Topological Properties of Bismuth tri-iodide Using Neighborhood M-Polynomial

A.Verma ${ }^{1}$, S.Mondal ${ }^{* 2}$, N.De ${ }^{3}$, A.Pal ${ }^{4}$
${ }^{1,2}$ Research Scholar, ${ }^{3,4}$ AssociateProfessor,
${ }^{1,2,4}$ Department of Mathematics, NIT Durgapur, India.
${ }^{3}$ Department of Basic Sciences and Humanities (Mathematics), Calcutta Institute of Engineering and Management, Kolkata, India.

Abstract

Anoutstanding way of findingneighborhood degree sum based topological indices is neighborhood M-polynomial. The bismuth tri-iodide BiI_{3} is a wide band gap layered semiconductor with several optical properties.In this paper, the neighborhood M-polynomial of bismuth tri-iodide chain and sheet are obtained. Some topological indices based on neighbourhood degree sum are recovered from the neighbourhood Mpolynomial. Also, the findings are interpreted graphically.

Keywords - Graph,Bismuth tri-iodide,Neighborhood M-polynomial, Topological index.

I. INTRODUCTION

Chemical graph theory (CGT) creates link between the discrete mathematics and chemical graph theory. A graph G is an ordered pair of vertex and edge sets $(V(G), E(G))$. In chemical graph theory, a graph is used to represent a molecule by considering the atoms as vertices and the chemical bonds as edges. CGT gives an important tool named as topological index to predict different properties and activity. A topological index is a mapping $I: \Theta \rightarrow \mathbb{R}$ such that $I(G)=I(H)$ if and only if G, H are isomorphic, where Θ is the collection ofall molecular graphs and \mathbb{R} is the set of real numbers. The idea of topological index was introduced by H. Wiener [1] in 1947 when he was working on boiling point of alkanes. A large number of topological indices were developed afterwards. Researchers have currently concentrated on topological indices based on neighborhood degree sum of vertex [2]-[8]. By neighborhood degree $\operatorname{sum} \delta_{u}$ of a vertex u, we mean the sum of degrees of all vertices that are adjacent to the vertex. The degree of a vertex is the total number of edges incident to the vertex. To make the computation of topological indices easy, many algebraic polynomials [9]-[11] are used instead their usual definitions. For degree based topological indices M-polynomial [12]-[14] is very effective tool. For the computation of neighborhood degree sum based topological indices, present authors introduced neighborhood M-polynomial [15] whose role for neighborhood degree sum based indices is parallel to the role of the M-polynomial for degree based indices.
The neighborhood M-polynomial [15] of a graph G is defined as,
$N M(G ; x, y)=\sum_{i \leq j} m_{(i, j)} x^{i} y^{j}$.
Where $m_{(i, j)}$ is the total number of edges $u v \in E(G)$ such that $\left\{\delta_{u}, \delta_{v}\right\}=\{i, j\}$. We use $N M(G)$ for $N M(G ; x, y)$ for the rest of the article. The Neighborhood degree sum based topological indices defined on edge set of a graph G can be expressed as
$I(G)=\sum_{u v \in E(G)} f\left(\delta_{u}, \delta_{v}\right)$,
where $f\left(\delta_{u}, \delta_{v}\right)$ is the function of δ_{u}, δ_{v} used in the definition of indices. The above result can also be written as,
$I(G)=\sum_{i \leq j} m_{(i, j)} f(i, j)$.
We describe some neighborhood degree sum based topological indices in Table I.
The bismuth tri-iodide BiI_{3} is an excellent inorganic compound. This wide-band-gap material, which is made up of heavy atoms, is useful as gamma-ray detector at room temperature or an electronic x-ray imaging sensor[16],[17]. Over the years, bi-doped optical glass strings have been shown to be among the most promising dynamic laser media. The layered BiI_{3} is a three layered stacking structure. Each of the three layers consists of three atomic planes: one basis plane of bismuth atoms, and two iodine planes above and below it.The rhombohedral crystal of BiI_{3} with the R-3 symmetry is formed by stacking three layers periodically [18],[19]. The gradual stacking of one I - Bi - I layer forms the hexagonal structure with symmetry [20]. There are six 4cycles in the unit BiI_{3} graph, two of which are on the main, two in the middle, and two at the bottom. As per arrangement of unit BiI_{3}, two types of BiI_{3} structures (chain and sheet) are considered here. The purpose of this work is to compute some exact expressions of topological indices for bismuth tri-iodide chain and sheet using NM-polynomial approach.

