# **Topological Properties of Bismuth tri-iodide** Using Neighborhood M-Polynomial

A.Verma<sup>1</sup>, S.Mondal<sup>\*2</sup>, N.De<sup>3</sup>, A.Pal<sup>4</sup>

<sup>1,2</sup>Research Scholar, <sup>3,4</sup>AssociateProfessor,

<sup>1,2,4</sup>Department of Mathematics, NIT Durgapur, India.

<sup>3</sup>Department of Basic Sciences and Humanities (Mathematics), Calcutta Institute of Engineering and Management, Kolkata, India.

Abstract — Anoutstanding way of findingneighborhood degree sum based topological indices is neighborhood *M*-polynomial. The bismuth tri-iodide  $Bil_3$  is a wide band gap layered semiconductor with several optical properties. In this paper, the neighborhood M-polynomial of bismuth tri-iodide chain and sheet are obtained. Some topological indices based on neighbourhood degree sum are recovered from the neighbourhood Mpolynomial. Also, the findings are interpreted graphically.

**Keywords** — Graph, Bismuth tri-iodide, Neighborhood M-polynomial, Topological index.

## **I. INTRODUCTION**

Chemical graph theory (CGT) creates link between the discrete mathematics and chemical graph theory. A graph G is an ordered pair of vertex and edge sets (V(G), E(G)). In chemical graph theory, a graph is used to represent a molecule by considering the atoms as vertices and the chemical bonds as edges. CGT gives an important tool named as topological index to predict different properties and activity. A topological index is a mapping  $I: \Theta \to \mathbb{R}$  such that I(G) = I(H) if and only if G, H are isomorphic, where  $\Theta$  is the collection of all molecular graphs and  $\mathbb{R}$  is the set of real numbers. The idea of topological index was introduced by H. Wiener [1] in 1947 when he was working on boiling point of alkanes. A large number of topological indices were developed afterwards. Researchers have currently concentrated on topological indices based on neighborhood degree sum of vertex [2]-[8]. By neighborhood degree sum $\delta_u$  of a vertex u, we mean the sum of degrees of all vertices that are adjacent to the vertex. The degree of a vertex is the total number of edges incident to the vertex. To make the computation of topological indices easy, many algebraic polynomials [9]-[11] are used instead their usual definitions. For degree based topological indices M-polynomial [12]-[14] is very effective tool. For the computation of neighborhood degree sum based topological indices, present authors introduced neighborhood M-polynomial [15] whose role for neighborhood degree sum based indices is parallel to the role of the M-polynomial for degree based indices.

The neighborhood M-polynomial [15] of a graph G is defined as,

 $NM(G; x, y) = \sum_{i \le j} m_{(i,j)} x^i y^j$ . Where  $m_{(i,j)}$  is the total number of edges  $uv \in E(G)$  such that  $\{\delta_u, \delta_v\} = \{i, j\}$ . We use NM(G) for NM(G; x, y) for the rest of the article. The Neighborhood degree sum based topological indices defined on edge set of a graph G can be expressed as

 $I(G) = \sum_{uv \in E(G)} f(\delta_u, \delta_v),$ 

where  $f(\delta_u, \delta_v)$  is the function of  $\delta_u, \delta_v$  used in the definition of indices. The above result can also be written as,

 $I(G) = \sum_{i \le j} m_{(i,j)} f(i,j).$ 

We describe some neighborhood degree sum based topological indices in Table I.

The bismuth tri-iodide Bil<sub>3</sub> is an excellent inorganic compound. This wide-band-gap material, which is made up of heavy atoms, is useful as gamma-ray detector at room temperature or an electronic x-ray imaging sensor[16],[17]. Over the years, bi-doped optical glass strings have been shown to be among the most promising dynamic laser media. The layered Bil<sub>3</sub> is a three layered stacking structure. Each of the three layers consists of three atomic planes: one basis plane of bismuth atoms, and two iodine planes above and below it. The rhombohedral crystal of Bil<sub>3</sub> with the R-3 symmetry is formed by stacking three layers periodically [18],[19]. The gradual stacking of one I - Bi - I layer forms the hexagonal structure with symmetry [20]. There are six 4cycles in the unit Bil<sub>3</sub> graph, two of which are on the main, two in the middle, and two at the bottom. As per arrangement of unit Bil<sub>3</sub>, two types of Bil<sub>3</sub> structures (chain and sheet) are considered here. The purpose of this work is to compute some exact expressions of topological indices for bismuth tri-iodide chain and sheet using NM-polynomial approach.

