Some New Status Indices of Graphs

V.R.Kulli
Department of Mathematics. Gulbarga University, Gulbarga 585106, India

Abstract

In this study, we propose the first and second hyper status indices, sum connectivity status index, product connectivity status index, atom bond connectivity status index, geometric-arithmetic status index, general first and second status indices of a graph and determine their values for some standard graphs, wheel graphs, friendship graphs.

Keywords: hyper status indices, sum connectivity status index, product connectivity status index, atom bond connectivity status index, geometric-arithmetic index, graphs.

Mathematics Subject Classification: 05C05, 05C07, 05C12, 05C35.

1. Introduction

Let G be a finite, simple, connected graph with vertex set $V(G)$ and edge set $E(G)$. The edge connecting the vertices u and v will be denoted by $u v$. The degree $d_{G}(v)$ of a vertex v is the number of vertices adjacent to v. The distance $d(u, v)$ between any two vertices u and v is the length of shortest path connecting u and v. The status $\square(u)$ of a vertex u in G is the sum of distances of all other vertices from u in G. We refer [1] for undefined terms and notations from graph theory.

A topological index or graph index is a numerical parameter mathematically derived from the graph structure. It is a graph invariant. The graph indices have their applications in various disciplines of Science and Technology, see [2, 3]. Some of the graph indices may be found in $[4,5,6,7,8,9,10,11,12,13,14]$.

The first and second status connectivity indices of a graph G are introduced by Ramane et al. in [15], defined as

$$
S_{1}(G)=\sum_{u v \in E(G)}[\sigma(u)+\sigma(v)], \quad S_{2}(G)=\sum_{u v \in E(G)} \sigma(u) \sigma(v)
$$

We now introduce the first and second hyper status indices of a graph G, defined as

$$
H S_{1}(G)=\sum_{u v \in E(G)}[\sigma(u)+\sigma(v)]^{2}, \quad H S_{2}(G)=\sum_{u v \in E(G)}[\sigma(u) \sigma(v)]^{2}
$$

We also introduce the connectivity status indices as follows:
The sum connectivity status index of a graph G is defined as

$$
S S(G)=\sum_{u v \in E(G)} \frac{1}{\sqrt{\sigma(u)+\sigma(v)}}
$$

The product connectivity status index of a graph G is defined as

$$
P S(G)=\sum_{u v \in E(G)} \frac{1}{\sqrt{\sigma(u) \sigma(v)}}
$$

The reciprocal product connectivity status index of a graph G is defined as

$$
R P S(G)=\sum_{u v \in E(G)} \sqrt{\sigma(u) \sigma(v)}
$$

The general first and second status indices of a graph G are defined as

$$
\begin{align*}
& S_{1}^{a}(G)=\sum_{u v \in E(G)}[\sigma(u)+\sigma(v)]^{a} \tag{1}\\
& S_{2}^{a}(G)=\sum_{u v \in E(G)}[\sigma(u) \sigma(v)]^{a} \tag{2}
\end{align*}
$$

where a is a real number.
Some of the research works on status indices can be found in [16, 17, 18, 19, 20].
In this paper, we introduce some new status indices of a graph. Furthermore, the values of these newly proposed indices for some standard graphs are provided.

2. Results for Some Graphs

2.1. Complete graph K_{n} on n vertices.

Theorem 1. The general first status index of a complete graph K_{n} is

$$
\begin{equation*}
S_{1}^{a}\left(K_{n}\right)=\frac{n(n-1)}{2}[2(n-1)]^{a} \tag{3}
\end{equation*}
$$

Proof: If K_{n} is a complete graph with n vertices, then $d_{K_{n}}(u)=n-1$ and $\square(u)=n-1$ for any vertex u in K_{n}. Thus

$$
\begin{aligned}
S_{1}^{a}\left(K_{n}\right) & =\sum_{u v \in E(G)}[\sigma(u)+\sigma(v)]^{a}=[(n-1)+(n-1)]^{a} \frac{n(n-1)}{2} \\
& =\frac{n(n-1)}{2}[2(n-1)]^{a}
\end{aligned}
$$

We obtain the following results by using Theorem 1.
Corollary 1.1. If K_{n} is a complete graph, then
i) $\quad S_{1}\left(K_{n}\right)=n(n-1)^{2}$.
ii) $\quad H S_{1}\left(K_{n}\right)=2 n(n-1)^{3}$.
iii) $\quad S S\left(K_{n}\right)=\frac{n \sqrt{n-1}}{2 \sqrt{2}}$.