TABLE I
FORMULAE OF SOME NEIGHBORHOOD DEGREE BASED TOPOLOGICAL INDICES

Topological index	Formulation $(\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y}))$
The third version of Zagreb index $\left(M_{1}^{\prime}\right)[3]$	$x+y$
The neighborhood second Zagreb index $\left(M_{2}^{*}\right)[7]$	$x y$
The neighborhood forgotten topological index $\left(F_{N}^{*}\right)[7]$	$x^{2}+y^{2}$
The neighborhood second modified Zagreb index $\left(M_{2}^{m m}\right)$	
$[15]$	$\frac{1}{x y}$
The neighborhood general Randic $\left(N R_{\alpha}\right)[15]$	$(x y)^{\alpha}$
The third NDe index $\left(N D_{3}\right)[8]$	$x y(x+y)$
The third NDe index $\left(N D_{5}\right)[8]$	$\frac{x^{2}+y^{2}}{x y}$
The neighborhood Harmonic index $(N H)[15]$	$\frac{2}{x+y}$
The neighborhood inverse sum index $(N I)[15]$	$\frac{x y}{x+y}$
The Sanskruti index $(S)[2]$	$\frac{x y}{(x+y-2)^{3}}$

The relations of some neighborhood degree-based topological indices with the NM-polynomial are shown in the Table II.

TABLE II
DERIVATION OF SOME NEIGHBORHOOD DEGREE BASED TOPOLOGICAL INDICES

Topological index	Derivation from $\boldsymbol{N M}(\boldsymbol{G})$
M_{1}^{\prime}	$\left.\left(D_{x}+D_{y}\right)(N M(G))\right\|_{x=y=1}$
M_{2}^{*}	$\left.\left(D_{x} D_{y}\right)(N M(G))\right\|_{x=y=1}$
F_{N}^{*}	$\left.\left(D_{x}{ }^{2}+D_{y}{ }^{2}\right)(N M(G))\right\|_{x=y=1}$
$M_{2}^{n m}$	$\left.\left(S_{x} S_{y}\right)(N M(G))\right\|_{x=y=1}$
$N R_{\alpha}$	$\left.\left(D_{x}{ }^{\alpha} D_{y}{ }^{\alpha}\right)(N M(G))\right\|_{x=y=1}$
$N D_{3}$	$\left.D_{x} D_{y}\left(D_{x}+D_{y}\right)(N M(G))\right\|_{x=y=1}$
$N D_{5}$	$\left.\left(D_{x} S_{y}+S_{x} D_{y}\right)(N M(G))\right\|_{x=y=1}$
$N H$	$\left.2 S_{x} J(N M(G))\right\|_{x=y=1}$
$N I$	$\left.S_{x} J D_{x} D_{y}(N M(G))\right\|_{x=y=1}$
S	$\left.S_{x}{ }^{3} Q_{-2} J D_{x}{ }^{3} D_{y}{ }^{3}(N M(G))\right\|_{x=y=1}$

Where,

$$
\begin{aligned}
& D_{x}(f(x, y))=x \frac{\partial(f(x, y))}{\partial x}, \quad D_{y}(f(x, y))=y \frac{\partial(f(x, y))}{\partial y}, S_{x}(f(x, y))=\int_{0}^{x} \frac{f(t, y)}{t} d t \\
& S_{y}(f(x, y))=\int_{0}^{y} \frac{f(x, t)}{t} d t, \quad J(f(x, y))=f(x, x), Q_{\alpha}(f(x, y))=x^{\alpha} f(x, y)
\end{aligned}
$$

II. MAIN RESULTS

In this section, we obtain NM-polynomial of bismuth tri-iodide chain and sheet using edge partition technique. From NM-polynomial, some topological indices are recovered. Results are interpreted graphically using Maple and Matlab software.

A. Bismuth tri-iodide chain

The linear arrangement of m unit BiI_{3} is known as $m-\mathrm{BiI}_{3}$ chain. The unit BiI_{3} is depicted in Figure 1(a). The structure of $3-\mathrm{BiI}_{3}$ is shaped by combining three unit cells of BiI_{3} linearly as shown in Figure 1(b).

Fig.1. (a)The unit cell and (b) The chain of bismuth tri-iodide for $\mathrm{m}=3$.
Theorem 1.Let G be the bismuth tri-iodide chain. Then we have

$$
N M(G)=(4 m+8) x^{6} y^{10}+(8 m+16) x^{10} y^{12}+(12 m-12) x^{12} y^{12}
$$

Proof:The bismuth tri-iodide chainhas $12(2 \mathrm{~m}+1)$ number of edges. Its edge set can be partitioned as follows:
TABLE III
THE EDGE PARTITION OF BISMUTH TRI-IODIDE CHAIN

$\left(\boldsymbol{\delta}_{\boldsymbol{u}}, \boldsymbol{\delta}_{\boldsymbol{v}}\right)$	Cardinality
$(6,10)$	$4 m+8$
$(10,12)$	$8 m+16$
$(12,12)$	$12 m-12$

Now using the definition of $N M$-polynomial, we get
$N M(G)=m_{(6,10)} x^{6} y^{10}+m_{(10,12)} x^{10} y^{12}+m_{(12,12)} x^{12} y^{12}$.
After putting the values of $m_{(i, j)}$'s, the required result can be obtained easily. Hence the proof is done.