| Topological index                                          | Formulation $(f(x, y))$ |
|------------------------------------------------------------|-------------------------|
| The third version of Zagreb index $(M'_1)$ [3]             | x + y                   |
| The neighborhood second Zagreb index $(M_2^*)$ [7]         | xy                      |
| The neighborhood forgotten topological index $(F_N^*)$ [7] | $x^2 + y^2$             |
| The neighborhood second modified Zagreb index $(M_2^{nm})$ | 1                       |
| [15]                                                       | $\overline{xy}$         |
| The neighborhood general Randic( $NR_{\alpha}$ ) [15]      | $(xy)^{lpha}$           |
| The third NDe index $(ND_3)$ [8]                           | xy(x+y)                 |
| The third NDe index $(ND_5)$ [8]                           | $x^2 + y^2$             |
|                                                            | xy                      |
| The neighborhood Harmonic index (NH) [15]                  | 2                       |
|                                                            | $\overline{x+y}$        |
| The neighborhood inverse sum index (NI) [15]               | <u>xy</u>               |
|                                                            | x + y                   |
| The Sanskruti index (S) [2]                                | xy                      |
|                                                            | $(x + y - 2)^3$         |

 TABLE I

 FORMULAE OF SOME NEIGHBORHOOD DEGREE BASED TOPOLOGICAL INDICES

The relations of some neighborhood degree-based topological indices with the NM-polynomial are shown in the Table II.

 TABLE II

 DERIVATION OF SOME NEIGHBORHOOD DEGREE BASED TOPOLOGICAL INDICES

| Topological index | Derivation from <i>NM</i> ( <i>G</i> )         |
|-------------------|------------------------------------------------|
| $M_{1}^{'}$       | $(D_x + D_y)(NM(G)) _{x=y=1}$                  |
| $M_2^*$           | $(D_x D_y)(NM(G)) _{x=y=1}$                    |
| $F_N^*$           | $(D_x^2 + D_y^2)(NM(G)) _{x=y=1}$              |
| $M_2^{nm}$        | $(S_x S_y)(NM(G)) _{x=y=1}$                    |
| $NR_{lpha}$       | $(D_x^{\alpha} D_y^{\alpha})(NM(G)) _{x=y=1}$  |
| $ND_3$            | $D_x D_y (D_x + D_y) (NM(G)) _{x=y=1}$         |
| $ND_5$            | $(D_x S_y + S_x D_y)(NM(G)) _{x=y=1}$          |
| NH                | $2S_x J(NM(G)) _{x=y=1}$                       |
| NI                | $S_x J D_x D_y (NM(G)) _{x=y=1}$               |
| S                 | $S_x^{3}Q_{-2}JD_x^{3}D_y^{3}(NM(G)) _{x=y=1}$ |

Where,

$$D_x(f(x,y)) = x \frac{\partial(f(x,y))}{\partial x}, \quad D_y(f(x,y)) = y \frac{\partial(f(x,y))}{\partial y}, \\ S_x(f(x,y)) = \int_0^x \frac{f(t,y)}{t} dt, \\ S_y(f(x,y)) = \int_0^y \frac{f(x,t)}{t} dt, \quad J(f(x,y)) = f(x,x), \quad Q_\alpha(f(x,y)) = x^\alpha f(x,y).$$

## **II. MAIN RESULTS**

In this section, we obtain NM-polynomial of bismuth tri-iodide chain and sheet using edge partition technique. From NM-polynomial, some topological indices are recovered. Results are interpreted graphically using Maple and Matlab software.

## A. Bismuth tri-iodide chain

The linear arrangement of m unit  $BiI_3$  is known as  $m - BiI_3$  chain. The unit  $BiI_3$  is depicted in Figure 1(a). The structure of  $3 - BiI_3$  is shaped by combining three unit cells of  $BiI_3$  linearly as shown in Figure 1(b).



Fig.1. (a)The unit cell and (b) The chain of bismuth tri-iodide for m = 3.