Proof: Put $a=1,2,-1 / 2$ in equation (3), we get the desired results.
Theorem 2. The general second status index of a complete graph K_{n} is

$$
\begin{equation*}
S_{2}^{a}\left(K_{n}\right)=\frac{1}{2} n(n-1)(n-1)^{2 a} \tag{4}
\end{equation*}
$$

Proof: If K_{n} is a complete graph with n vertices, then $d_{G}(u)=n-1$, $\square(u)=n-1$ for any vertex u in K_{n}. Therefore

$$
\begin{aligned}
S_{2}^{a}\left(K_{n}\right) & =\sum_{u v \in E(G)}[\sigma(u) \sigma(v)]^{a}=[(n-1)(n-1)]^{a} \frac{n(n-1)}{2} \\
& =\frac{1}{2} n(n-1)(n-1)^{2 a}
\end{aligned}
$$

We establish the following results by using Theorem 2.
Corollary 2.1. If K_{n} is a complete graph with n vertices, then
i) $\quad S_{2}\left(K_{n}\right)=\frac{1}{2} n(n-1)^{3}$.
ii) $\quad H S_{2}\left(K_{n}\right)=\frac{1}{2} n(n-1)^{5}$.
iii) $\quad P S_{2}\left(K_{n}\right)=\frac{1}{2} n$.
iv) $\quad R P S\left(K_{n}\right)=\frac{1}{2} n(n-1)^{2}$.

Proof: Put $a=1,2,-1 / 2,1 / 2$ in equation (4), we get the desired results.

2.2. Cycle C_{n} on n vertices

Theorem 3. Let C_{n} be a cycle on n vertices. Then

$$
\begin{array}{ll}
S_{1}^{a}\left(C_{n}\right)=n\left(\frac{n^{2}}{2}\right)^{a}, & \text { if } n \text { is even } \\
=n\left(\frac{n^{2}-1}{2}\right)^{a}, & \text { if } n \text { is odd. } \tag{6}
\end{array}
$$

Proof: If C_{n} is a cycle with n vertices, then $d_{C_{n}}(u)=2$ for every vertex u in C_{n}.
Case 1. Suppose n is even. Then $\sigma(u)=\frac{n^{2}}{4}$ for any vertex u in C_{n}. Therefore

$$
S_{1}^{a}\left(C_{n}\right)=\sum_{u v \in E\left(C_{n}\right)}[\sigma(u)+\sigma(v)]^{a}=\left(\frac{n^{2}}{4}+\frac{n^{2}}{4}\right)^{a} n=n\left(\frac{n^{2}}{2}\right)^{a}
$$

Case 2. Suppose n is odd. Then $\sigma(u)=\frac{n^{2}-1}{4}$ for any vertex u in C_{n}. Thus

$$
S_{1}^{a}\left(C_{n}\right)=\sum_{u v \in E\left(C_{n}\right)}[\sigma(u)+\sigma(v)]^{a}=\left(\frac{n^{2}-1}{4}+\frac{n^{2}-1}{4}\right)^{a} n=n\left(\frac{n^{2}-1}{2}\right)^{a}
$$

Corollary 3.1. Let C_{n} be a cycle on n vertices. Then
(i) $\quad S_{1}\left(C_{n}\right)=\frac{1}{2} n^{3}, \quad$ if n is even,

$$
=\frac{1}{2} n\left(n^{2}-1\right), \quad \text { if } n \text { is odd. }
$$

(ii) $\quad H S_{1}\left(C_{n}\right)=\frac{1}{4} n^{5}, \quad$ if n is even,

$$
=\frac{1}{4} n\left(n^{2}-1\right)^{2}, \text { if } n \text { is odd. }
$$

(iii) $\quad S S\left(C_{n}\right)=\sqrt{2}, \quad$ if n is even,

$$
=n \sqrt{\frac{2}{n^{2}-1}}, \quad \text { if } n \text { is odd. }
$$

Proof: Put $a=1,2,-1 / 2,1 / 2$ in equations (5), (6), we get the desired results.
Theorem 4. Let C_{n} be a cycle on n vertices. Then

$$
\begin{align*}
S_{2}^{a}\left(C_{n}\right) & =n\left(\frac{n^{4}}{16}\right)^{a}, & & \text { if } n \text { is even, } \tag{7}\\
& =n\left(\frac{\left(n^{2}-1\right)^{2}}{16}\right)^{a}, & & \text { if } n \text { is odd. } \tag{8}
\end{align*}
$$

