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1. Introduction

Let G be a finite, simple, connected graph with vertex set V(G) and edge set E(G). The edge connecting
the vertices u and v will be denoted by uv. The degree dg(v) of a vertex v is the number of vertices adjacent to v.
The distance d(u, v) between any two vertices u and v is the length of shortest path connecting u and v. The
status [1(u) of a vertex u in G is the sum of distances of all other vertices from u in G. We refer [1] for undefined
terms and notations from graph theory.

A topological index or graph index is a numerical parameter mathematically derived from the graph
structure. It is a graph invariant. The graph indices have their applications in various disciplines of Science and
Technology, see [2, 3]. Some of the graph indices may be found in [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14].

The first and second status connectivity indices of a graph G are introduced by Ramane et al. in [15],
defined as

56)= 3 [c+ov)] 5,6)= Y oo,
uveE(G) uveE(G)
We now introduce the first and second hyper status indices of a graph G, defined as
HS,(G)= Y [oW+o(W)], HS,(G)= Y [cWaW)].
ueE(G) ueE(G)

We also introduce the connectivity status indices as follows:
The sum connectivity status index of a graph G is defined as

1
SS(G) = S
UVE;G) Jo()+o(v)

The product connectivity status index of a graph G is defined as

1
PS(G)= Y ——
( ) ung)\}O'(U)G(V)

The reciprocal product connectivity status index of a graph G is defined as

RPS(G)= > yo(uwo(v).

ueE(G)
The general first and second status indices of a graph G are defined as
$2(G)= > [ow+oM], @)
uveE(G)
$;(G)= > ELOEIh 2
ueE(G)

where a is a real number.

Some of the research works on status indices can be found in [16, 17, 18, 19, 20].

In this paper, we introduce some new status indices of a graph. Furthermore, the values of these newly
proposed indices for some standard graphs are provided.
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2. Results for Some Graphs

2.1. Complete graph K, on n vertices.
Theorem 1. The general first status index of a complete graph K, is

a ~n(n-1) a
S (K,)= > [2(n-DT. @)
Proof: If K, is a complete graph with n vertices, then dKn (u)=n-1 and T(u) = n— 1 for any vertex u in K,

Thus

$t(Ky)= > le+oW] =[(n-D+(-DI n(n-1)

ueE(G) 2

n(n-1 a
-0 > )[Z(n—l)] -

We obtain the following results by using Theorem 1.
Corollary 1.1. If K is a complete graph, then
i) Si(K,)) = n(n — 1)
ii) HS,(K,) = 2n(n — 1)%.
iy ss(k,)="v=t
22

Proof: Put a =1, 2, %4 in equation (3), we get the desired results.

Theorem 2. The general second status index of a complete graph K, is
a 1 2a
SZ(Kn)zzn(n—l)(n—l) : @

Proof: If K, is a complete graph with n vertices, then dg(u) = n — 1, O(u) = n — 1 for any vertex u in K.
Therefore

S;(Kn): z [G(U)U(V)]a:[(n_l)(n_l)]a n(n—l)

ueE(G) 2

=%n0r4ﬂn—D%.

We establish the following results by using Theorem 2.
Corollary 2.1. If K, is a complete graph with n vertices, then

i) Sy(Ky) = %n(n ~ 1) i) HSH(Ky) = %n(n ~1)5,

iii) PS,(K,) = % n. iv) RPS(K,) = % n(n — 1)

Proof: Put a=1, 2, %, % in equation (4), we get the desired results.

2.2. Cycle C,, on n vertices
Theorem 3. Let C,, be a cycle on n vertices. Then

nZ

S7(C,)=n (?j : if n is even, (5)

2 _ a
_pf 2 , if nis odd. (6)
2

Proof: If C, is a cycle with n vertices, then d¢_ (u) =2 for every vertex u in C,.

2
. n .
Case 1. Suppose n is even. Then o (u)=— for any vertex u in C,. Therefore

> [a(u)+a(v)]a=(n7:+n?2j nzn(n—;j .

uveE(C,)

S1(C,)
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n% —

. 1 .
Case 2. Suppose n is odd. Then o (u) = for any vertex u in C,. Thus

(€)= 3 (oo =TT g L

uveE(C,) 2
Corollary 3.1. Let C, be a cycle on n vertices. Then
. 1 .
(i) Sl(Cn)=§n3, if n is even,

=%n(n2—1), if n is odd.
. 1 .
(ii) HSl(Cn):Zn , if nis even,

=%n(n2—1)2, if n is odd.