**Theorem 1.**Let G be the bismuth tri-iodide chain. Then we have  $NM(G) = (4m+8)x^{6}y^{10} + (8m+16)x^{10}y^{12} + (12m-12)x^{12}y^{12}.$ 

**Proof:** The bismuth tri-iodide chainhas 12(2m + 1) number of edges. Its edge set can be partitioned as follows:

**TABLE III** THE EDGE PARTITION OF BISMUTH TRI-IODIDE CHAIN

| $(\delta_u, \delta_v)$ | Cardinality |
|------------------------|-------------|
| (6,10)                 | 4m + 8      |
| (10,12)                | 8m + 16     |
| (12,12)                | 12m - 12    |

Now using the definition of *NM*-polynomial, we get  $NM(G) = m_{(6,10)}x^6y^{10} + m_{(10,12)}x^{10}y^{12} + m_{(12,12)}x^{12}y^{12}.$ 

After putting the values of  $m_{(i,j)}$ 's, the required result can be obtained easily. Hence the proof is done.



Fig. 2TheNM-polynomial of the bismuth tri-iodidechain for m = 2.

Now using this NM-polynomial, we calculate some neighborhood degree based topological indices of the bismuth tri-iodide chain.

**Theorem 2.**Let*G* be the bismuth tri-iodide chain. Then we have

 $M_1'(G) = 528m + 192,$ (i)

- (ii)  $M_2^*(G) = 2928m + 672$ ,
- (iii)  $F_N^*(G) = 5952m + 1536,$
- (iv)  $M_2^{nm}(G) = 0.216m + 0.183,$
- (v)  $NR_{\alpha}(G) = 4[60^{\alpha} + 2(120)^{\alpha} + 3(144)^{\alpha}]m + 4[2(60)^{\alpha} + 4(120)^{\alpha} 3(144)^{\alpha}],$
- (vi)  $ND_3(G) = 70272m + 8448$ ,
- (vii)  $ND_5(G) = 44.166m + 26.661$ ,
- (viii) NH(G) = 2.2272m + 1.4545,(ix) NI(G) = 130.63m + 45.26,
- (ix) N(G) = 130.03m + 43.20,(x) S(G) = 5407.88m + 720.64.

**Proof:**Let  $NM(G) = (4m + 8)x^6y^{10} + (8m + 16)x^{10}y^{12} + (12m - 12)x^{12}y^{12}$ . Then we have  $(D_x + D_y)(f(x, y)) = 16(4m + 8)x^6y^{10} + 22(8m + 16)x^{10}y^{12} + 24(12m - 12)x^{12}y^{12},$   $(D_x D_y)(f(x, y)) = 60(4m + 8)x^6y^{10} + 120(8m + 16)x^{10}y^{12} + 144(12m - 12)x^{12}y^{12},$   $(D_x^2 + D_y^2)(f(x, y)) = 136(4m + 8)x^6y^{10} + 244(8m + 16)x^{10}y^{12} + 288(12m - 12)x^{12}y^{12},$   $(S_x S_y)(f(x, y)) = \frac{(m+2)}{15}x^6y^{10} + \frac{(m+2)}{15}x^{10}y^{12} + \frac{(m-1)}{12}x^{12}y^{12},$   $D_x^a D_y^a(f(x, y)) = 60^a(4m + 8)x^6y^{10} + 120^a(8m + 16)x^{10}y^{12} + 144^a(12m - 12)x^{12}y^{12},$   $D_x D_y(D_x + D_y)(f(x, y)) = 960(4m + 8)x^6y^{10} + 2640(8m + 16)x^{10}y^{12} + 3456(12m - 12)x^{12}y^{12},$   $(D_x S_y + S_x D_y)(f(x, y)) = \frac{136(m+2)}{15}x^6y^{10} + \frac{244(m+2)}{15}x^{10}y^{12} + 2(12m - 12)x^{12}y^{12},$   $S_x J(f(x, y)) = \frac{(m+2)}{4}x^{16} + \frac{(4m+8)}{11}x^{22} + \frac{(m-1)}{2}x^{24},$  $S_x ID_x D_x(f(x, y)) = 15(m + 2)x^{16} + \frac{120(4m+8)}{240(4m+8)}x^{22} + 72(m - 1)x^{24}.$ 

$$S_x J D_x D_y (f(x, y)) = 15(m+2)x^{16} + \frac{100}{11}x^{22} + 72(m-1)x^{24},$$
  

$$S_x^3 Q_{-2} J D_x^3 D_y^3 (f(x, y)) = 78.71(4m+8)x^{14} + 216(8m+16)x^{20} + 280.42(12m-12)x^{22}.$$