Proof: If C_{n} is a cycle with n vertices, then $d_{C_{n}}(u)=2$ for every vertex u in C_{n}.
Case 1. Suppose n is even. Then $\sigma(u)=\frac{n^{2}}{4}$ for any vertex u in C_{n}. Hence

$$
S_{2}^{a}\left(C_{n}\right)=\sum_{u v \in E\left(C_{n}\right)}[\sigma(u) \sigma(v)]^{a}=\left(\frac{n^{2}}{4} \times \frac{n^{2}}{4}\right)^{a} n=n\left(\frac{n^{4}}{16}\right)^{a} .
$$

Case 2. Suppose n is odd. Then $\sigma(u)=\frac{n^{2}-1}{4}$ for any vertex u in C_{n}. Thus

$$
S_{2}^{a}\left(C_{n}\right)=\sum_{u v \in E\left(C_{n}\right)}[\sigma(u) \sigma(v)]^{a}=\left(\frac{n^{2}-1}{4} \times \frac{n^{2}-1}{4}\right)^{a} n=n\left(\frac{\left(n^{2}-1\right)^{2}}{16}\right)^{a}
$$

Corollary 4.1. Let C_{n} be a cycle on n vertices. Then
(i) $\quad S_{2}\left(C_{n}\right)=\frac{1}{16} n^{5}, \quad$ if n is even,

$$
=\frac{1}{16} n\left(n^{2}-1\right)^{2}, \quad \text { if } n \text { is odd. }
$$

(ii) $\quad H S_{2}\left(C_{n}\right)=\frac{1}{256} n^{9}, \quad$ if n is even,

$$
=\frac{1}{256} n\left(n^{2}-1\right)^{4}, \quad \text { if } n \text { is odd. }
$$

(iii) $\quad P S\left(C_{n}\right)=\frac{4}{n}, \quad$ if n is even,

$$
=\frac{4 n}{n^{2}-1}, \quad \quad \text { if } n \text { is odd. }
$$

(iv)

$$
\begin{aligned}
\operatorname{RPS}\left(C_{n}\right) & =\frac{1}{4} n^{3}, & & \text { if } n \text { is even, } \\
& =\frac{1}{4} n\left(n^{2}-1\right), & & \text { if } n \text { is odd. }
\end{aligned}
$$

Proof: Put $a=1,2,-1 / 2,1 / 2$ in equations (7), (8), we get the desired results.

2.3. Complete bipartite graph $K_{p, q}$

Theorem 5. The general first status index of a complete bipartite graph $K_{p, q}$ is

$$
\begin{equation*}
S_{1}^{a}\left(K_{p, q}\right)=p q[3(p+q)-4]^{a} . \tag{9}
\end{equation*}
$$

Proof: Let $K_{p, q}$ be a complete bipartite graph with $p+q$ vertices and $p q$ edges. The vertex set of $K_{p, q}$ can be partitioned into two independent sets V_{1} and V_{2} such that for every edge $u v$ in $K_{p, q}, u \square V_{1}$ and $v \square V_{2}$. Thus $d(u)=$ $q, d(v)=p$. Then

$$
\square(u)=q+2(p-1) \quad \text { and } \quad \square(v)=p+2(q-1) .
$$

Therefore

$$
\begin{aligned}
S_{1}^{a}\left(K_{p, q}\right) & =\sum_{u v \in E\left(K_{p, q}\right)}[\sigma(u)+\sigma(v)]^{a}=[q+2(p-1)+p+2(q-1)]^{a} p q \\
& =p q[3(p+q)-4]^{a} .
\end{aligned}
$$

We obtain the following results by using Theorem 1.
Corollary 5.1. If $K_{p, q}$ is a complete bipartite graph, then
i) $\quad S_{1}\left(K_{p, q}\right)=3 p q(p+q)-4 p q$.
ii) $\quad H S_{1}\left(K_{p, q}\right)=p q[3(p+q)-4]^{2}$.
iii) $\quad S S\left(K_{p, q}\right)=\frac{p q}{\sqrt{3(p+q)-4}}$.