(i) SS(C,)=v2, if n is even,
2

n’ -1
Proof: Put a=1, 2, %, % in equations (5), (6), we get the desired results.

=n

, if n is odd.

Theorem 4. Let C,, be a cycle on n vertices. Then

4 a
S;(C,)=n (:_6] , if nis even, (7)
2 2\?
= n(%} , if n is odd. ©))

Proof: If C, is a cycle with n vertices, then an (u)=2 for every vertex u in C,.

2
. n .
Case 1. Suppose n is even. Then o (u) :T for any vertex u in C,. Hence

2 (C )= LR I
S;(C)= > [oewa(v)] _(4 4) n n(lGj'

uveE(C,)
n? -1
Case 2. Suppose n is odd. Then o (u) = for any vertex uin C,. Thus
a (n°-1 n2-1Y (-1 )
S3(C.)= c(uo(v) =( x ] nzn( .
2( n) UVEEZ(C")[ ] 4 4 16

Corollary 4.1. Let C, be a cycle on n vertices. Then

1
i S,(C)==n° if nis even,
(i) (C)=15

~Lh -1, ifnisodd
16
1
i HS,(C )=—n°, if nis even,
( ) 2( n) 256
- L (-2, ifnisodd

256
4 e
(iii) PS(C,)=—, if n is even,

n
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==, if nis odd.
n--1
(iv) RPS(Cn)=%n3, if n is even,
1 2 - -
:Zn(n -1), if nis odd.

Proof: Puta=1, 2, %, % in equations (7), (8), we get the desired results.
2.3. Complete bipartite graph K, 4

Theorem 5. The general first status index of a complete bipartite graph Ky is

57 (Kpq)=pa[3(p+q)-4]". ©)
Proof: Let K, 4 be a complete bipartite graph with p+q vertices and pq edges. The vertex set of K, 4 can be
partitioned into two independent sets V, and V, such that for every edge uv in K, ¢, utlV; and viJV,. Thus d(u) =
g, d(v) =p. Then

Ou)=gq+2(p-1) and S(v)=p+2(q-1).
Therefore
ST (Kog)= 2 [c(W)+cW)] =[q+2(p-1)+p+2(q —1):|El pq
weE(Kpq)

=pa[3(p+a)-4].
We obtain the following results by using Theorem 1.
Corollary 5.1. If K, 4 is a complete bipartite graph, then
i) S1(Kpq) = 3pa(p + q) — 4pq.
if) HS:1(Kpq) = pal3(p + q) — 4]
i) SS(K, )= ———m

Bp+ra)-4

Proof: Put a =1, 2, %2 in equation (9), we get the desired results.

Theorem 6. The general second status index of a complete bipartite graph K is

S5 (Kpq)=[(P+2a-2)(a+2p-2)] pa. 10)
Proof: Let V; and V, be two independent vertex partitions of K, 4 such that utV, and v(1V,. Hence d(u) = q and
d(v) = p. The graph K, 4 has p+q vertices and pq edges. Then
H(u)=q+2(p-1) and H(v)=p+2(q-1).
Thus
53 (Kog)= X [eeMW] =[(q+2p-2)(p+2q-2)] pa.

uveE(KM)

We obtain the following results by using Theorem 6.
Corollary 6.1. If K, 4 is a complete bipartite graph, then

i) Sa(Kp) =pa(p+29-2) (9+2p-2).
i) HS>(Koq) = PA(p + 20 -2)" (q + 2p - 2)°.
i) PS(K i

p’Q):\/(p+2q—2)(Q+2p—2)'

iv) RPS(K,,)= pay(p+29-2)(a+2p-2).
Proof: Put a =1, 2, -%, % in equation (10), we obtain the desired results.

3. Results for wheel graphs

A wheel W, is the join of C, and K;. Clearly W, has n+1 vertices and 2n edges. A graph W, is depicted
in Figure 1.
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Figure 1. Wheel graph W,
Let W, be a wheel with n+1 vertices and 2n edges. In W,, there are two types of edges as follows:
Ei={uv (1 EW,) | d,, (u)=d,, (v)=3}, |Es =n.
E,={uw D EWy)|d, (W=3 d, (V)=n} [Ea =n.
Thus there are two types of status edges as given in Table 1.