Using Table II, we get

$$\begin{split} M_1'(G) &= 16(4m+8)x^6y^{10} + 22(8m+16)x^{10}y^{12} + 24(12m-12)x^{12}y^{12}\big|_{x=y=1} = 528m+192, \\ M_2^*(G) &= 60(4m+8)x^6y^{10} + 120(8m+16)x^{10}y^{12} + 144(12m-12)x^{12}y^{12}\big|_{x=y=1} = 2928m+672, \\ F_N^*(G) &= 136(4m+8)x^6y^{10} + 244(8m+16)x^{10}y^{12} + 288(12m-12)x^{12}y^{12}\big|_{x=y=1} = 5952m+1536, \\ M_2^{nm}(G) &= \frac{(m+2)}{15}x^6y^{10} + \frac{(m+2)}{15}x^{10}y^{12} + \frac{(m-1)}{12}x^{12}y^{12}\big|_{x=y=1} = 0.216m+0.183, \\ NR_\alpha(G) &= 60^\alpha(4m+8)x^6y^{10} + 120^\alpha(8m+16)x^{10}y^{12} + 144^\alpha(12m-12)x^{12}y^{12}\big|_{x=y=1} \\ &= 4[60^\alpha + 2(120)^\alpha + 3(144)^\alpha]m + 4[2(60)^\alpha + 4(120)^\alpha - 3(144)^\alpha], \\ ND_3(G) &= 960(4m+8)x^6y^{10} + 2640(8m+16)x^{10}y^{12} + 3456(12m-12)x^{12}y^{12}\big|_{x=y=1} \\ &= 70272m + 8448, \\ ND_5(G) &= \frac{136(m+2)}{15}x^6y^{10} + \frac{244(m+2)}{15}x^{10}y^{12} + 2(12m-12)x^{12}y^{12}\big|_{x=y=1} = 44.166m+26.661, \\ NH(G) &= \frac{2(m+2)}{4}x^{16} + \frac{2(4m+8)}{11}x^{22} + \frac{2(m-1)}{2}x^{24}\big|_{x=1} = 2.2272m+1.4545, \\ NI(G) &= 15(m+2)x^{16} + \frac{120(4m+8)}{11}x^{22} + 72(m-1)x^{24}\big|_{x=1} = 130.63m+45.26, \\ S(G) &= 78.71(4m+8)x^{14} + 216(8m+16)x^{20} + 280.42(12m-12)x^{22}\big|_{x=1} = 5407.88m+720.64. \end{split}$$

Hence the proof is done.



Fig. 3The neighborhood degree based indices of the bismuth tri-iodide chain. By log(TI), we mean logarithm of topological indices.

### B. Bismuth tri-iodide sheet

The rectangular arrangement mn unit BiI<sub>3</sub>in m rows and n columns is known as  $m \times n$  bismuth tri-iodide sheet. The  $2 \times 3$  bismuth tri-iodide sheet is shown in Figure 4. The bismuth tri-iodide sheethas 18mn + 12m + 6n number of edges. Its edge set can be partitioned as follows:



Fig.4The bismuth tri-iodide sheet  $BiI_3(m \times n)$  for m = 2 and n = 3.

| $(\delta_u, \delta_v)$ | Cardinality         |
|------------------------|---------------------|
| (6,10)                 | 4n + 8              |
| (6,12)                 | 4m - 4              |
| (10,12)                | 8n + 16             |
| (12,12)                | 16m + 12n - 28      |
| (12,14)                | 12mn - 8m - 12n + 8 |
| (12,18)                | 4m - 4              |
| (14,18)                | 6mn - 4m - 6n + 4   |

TABLE 4THE EDGE PARTITION OF BISMUTH TRI-IODIDE SHEETBII<sub>3</sub>  $(m \times n)$ .

Using this edge partition we obtain the following theorem like previous.

