. Math. Chem. 46(2009) 1252-1270.
- [15] H.S. Ramane and A.S. Yalnaik, Status connectivity indices graphs and its applications to the boiling point of benzenoid hydrocarbons, Journal of Applied Mathematics and Computing, 55 (2017) 607-627.
- [16] H.S. Ramane, B. Basavagoud and A.S. Yalnaik, Harmonic status index of graphs, Bulletin of Mathematical Sciences and Applications, 17 (2016) 24-32.
- [17] H.S.Ramane, A.S. Yalnaik and R. Sharafdini, Status connectivity indices and coindices of graphs and its computation to some distance balanced graphs, AKCE International Journal of Graphs and Combinatorics, (2018) https://doi.org/10.1016j.akcej.2018.09.002.
- [18] V.R. Kulli, Some new multiplicative status indices of graphs, submitted.
- [19] V.R. Kulli, Computation of status indices of graphs, submitted.
- [20] V.R. Kulli, The (a, b)-status index of graphs, submitted.