Proof: Put $a=1,2,-1 / 2$ in equation (9), we get the desired results.
Theorem 6. The general second status index of a complete bipartite graph $K_{p, q}$ is

$$
\begin{equation*}
S_{2}^{a}\left(K_{p, q}\right)=[(p+2 q-2)(q+2 p-2)]^{a} p q . \tag{10}
\end{equation*}
$$

Proof: Let V_{1} and V_{2} be two independent vertex partitions of $K_{p, q}$ such that $u \square V_{1}$ and $v \square V_{2}$. Hence $d(u)=q$ and $d(v)=p$. The graph $K_{p, q}$ has $p+q$ vertices and $p q$ edges. Then

$$
\square(u)=q+2(p-1) \quad \text { and } \quad \square(v)=p+2(q-1) .
$$

Thus

$$
S_{2}^{a}\left(K_{p, q}\right)=\sum_{u v \in E\left(K_{p, q}\right)}[\sigma(u) \sigma(v)]^{a}=[(q+2 p-2)(p+2 q-2)]^{a} p q .
$$

We obtain the following results by using Theorem 6 .
Corollary 6.1. If $K_{p, q}$ is a complete bipartite graph, then
i) $\quad S_{2}\left(K_{p, q}\right)=p q(p+2 q-2)(q+2 p-2)$.
ii) $\quad H S_{2}\left(K_{p, q}\right)=p q(p+2 q-2)^{2}(q+2 p-2)^{2}$.
iii) $\quad P S\left(K_{p, q}\right)=\frac{p q}{\sqrt{(p+2 q-2)(q+2 p-2)}}$.
iv) $\quad \operatorname{RPS}\left(K_{p, q}\right)=p q \sqrt{(p+2 q-2)(q+2 p-2)}$.

Proof: Put $a=1,2,-1 / 2,1 / 2$ in equation (10), we obtain the desired results.

3. Results for wheel graphs

A wheel W_{n} is the join of C_{n} and K_{1}. Clearly W_{n} has $n+1$ vertices and $2 n$ edges. A graph W_{4} is depicted in Figure 1.

Figure 1. Wheel graph W_{4}
Let W_{n} be a wheel with $n+1$ vertices and $2 n$ edges. In W_{n}, there are two types of edges as follows:
$\mathrm{E}_{1}=\left\{u v \square E\left(W_{n}\right) \mid d_{w_{n}}(u)=d_{w_{n}}(v)=3\right\}, \quad\left|E_{1}\right|=n$.
$\mathrm{E}_{2}=\left\{u v \square E\left(W_{n}\right) \mid d_{w_{n}}(u)=3, d_{w_{n}}(v)=n\right\}, \quad\left|E_{2}\right|=n$.
Thus there are two types of status edges as given in Table 1.

$\square(u), \square(v) \backslash u v \square E\left(W_{n}\right)$	$(2 n-3,2 n-3)$	$(n, 2 n-3)$
Number of edges	n	n

Table 1. Status edge partition of W_{n}
Theorem 7. The general first status index of a wheel graph W_{n} is

$$
\begin{equation*}
S_{1}^{a}\left(W_{n}\right)=(4 n-6)^{a} n+(3 n-3)^{a} n \tag{11}
\end{equation*}
$$

Proof: By using equation (1) and Table 1, we deduce

$$
\begin{aligned}
S_{1}^{a}\left(W_{n}\right) & =\sum_{u v \in E\left(W_{n}\right)}[\sigma(u)+\sigma(v)]^{a} \\
& =(2 n-3+2 n-3)^{a} n+(n+2 n-3)^{a} n=(4 n-6)^{a} n+(3 n-3)^{a} n .
\end{aligned}
$$

Corollary 7.1. If W_{n} is a wheel graph with $n+1$ vertices and $2 n$ edges, then
i) $\quad S_{1}\left(W_{n}\right)=7 n^{2}-9 n$.
ii) $\quad H S_{1}\left(W_{n}\right)=25 n^{3}-66 n^{2}+45 n$.
iii) $\quad S S\left(W_{n}\right)=\frac{n}{\sqrt{4 n-6}}+\frac{n}{\sqrt{3 n-3}}$.

Proof: Put $a=1,2,-1 / 2$ in equation (11), we get the desired results.