**Theorem 3.**Let *G* bethe bismuth tri-iodidesheetBiI<sub>3</sub>( $m \times n$ ). Then we have  $NM(G) = (4n + 8)x^6y^{10} + (4m - 4)x^6y^{12} + (8n + 16)x^{10}y^{12} + (16m + 12n - 28)x^{12}y^{12} + (12mn - 8m - 12n)x^{12}y^{14} + (4m - 4)x^{12}y^{18} + (6mn - 4m - 6n + 4)x^{14}y^{18}.$ 

Applying Theorem 3 and Table II, we compute the neighborhood degree sum based indices for the bismuth triiodide sheet in the following theorem.

**Theorem 4.**Let *G* be the bismuth tri-iodide sheet  $BiI_3(m \times n)$ . Then we have

- (i)  $M'_1(G) = 28n + 240m + 504mn 256$ ,
- (ii)  $M_2^*(G) = 1140m 600n + 3528mn 1776$ ,
- (iii)  $F_N^*(G) = 2400\text{m} 1248\text{n} + 7200\text{mn} 3584$ ,
- (iv)  $M_2^{nm}(G) = 0.1216m + 0.1214n + 0.0952mn + 0.0140$ ,
- (v)  $NR_{\alpha}(G) = 4[72^{\alpha} + 4(144)^{\alpha} 2(168)^{\alpha} + 216^{\alpha} 252^{\alpha}]m + 2[2(60)^{\alpha} + 4(120)^{\alpha} + 216^{\alpha} 252^{\alpha}]m + 2[2(60)^{\alpha} + 2(120)^{\alpha} + 2(120)^{\alpha}]m + 2[2(60)^{\alpha} + 2(120)^{\alpha}]m +$
- $6(144)^{\alpha} 6(168)^{\alpha} 3(252)^{\alpha}] + 4[2(60)^{\alpha} 72^{\alpha} + 4(120)^{\alpha} 7(144)^{\alpha} 216^{\alpha} + 252^{\alpha}],$
- (vi)  $ND_3(G) = 19200m 34368n + 100800mn 45696$ ,
- (vii)  $ND_5(G) = 26.22m + 12.66n + 36.66mn 7.74$ ,
- (viii) NH(G) = 0.589m + 0.465n + 0.649mn + 0.137,
- (ix) NI(G) = 57.62m + 5.83n + 124.788mn 12.34,
- (x) S(G) = 1572.7m 2264.32n + 7672.2mn 5596.06.

**Proof**:Let  $NM(G) = (4n + 8)x^6y^{10} + (4m - 4)x^6y^{12} + (8n + 16)x^{10}y^{12} + (16m + 12n - 28)x^{12}y^{12} + (12mn - 8m - 12n)x^{12}y^{14} + (4m - 4)x^{12}y^{18} + (6mn - 4m - 6n + 4)x^{14}y^{18}$ . Then we have,

 $28)x^{12}y^{12} + 168(12mn - 8m - 12n)x^{12}y^{14} + 216(4m - 4)x^{12}y^{18} + 252(6mn - 4m - 6n + 4)x^{14}y^{18},$  $(D_x^2 + D_y^2)(f(x, y)) = 136(4n + 8)x^6y^{10} + 180(4m - 4)x^6y^{12} + 244(8n + 16)x^{10}y^{12} + 288(16m + 12n - 28)x^{12}y^{12} + 340(12mn - 8m - 12n)x^{12}y^{14} + 468(4m - 4)x^{12}y^{18} + 520(6mn - 4m - 6n + 4)x^{14}y^{18}.$ 

$$(S_x S_y)(f(x,y)) = \frac{(n+2)}{15} x^6 y^{10} + \frac{(m-1)}{18} x^6 y^{12} + \frac{(n+2)}{15} x^{10} y^{12} + \frac{(4m+3n-7)}{36} x^{12} y^{12} + \frac{(3mn-2m-3n)}{42} x^{12} y^{14} + \frac{(m-1)}{54} x^{12} y^{18} + \frac{(3mn-2m-3n+2)}{126} x^{14} y^{18},$$

