
International Journal of Mathematics Trends and Technology (IJMTT) – Volume 65 Issue 10 - Oct 2019 
 

ISSN: 2231-5373                                 http://www.ijmttjournal.org                               Page 70 

Some New Status Indices of Graphs 

 
V.R.Kulli 

Department of Mathematics. 

Gulbarga University, Gulbarga 585106, India 

 
Abstract: In this study, we propose the first and second hyper status indices, sum connectivity status index, 
product connectivity status index, atom bond connectivity status index, geometric-arithmetic status index, 

general first and second status indices of a graph and determine their values for some standard graphs, wheel 

graphs, friendship graphs. 

 

Keywords: hyper status indices, sum connectivity status index, product connectivity status index, atom bond 

connectivity status index, geometric-arithmetic index, graphs. 

 

Mathematics Subject Classification: 05C05, 05C07, 05C12, 05C35. 
 

1. Introduction 
 Let G be a finite, simple, connected graph with vertex set V(G) and edge set E(G). The edge connecting 

the vertices u and v will be denoted by uv. The degree dG(v) of a vertex v is the number of vertices adjacent to v. 

The distance d(u, v) between any two vertices u and v is the length of shortest path connecting u and v. The 

status (u) of a vertex u in G is the sum of distances of all other vertices from u in G. We refer [1] for undefined 

terms and notations from graph theory.  

A topological index or graph index is a numerical parameter mathematically derived from the graph 

structure. It is a graph invariant. The graph indices have their applications in various disciplines of Science and 

Technology, see [2, 3]. Some of the graph indices may be found in [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. 
 The first and second status connectivity indices of a graph G are introduced by Ramane et al. in [15], 

defined as 
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 We now introduce the first and second hyper status indices of a graph G, defined as 
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 We also introduce the connectivity status indices as follows: 

 The sum connectivity status index of a graph G is defined as 
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 The product connectivity status index of a graph G is defined as 
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 The reciprocal product connectivity status index of a graph G is defined as 
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 The general first and second status indices of a graph G are defined as 
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where a is a real number. 

 Some of the research works on status indices can be found in [16, 17, 18, 19, 20]. 

 In this paper, we introduce some new status indices of a graph. Furthermore, the values of these newly 

proposed indices for some standard graphs are provided. 
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2. Results for Some Graphs 

 

2.1. Complete graph Kn on n vertices. 

Theorem 1. The general first status index of a complete graph Kn is 
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Proof: If Kn is a complete graph with n vertices, then   1 
nKd u n  and (u) = n – 1 for any vertex u in Kn. 

Thus 
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 We obtain the following results by using Theorem 1.   

Corollary 1.1. If Kn is a complete graph, then 

i) S1(Kn) = n(n – 1)2. 

ii) HS1(Kn) = 2n(n – 1)3. 

iii)  
1

.
2 2


n

n n
SS K  

Proof: Put a =1, 2, –½  in equation (3), we get the desired results. 

 

Theorem 2. The general second status index of a complete graph Kn is 

     
2

2

1
1 1 .

2

aa

nS K n n n  
       (4)

 

Proof: If Kn is a complete graph with n vertices, then dG(u) = n – 1, (u) = n – 1 for any vertex u in Kn. 

Therefore 
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We establish the following results by using Theorem 2. 

Corollary 2.1. If Kn is a complete graph with n vertices, then 

i) S2(Kn) = 
1

2
n(n – 1)3.  ii) HS2(Kn) = 

1

2
n(n – 1)5. 

iii) PS2(Kn) = 
1

2
n. 

  

iv) RPS(Kn) = 
1

2
n(n – 1)2. 

Proof: Put a = 1, 2, –½, ½ in equation (4), we get the desired results. 

 

2.2. Cycle Cn on n vertices 

Theorem 3. Let Cn be a cycle on n vertices. Then 
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Proof: If Cn is a cycle with n vertices, then   2
nCd u   for every vertex u in Cn. 

Case 1. Suppose n is even. Then   
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u   for  any vertex u in Cn. Therefore 
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Case 2. Suppose n is odd. Then  
2 1

4
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   for any vertex u in Cn. Thus 
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Corollary 3.1. Let Cn be a cycle on n vertices. Then 
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if n is odd.
 

Proof: Put a = 1, 2, –½, ½ in equations (5), (6), we get the desired results.
 

 

Theorem 4. Let Cn be a cycle on n vertices. Then 
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Proof: If Cn is a cycle with n vertices, then   2
nCd u   for every vertex u in Cn. 

Case 1. Suppose n is even. Then  
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Case 2. Suppose n is odd. Then  
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   for  any vertex u in Cn. Thus 
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Corollary 4.1. Let Cn be a cycle on n vertices. Then 

(i)   5

2

1
,

16
nS C n

 

if n is even, 

   
2

21
1 ,

16
n n 

 

if n is odd. 

(ii)   9

2

1
,

256
nHS C n

 

if n is even, 

   
4

21
1 ,

256
n n 

 

if n is odd. 

(iii)  
4

,nPS C
n



 

if n is even, 



International Journal of Mathematics Trends and Technology (IJMTT) – Volume 65 Issue 10 - Oct 2019 
 

ISSN: 2231-5373                                 http://www.ijmttjournal.org                               Page 73 

  
2

4
,

1

n

n


  

if n is odd. 

(iv)   31
,

4
nRPS C n

 

if n is even, 

   21
1 ,

4
n n 

 

if n is odd.
 