Fig. 2TheNM-polynomial of the bismuth tri-iodidechain for $\mathrm{m}=2$.

Now using this NM-polynomial, we calculate some neighborhood degree based topological indices of the bismuth tri-iodide chain.

Theorem 2.Let G be the bismuth tri-iodide chain. Then we have
(i) $\quad M_{1}^{\prime}(G)=528 \mathrm{~m}+192$,

```
(ii) \(\quad M_{2}^{*}(G)=2928 \mathrm{~m}+672\),
(iii) \(\quad F_{N}^{*}(G)=5952 \mathrm{~m}+1536\),
(iv) \(\quad M_{2}^{n m}(G)=0.216 \mathrm{~m}+0.183\),
(v) \(\quad N R_{\alpha}(G)=4\left[60^{\alpha}+2(120)^{\alpha}+3(144)^{\alpha}\right] \mathrm{m}+4\left[2(60)^{\alpha}+4(120)^{\alpha}-3(144)^{\alpha}\right]\),
(vi) \(\quad N D_{3}(G)=70272 \mathrm{~m}+8448\),
(vii) \(\quad N D_{5}(G)=44.166 \mathrm{~m}+26.661\),
(viii) \(\quad N H(G)=2.2272 m+1.4545\),
(ix) \(\quad N I(G)=130.63 \mathrm{~m}+45.26\),
(x) \(\quad S(G)=5407.88 \mathrm{~m}+720.64\).
```

Proof:Let $N M(G)=(4 m+8) x^{6} y^{10}+(8 m+16) x^{10} y^{12}+(12 m-12) x^{12} y^{12}$.
Then we have

$$
\begin{aligned}
& \left(D_{x}+D_{y}\right)(f(x, y))=16(4 m+8) x^{6} y^{10}+22(8 m+16) x^{10} y^{12}+24(12 m-12) x^{12} y^{12}, \\
& \left(D_{x} D_{y}\right)(f(x, y))=60(4 m+8) x^{6} y^{10}+120(8 m+16) x^{10} y^{12}+144(12 m-12) x^{12} y^{12}, \\
& \left(D_{x}^{2}+D_{y}^{2}\right)(f(x, y))=136(4 m+8) x^{6} y^{10}+244(8 m+16) x^{10} y^{12}+288(12 m-12) x^{12} y^{12}, \\
& \left(S_{x} S_{y}\right)(f(x, y))=\frac{(m+2)}{15} x^{6} y^{10}+\frac{(m+2)}{15} x^{10} y^{12}+\frac{(m-1)}{12} x^{12} y^{12}, \\
& D_{x}^{\alpha} D_{y}^{\alpha}(f(x, y))=60^{\alpha}(4 m+8) x^{6} y^{10}+120^{\alpha}(8 m+16) x^{10} y^{12}+144^{\alpha}(12 m-12) x^{12} y^{12}, \\
& D_{x} D_{y}\left(D_{x}+D_{y}\right)(f(x, y))=960(4 m+8) x^{6} y^{10}+2640(8 m+16) x^{10} y^{12}+3456(12 m-12) x^{12} y^{12}, \\
& \left(D_{x} S_{y}+S_{x} D_{y}\right)(f(x, y))=\frac{136(m+2)}{15} x^{6} y^{10}+\frac{244(m+2)}{15} x^{10} y^{12}+2(12 m-12) x^{12} y^{12}, \\
& S_{x} J(f(x, y))=\frac{(m+2)}{4} x^{16}+\frac{(4 m+8)}{11} x^{22}+\frac{(m-1)}{2} x^{24}, \\
& S_{x} J D_{x} D_{y}(f(x, y))=15(m+2) x^{16}+\frac{120(4 m+8)}{11} x^{22}+72(m-1) x^{24}, \\
& S_{x}^{3} Q_{-2} J D_{x}^{3} D_{y}^{3}(f(x, y))=78.71(4 \mathrm{~m}+8) x^{14}+216(8 m+16) x^{20}+280.42(12 m-12) x^{22} .
\end{aligned}
$$