 $D_x^{\alpha} D_y^{\alpha} (f(x,y)) = 60^{\alpha} (4n+8) x^6 y^{10} + 72^{\alpha} (4m-4) x^6 y^{12} + 120^{\alpha} (8n+16) x^{10} y^{12} + 144^{\alpha} (16m+12n-28) x^{12} y^{12} + 168^{\alpha} (12mn-8m-12n) x^{12} y^{14} + 216^{\alpha} (4m-4) x^{12} y^{18} + 252^{\alpha} (6mn-4m-6n+4) x^{14} y^{18},$ 

$$\begin{split} &D_x D_y \big( D_x + D_y \big) \big( f(x,y) \big) = 960(4n+8) x^6 y^{10} + 1296(4m-4) x^6 y^{12} + 2640(8n+16) x^{10} y^{12} + \\ &3456(16m+12n-28) x^{12} y^{12} + 4368(12mn-8m-12n) x^{12} y^{14} + 6480(4m-4) x^{12} y^{18} + \\ &8064(6mn-4m-6n+4) x^{14} y^{18}, \end{split}$$

 $(D_x S_y + S_x D_y) (f(x, y)) = \frac{136(n+2)}{15} x^6 y^{10} + 10(m-1)x^6 y^{12} + \frac{122(2n+4)}{15} x^{10} y^{12} + 2(16m+12n-28)x^{12} y^{12} + \frac{170(3mn-2m-3n)}{15} x^{12} y^{14} + \frac{78(m-1)}{15} x^{12} y^{18} + \frac{130(6mn-4m-6n+4)}{15} x^{14} y^{18},$ 

$$S_{x}J(f(x,y)) = \frac{\binom{21}{4}x^{16}}{\frac{4}{16}x^{20}} + \frac{\binom{2m-2}{9}x^{18}}{\frac{4m+8}{11}x^{22}} + \frac{\binom{4m+3n-7}{6}x^{24}}{\frac{6mn-4m-6n}{13}x^{26}} + \frac{\binom{2m-2}{15}x^{30}}{\frac{13}{15}x^{20}} + \frac{\binom{3mn-2m-3n+2}{9}x^{32}}{\frac{16}{15}x^{32}},$$

 $S_{x}JD_{x}D_{y}(f(x,y)) = 15(n+2)x^{16} + 4(4m-4)x^{18} + \frac{60(8n+16)}{11}x^{22} + 6(16m+12n-28)x^{24} + \frac{84(12mn-8m-12n)}{12}x^{26} + \frac{36(4m-4)}{5}x^{30} + \frac{63(3mn-2m-3n+2)}{4}x^{32},$ 

$$S_x^3 Q_{-2} J D_x^3 D_y^3 (f(x,y)) = \frac{54000 (2n+4)}{343} x^{14} + \frac{729(m-1)}{2} x^{16} + 216(8n+16)x^{20} + \frac{373248 (16m+12n-28)}{1331} x^{22} + 343(12mn-8m-12n)x^{24} + \frac{157464 (4m-4)}{343} x^{28} + 592.704(6mn-4m-6n+4)x^{30}.$$



Fig. 5TheNM-polynomial for bismuth tri-iodide sheet.



Fig. 6The plotting of  $M'_1$ ,  $M^*_2$ , and  $F^*_N$  indices for the bismuth tri- iodide sheet from left to right respectively.



Fig. 7The plotting of  $M_2^{nm}$ ,  $ND_3$ , and  $ND_5$  indices for the bismuth tri- iodide sheet from left to right respectively.



Fig. 8The plotting of NH, NI, and S indices for the bismuth tri- iodide sheet from left to right respectively.

#### **III. REMARKS ANDCONCLUSIONS**

In this work we have considered two types of bismuth tri- iodide structures: bismuth tri- iodide chain  $m - \text{BiI}_3$  and bismuth tri- iodide sheet  $\text{BiI}_3(m \times n)$ . Firstly we have obtained NM-polynomial of the aforesaid structures. Later some neighborhood degree some based topological indices for the structures under consideration have been derived using NM-polynomial. The results are depicted in Figure 2, Figure 3, and Figures 5-8. From the figures, a comparison can be made. In comparison with other indices,  $ND_3$  has most dominating nature whereas  $M_2^{nm}$  grows slowly. The behavior of  $F_N^*$  and S are very closed. The indices have the following order

 $M_2^{nm} < NH < ND_5 < NI < M_1' < M_2^* < F_N^* < S < ND_3,$ 

i.e., all the indices behave differently in each structure discussed above. This work is helpful to get the underlying topology of the aforesaid structures.