Theorem 8. The general second status index of a wheel graph W_{n} is

$$
\begin{equation*}
S_{2}^{a}\left(W_{n}\right)=(2 n-3)^{2 a} n \times\left(2 n^{2}-3 n\right)^{a} n \tag{12}
\end{equation*}
$$

Proof: By using equation (2) and by using Table 1, we derive

$$
\begin{aligned}
S_{2}^{a}\left(W_{n}\right) & =\sum_{u v \in E\left(W_{n}\right)}[\sigma(u) \sigma(v)]^{a} \\
& =[(2 n-3)(2 n-3)]^{a} n+[n(2 n-3)]^{a} n=(2 n-3)^{2 a} n+\left(2 n^{2}-3 n\right)^{a} n .
\end{aligned}
$$

From Theorem 8, we establish the following results.
Corollary 8.1. If W_{n} is a wheel graph with $n+1$ vertices and $2 n$ edges, then
i) $\quad S_{2}\left(W_{n}\right)=6 n^{3}-15 n^{2}+9 n$.
ii) $\quad H S_{2}\left(W_{n}\right)=(2 n-3)^{4} n+\left(2 n^{2}-3 n\right)^{2} n$.
iii) $\quad P S\left(W_{n}\right)=\frac{n}{2 n-3}+\frac{n}{\sqrt{n(2 n-3)}}$.
iv) $\quad \operatorname{RPS}\left(W_{n}\right)=n(2 n-3)+n \sqrt{n(2 n-3)}$.

Proof: Put $a=1,2,-1 / 2,1 / 2$ in equation (12), we obtain the desired results.

4. Results for friendship graphs

A friendship graph F_{n} is the graph obtained by taking $n \square 2$ copies of C_{3} with a vertex in common. A graph F_{4} is shown in Figure 2.

Figure 2. A friendship graph F_{4}
A friendship graph F_{n} has $2 n+1$ vertices and $3 n$ edges. There are two types of edges as follows:

$$
\begin{array}{ll}
\mathrm{E}_{1}=\left\{u v \square E\left(F_{n}\right) \mid d_{F_{n}}(u)=d_{F_{n}}(v)=2\right\}, & \left|E_{1}\right|=n . \\
\mathrm{E}_{2}=\left\{u v \square E\left(F_{n}\right) \mid d_{F_{n}}(u)=2, d_{F_{n}}(v)=2 n\right\}, & \left|E_{2}\right|=2 n .
\end{array}
$$

Hence there are two types of status edges as given in Table 2.

$\square(u), \square(v) \backslash u v \square E\left(F_{n}\right)$	$(4 n-2,4 n-2)$	$(2 n, 4 n-2)$
Number of edges	n	$2 n$

Table 2. Status edge partition of F_{n}
Theorem 9. The general first status index of a friendship graph F_{n} is

$$
\begin{equation*}
S_{1}^{a}\left(F_{n}\right)=(8 n-4)^{a} n+(6 n-2)^{a} 2 n . \tag{13}
\end{equation*}
$$

Proof: By using equation (1) and Table 2, we obtain

$$
\begin{aligned}
S_{1}^{a}\left(F_{n}\right) & =\sum_{u v \in E\left(F_{n}\right)}[\sigma(u)+\sigma(v)]^{a} \\
& =(4 n-2+4 n-2)^{a} n+(2 n+4 n-2)^{a} 2 n=(8 n-4)^{a} n+(6 n-2)^{a} 2 n .
\end{aligned}
$$

Corollary 9.1. Let F_{n} be a friendship graph with $2 n+1$ vertices and $3 n$ edges. Then
i) $\quad S_{1}\left(F_{n}\right)=20 n^{2}-8 n$.
ii) $\quad H S_{1}\left(F_{n}\right)=100 n^{3}-88 n^{2}+20 n$.
iii) $\quad S S\left(F_{n}\right)=\frac{n}{2 \sqrt{2 n-1}}+\frac{2 n}{\sqrt{6 n-2}}$.