Proof: Put a = 1, 2, –½, ½ in equations (7), (8), we get the desired results. 

 

2.3. Complete bipartite graph Kp, q  

 

Theorem 5. The general first status index of a complete bipartite graph Kp,q is 
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Proof: Let Kp, q be a complete bipartite graph with p+q vertices and pq edges. The vertex set of Kp, q can be 

partitioned into two independent sets V1 and V2 such that for every edge uv in Kp, q, uV1 and vV2. Thus d(u) = 

q, d(v) = p. Then 

 (u) = q + 2(p – 1)   and  (v) = p + 2(q – 1). 

Therefore 
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 We obtain the following results by using Theorem 1.   

Corollary 5.1. If Kp,q is a complete bipartite graph, then 

i) S1(Kp,q) = 3pq(p + q) – 4pq. 
ii) HS1(Kp,q) = pq[3(p + q) – 4]2. 

iii)  
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Proof: Put a =1, 2, –½ in equation (9), we get the desired results. 

 

Theorem 6. The general second status index of a complete bipartite graph Kp,q is 
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Proof: Let V1 and V2 be two independent vertex partitions of Kp, q such that uV1 and vV2. Hence d(u) = q and 

d(v) = p. The graph Kp, q has p+q vertices and pq edges. Then 

 (u) = q + 2(p – 1)   and  (v) = p + 2(q – 1). 
Thus 
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 We obtain the following results by using Theorem 6.  
Corollary 6.1. If Kp,q is a complete bipartite graph, then 

i) S2(Kp,q) = pq(p + 2q – 2) (q + 2p – 2). 

ii) HS2(Kp,q) = pq(p + 2q – 2)2 (q + 2p – 2)2. 

iii)  
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Proof: Put a =1, 2, –½, ½ in equation (10), we obtain the desired results. 

 

3. Results for wheel graphs 

 

 A wheel Wn is the join of Cn and K1. Clearly Wn has n+1 vertices and 2n edges. A graph W4 is depicted 

in Figure 1. 
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Figure 1. Wheel graph W4 

 

 Let Wn be a wheel with n+1 vertices and 2n edges. In Wn, there are two types of edges as follows: 

 E1 = {uv  E(Wn) |     3
n nw wd u d v  },  |E1| = n. 

 E2 = {uv  E(Wn) |   3,
nwd u    

nwd v n  },  |E2| = n. 

 Thus there are two types of status edges as given in Table 1. 

 

(u), (v) \ uv  E(Wn) (2n – 3, 2n – 3) (n, 2n – 3) 

Number of edges n n 

Table 1.  Status  edge partition of Wn 
 

Theorem 7. The general first status index of a wheel graph Wn is 
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Proof: By using equation (1) and Table 1, we deduce 
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Corollary 7.1. If Wn is a wheel graph with n+1 vertices and 2n edges, then 

i) S1(Wn) = 7n2 – 9n. 

ii) HS1(Wn) = 25n3 – 66n2 + 45n. 

iii)   .
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Proof: Put a =1, 2, –½ in equation (11), we get the desired results. 

 

 

Theorem 8. The general second status index of a wheel graph Wn is 
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Proof: By using equation (2) and by using Table 1, we derive 
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 From Theorem 8, we establish the following results. 

 

Corollary 8.1. If Wn is a wheel graph with n+1 vertices and 2n edges, then 

i) S2(Wn) = 6n3 – 15n2 + 9n. 

ii) HS2(Wn) = (2n – 3)4n + (2n2 – 3n)2n. 

iii)  
 

.
2 3 2 3

n

n n
PS W

n n n
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Proof: Put a =1, 2, –½, ½ in equation (12), we obtain the desired results. 
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4. Results for friendship graphs 

 

 A friendship graph Fn is the graph obtained by taking n2 copies of C3 with a vertex in common. A 

graph F4 is shown in Figure 2. 

 
Figure 2. A friendship graph F4 

 

 A friendship graph Fn has 2n+1 vertices and 3n edges. There are two types of edges as follows: 

 E1 = {uv  E(Fn) |     2
n nF Fd u d v  },  |E1| = n. 

 E2 = {uv  E(Fn) |   2,
nFd u     2

nFd v n  },  |E2| = 2n. 

 Hence there are two types of status edges as given in Table 2. 

(u), (v) \ uv  E(Fn) (4n – 2, 4n – 2) (2n, 4n – 2) 

Number of edges n 2n 

Table 2. Status edge partition of Fn 

Theorem 9. The general first status index of a friendship graph Fn is 
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Proof: By using equation (1) and Table 2, we obtain 
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Corollary 9.1. Let Fn be a friendship graph with 2n+1 vertices and 3n edges. Then 

i) S1(Fn) = 20n2 – 8n. 

ii) HS1(Fn) = 100n3 – 88n2 + 20n. 

iii)  
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Proof: Put a =1, 2, –½ in equation (13), we get the desired results. 

 

Theorem 10. The general second status index of a friendship graph Fn is 
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Proof: From equation (2) and by using Table 2, we have 
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 We obtain the following results by using Theorem 10. 

 

Corollary 10.1. Let Fn be a friendship graph with 2n+1 vertices and 3n edges. Then 

i) S2(Fn) = 32n3 – 24n2 + 4n. 

ii) HS2(Fn) = (4n – 2)4n + (8n2 – 4n)2 2n. 
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iii)  
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Proof: Put a =1, 2, –½, ½ in equation (14), we obtain the desired results. 
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