### ACKNOWLEDGEMENT

The second author is very obliged to the department of science and technology (DST), Government of India for the Inspire Fellowship [IF170148].

#### REFERENCES

- [1] H. Wiener, "Structural determination of the paraffin boiling points", J. Am. Chem. Soc., vol. 69, no. 1, pp. 17-20, 1947.
- S. M. Hosamani, "Computing Sanskruti index of certain nanostructures", J. Appl. Math. Comput., vol. 54, pp. 425-433, 2017.
   M. Ghorbani and M. A. Hosseinzadeh, "The third version of Zagreb index", Discrete Math. Algorithms Appl., vol. 5, 2013, doi:
- 10.1142/S1793830913500390.
  [4] V. R. Kulli," Neighborhood Indices of Nanostructures", International Journal of Current Research in Science and Technology, vol. 5, no. 3, pp. 1-14, 2019.
- [5] V. R. Kulli, "Multiplicative Neighborhood Indices", Annuls of Pure and Applied Mathematics, vol. 1x, 2019, doi: 10.22457/apam.614v19n2a6.
- [6] S. Mondal, N. De and A. Pal, "On Neighbourhood Zagreb index of product graphs", Preprint, arXiv:1805.05273, 2018.
- [7] S. Mondal, N. De and A. Pal, "On some new neighbourhood degree based indices", ActaChemica Iasi, vol. 27, no. 1, pp. 31-46, 2019.
- [8] S. Mondal, N. De and A. Pal, "QSPR analysis of some novel neighborhood degree based topological descriptors", Preprint, arXiv: 1906.06660.
- [9] I. Gutman, "Some properties of the Wiener polynomials", Graph Theory Notes N.Y., vol. 125, pp. 13-18, 1993.
- [10] V. Alamian, A. Bahrami and B. Edalatzadeh, "PI Polynomial of V-Phenylenic nanotubes and nanotori", Int. J. Mole. Sci., vol. 9, no. 3, pp. 229-234, 2008, doi: 10.3390/ijms9030229.
- [11] M. R. Farahani, "Computing theta polynomial, and theta index of V-phenylenic planar, nanotubes and nanotoris", Int. J. Theoretical Chem., vol. 1, no. 1, pp. 1-9, 2013.
- [12] E. Deutsch and S. Klavzar, "M-Polynomial, and degree-based topological indices", Iran. J. Math. Chem., vol. 6, pp. 93-102, 2015.
- [13] Y. C. Kwun, M. Munir, W. Nazeer, S. Rafque and S. M. Kang, "M Polynomials and topological indices of V-Phenylenic Nanotubes and Nanotori", Scientific Reports, vol. 7, 2017, doi:10.1038/s41598-017-08309-y.
- [14] S. Mondal, N. De, and A. Pal, "The M-Polynomial of Line graph of Subdivision graphs", Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat, vol. 68, no. 2, pp. 2104-2116, 2019.
- [15] S. Mondal, N. De and A. Pal, "Neighborhood M-polynomial of crystallographic structures", Preprint.
- [16] A. Cuna, I. Aguiar, A. Gancharov, M.E.P. Barthaburu, and L. Fornaro, "Correlation between growth orientation and growth temperature for bismuth tri-iodide films", Cryst. Res. Technol., vol. 39, no. 10, pp. 899-905, 2004.
- [17] A. Cuna, A. Noguera, E. Saucedo, and L. Fornaro, "Growth of bismuth tri-iodide platelets by the physical vapor deposition method", Cryst. Res. Technol., vol. 39, no. 10, pp. 912-919, 2004.
- [18] K. Watanabe, T. Karasawa, T. Komatsu, and Y. Kaifu, "Optical properties of extrinsic two-dimensional excitons in Bil<sub>3</sub> single crystals", J. Phys. Soc. Jpn., vol. 55, pp. 897-907, 1986.
- [19] R.W.G. Wyckoff, Crystal Structures, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA; London, UK; Sydney, Australia, 1964.
- [20] H. Yorikawa and S. Muramatsu, "Theoretical Study of Crystal and Electronic Structures of Bil<sub>3</sub>", J. Phys. Condens. Matter, vol. 20, pp. 325–335, 2008.