(), O \uv [0 E(W,) (2n-3,2n-3) (n,2n-13)

Number of edges n n

Table 1. Status edge partition of W,

Theorem 7. The general first status index of a wheel graph W, is
S (W,)=(4n-6)"n+(3n-3)"n.
Proof: By using equation (1) and Table 1, we deduce

stW)= > [oew)+oW]

ueE(W,)

=(2n-3+2n-3)n+(n+2n-3)"n=(4n-6)"n+(3n-3)"n.

(1)

Corollary 7.1. If W, is a wheel graph with n+1 vertices and 2n edges, then
i) Sy(W,) = 7n?—9n.
i) HS(W,) = 25n° — 66n? + 45n.
n n
iii) SS(W, )= + .
(W) J4n-6 /3n-3
Proof: Put a =1, 2, %2 in equation (11), we get the desired results.

Theorem 8. The general second status index of a wheel graph W, is
S (W,)=(2n-3)* nx(2n? —3n)"n.
Proof: By using equation (2) and by using Table 1, we derive

sswW)= > [eweW]

uveE(W,)

=[(2n=3)2n-3)] n+[n(2n-3)]'n=(2n-3)*n+(2n2—3n)"n.
From Theorem 8, we establish the following results.

(12)

Corollary 8.1. If W, is a wheel graph with n+1 vertices and 2n edges, then

i) S,(W,) = 6n° — 1502 + 9n.

ii) HS,(W,) = (2n — 3)*n + (2n? — 3n)*n.

i) PS(W, )=
2n-3 n(2n-3)

iv) RPS (W, )=n(2n-3)+nyn(2n-3).

Proof: Put a =1, 2, -%, % in equation (12), we obtain the desired results.
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4. Results for friendship graphs

A friendship graph F, is the graph obtained by taking nCJ2 copies of C; with a vertex in common. A
graph F is shown in Figure 2.

Figure 2. A friendship graph F,4

A friendship graph F, has 2n+1 vertices and 3n edges. There are two types of edges as follows:

Ei={uv 0 E(Fy) | de (u):an (v)=2}%, |E4 =n.
Eo={uw 1 E(Fy) | de (W) =2, de (V)=2n1}, [E2| = 2n.
Hence there are two types of status edges as given in Table 2.
O(u), () \uv 10 E(Fy) (4n-2,4n-2) (2n, 4n - 2)
Number of edges n 2n

Table 2. Status edge partition of F,
Theorem 9. The general first status index of a friendship graph F, is

7 (F,)=(8n-4)"n+(6n—2)" 2n.
Proof: By using equation (1) and Table 2, we obtain

si(F)= 3 [o+oW]

uveE(F,)

(13)

=(4n—2+4n—-2)"n+(2n+4n—-2)"2n=(8n-4)"n+(6n—-2)"2n.
Corollary 9.1. Let F, be a friendship graph with 2n+1 vertices and 3n edges. Then
i) Sy(F,) = 20n* — 8n.
i) HS,(F,) = 100n® — 88n* + 20n.
i) SS(F)=— 20
242n-1 /6n-2
Proof: Put a =1, 2, %2 in equation (13), we get the desired results.

Theorem 10. The general second status index of a friendship graph F, is
2 (F,)=(4n—-2)" n+(8n* —4n)" 2n.
Proof: From equation (2) and by using Table 2, we have

S;(F)= >, [c(WeW]

uveE(F,)

=[(4n—2)(4n—2)' n+[2n(4n—-2)]" 2n=(4n—2)** n+(8n? —4n)" 2n.
We obtain the following results by using Theorem 10.

(14)

Corollary 10.1. Let F, be a friendship graph with 2n+1 vertices and 3n edges. Then
i) Sy(Fy) = 32n° — 24n° + 4n.
i) HS,(Fn) = (4n — 2)*n + (8n” — 4n)’ 2n.
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__n_,__n
4an-2 n(2n-1)

RPS(F,)=n(4n-2)+4n{n(2n-1).

Put a=1, 2, %, % in equation (14), we obtain the desired results.

PS(F,)
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