Proof: Put $a=1,2,-1 / 2$ in equation (13), we get the desired results.
Theorem 10. The general second status index of a friendship graph F_{n} is

$$
\begin{equation*}
S_{2}^{a}\left(F_{n}\right)=(4 n-2)^{2 a} n+\left(8 n^{2}-4 n\right)^{a} 2 n . \tag{14}
\end{equation*}
$$

Proof: From equation (2) and by using Table 2, we have

$$
\begin{aligned}
S_{2}^{a}\left(F_{n}\right) & =\sum_{u v \in E\left(F_{n}\right)}[\sigma(u) \sigma(v)]^{a} \\
& =[(4 n-2)(4 n-2)]^{a} n+[2 n(4 n-2)]^{a} 2 n=(4 n-2)^{2 a} n+\left(8 n^{2}-4 n\right)^{a} 2 n .
\end{aligned}
$$

We obtain the following results by using Theorem 10.
Corollary 10.1. Let F_{n} be a friendship graph with $2 n+1$ vertices and $3 n$ edges. Then
i) $\quad S_{2}\left(F_{n}\right)=32 n^{3}-24 n^{2}+4 n$.
ii) $\quad H S_{2}\left(F_{n}\right)=(4 n-2)^{4} n+\left(8 n^{2}-4 n\right)^{2} 2 n$.
iii)

$$
P S\left(F_{n}\right)=\frac{n}{4 n-2}+\frac{n}{\sqrt{n(2 n-1)}} .
$$

iv) $\quad \operatorname{RPS}\left(F_{n}\right)=n(4 n-2)+4 n \sqrt{n(2 n-1)}$.

Proof: Put $a=1,2,-1 / 2,1 / 2$ in equation (14), we obtain the desired results.

References

[1] V.R.Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India (2012).
[2] Gutman and O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin (1986).
[3] V.R. Kulli, Multiplicative Connectivity Indices of Nanostructures, LAP LEMBERT Academic Publishing (2018).
[4] V.R. Kulli, Neighborhood Dakshayani indices, International Journal of Mathematical Archive, 10(7) (2019) 23-31.
[5] V.R. Kulli, On KV indices and their polynomials of two families of dendrimers, International Journal of Current Research in Life Sciences, 7(9) (2018) 2739-2744.
[6] V.R.Kulli, The Gourava indices and coindices of graphs, Annals of Pure and Applied Mathematics, 14(1) (2017) 33-38.
[7] V.R. Kulli, Revan indices of oxide and honeycomb networks, International Journal of Mathematics and its Applications, 5(4-E) (2017) 663-667.
[8] V.R. Kulli, Dakshayani indices, Annals of Pure and Applied Mathematics, 18(2) (2018) 139-146.
[9] B. Basavanagoud, P. Jakkannavar, Kulli-Basava indices of graphs, Inter. J. Appl. Engg. Research, 14(1) (2018) 325-342.
[10] S. Ediz, Maximal graphs of the first reverse Zagreb beta index, TWMS J. Appl. Eng. Math. 8 (2018) 306-310.
[11] P. Kandan, E. Chandrasekaran, M. Priyadharshini, The Revan weighted szeged index of graphs, Journal of Emerging Technologies and Innovative Research, 5(9) (2018) 358-366.
[12] A. M. Naji, N. D. Soner, I. Gutman, On leap Zagreb indices of graphs, Commun. Comb. Optim. 2(2) (2017) 99-107.
[13] I. Gutman, V.R. Kulli, B. Chaluvaraju and H. S. Boregowda, On Banhatti and Zagreb indices, Journal of the International Mathematical Virtual Institute, 7 (2017) 53-67.
[14] B. Zhou and N. Trinajstic, On a novel connectivity index, J. Math. Chem. 46(2009) 1252-1270.
[15] H.S. Ramane and A.S. Yalnaik, Status connectivity indices graphs and its applications to the boiling point of benzenoid hydrocarbons, Journal of Applied Mathematics and Computing, 55 (2017) 607-627.
[16] H.S. Ramane, B. Basavagoud and A.S. Yalnaik, Harmonic status index of graphs, Bulletin of Mathematical Sciences and Applications, 17 (2016) 24-32.
[17] H.S.Ramane, A.S. Yalnaik and R. Sharafdini, Status connectivity indices and coindices of graphs and its computation to some distance balanced graphs, AKCE International Journal of Graphs and Combinatorics, (2018) https://doi.org/10.1016j.akcej.2018.09.002.
[18] V.R. Kulli, Some new multiplicative status indices of graphs, submitted.
[19] V.R. Kulli, Computation of status indices of graphs, submitted.
[20] V.R. Kulli, The (a, b)-status index of graphs, submitted.