Using Table II, we get

```
\(M_{1}^{\prime}(G)=16(4 m+8) x^{6} y^{10}+22(8 m+16) x^{10} y^{12}+\left.24(12 m-12) x^{12} y^{12}\right|_{x=y=1}=528 \mathrm{~m}+192\),
\(M_{2}^{*}(G)=60(4 m+8) x^{6} y^{10}+120(8 m+16) x^{10} y^{12}+\left.144(12 m-12) x^{12} y^{12}\right|_{x=y=1}=2928 \mathrm{~m}+672\),
\(F_{N}^{*}(G)=136(4 m+8) x^{6} y^{10}+244(8 m+16) x^{10} y^{12}+\left.288(12 m-12) x^{12} y^{12}\right|_{x=y=1}=5952 \mathrm{~m}+1536\),
\(M_{2}^{n m}(G)=\frac{(m+2)}{15} x^{6} y^{10}+\frac{(m+2)}{15} x^{10} y^{12}+\left.\frac{(m-1)}{12} x^{12} y^{12}\right|_{x=y=1}=0.216 \mathrm{~m}+0.183\),
\(N R_{\alpha}(G)=60^{\alpha}(4 m+8) x^{6} y^{10}+120^{\alpha}(8 m+16) x^{10} y^{12}+\left.144^{\alpha}(12 m-12) x^{12} y^{12}\right|_{x=y=1}\)
    \(=4\left[60^{\alpha}+2(120)^{\alpha}+3(144)^{\alpha}\right] \mathrm{m}+4\left[2(60)^{\alpha}+4(120)^{\alpha}-3(144)^{\alpha}\right]\),
\(N D_{3}(G)=960(4 m+8) x^{6} y^{10}+2640(8 m+16) x^{10} y^{12}+\left.3456(12 m-12) x^{12} y^{12}\right|_{x=y=1}\)
    \(=70272 \mathrm{~m}+8448\),
\(N D_{5}(G)=\frac{136(m+2)}{15} x^{6} y^{10}+\frac{244(m+2)}{15} x^{10} y^{12}+\left.2(12 m-12) x^{12} y^{12}\right|_{x=y=1}=44.166 \mathrm{~m}+26.661\),
\(N H(G)=\frac{2(m+2)}{4} x^{16}+\frac{2(4 m+8)}{11} x^{22}+\left.\frac{2(m-1)}{2} x^{24}\right|_{x=1}=2.2272 m+1.4545\),
\(N I(G)=15(m+2) x^{16}+\frac{120(4 m+8)}{11} x^{22}+\left.72(m-1) x^{24}\right|_{x=1}=130.63 m+45.26\),
\(S(G)=78.71(4 \mathrm{~m}+8) x^{14}+216(8 \mathrm{~m}+16) x^{20}+\left.280.42(12 \mathrm{~m}-12) x^{22}\right|_{x=1}=5407.88 \mathrm{~m}+720.64\).
```

Hence the proof is done.

Fig. 3The neighborhood degree based indices of the bismuth tri-iodide chain. By $\log (\mathrm{TI})$, we mean logarithm of topological indices.

B. Bismuth tri-iodide sheet

The rectangular arrangement $m n$ unit BiI_{3} in m rows and n columns is known as $m \times n$ bismuth tri-iodide sheet. The 2×3 bismuth tri-iodide sheet is shown in Figure 4. The bismuth tri-iodide sheethas $18 \mathrm{mn}+$ $12 m+6 n$ number of edges. Its edge set can be partitioned as follows:

Fig.4The bismuth tri-iodide sheet $\operatorname{BiI}_{3}(m \times n)$ for $\mathrm{m}=2$ and $\mathrm{n}=3$.

TABLE 4
THE EDGE PARTITION OF BISMUTH TRI-IODIDE SHEETBII ${ }_{3}(m \times n)$.

$\left(\boldsymbol{\delta}_{u}, \boldsymbol{\delta}_{\boldsymbol{v}}\right)$	Cardinality
$(6,10)$	$4 n+8$
$(6,12)$	$4 m-4$
$(10,12)$	$8 n+16$
$(12,12)$	$16 m+12 n-28$
$(12,14)$	$12 m n-8 m-12 n+8$
$(12,18)$	$4 m-4$
$(14,18)$	$6 m n-4 m-6 n+4$

Using this edge partition we obtain the following theorem like previous.

Theorem 3.Let G bethe bismuth tri-iodidesheet $\mathrm{BiI}_{3}(m \times n)$. Then we have
$N M(G)=(4 \mathrm{n}+8) x^{6} y^{10}+(4 \mathrm{~m}-4) x^{6} y^{12}+(8 \mathrm{n}+16) x^{10} y^{12}+(16 \mathrm{~m}+12 \mathrm{n}-28) x^{12} y^{12}+$ $(12 \mathrm{mn}-8 \mathrm{~m}-12 \mathrm{n}) x^{12} y^{14}+(4 \mathrm{~m}-4) x^{12} y^{18}+(6 m n-4 m-6 \mathrm{n}+4) x^{14} y^{18}$.

Applying Theorem 3 and Table II, we compute the neighborhood degree sum based indices forthe bismuth triiodide sheet in the following theorem.

Theorem 4.Let G be thebismuth tri-iodide sheet $\mathrm{BiI}_{3}(m \times n)$. Then we have
(i) $\quad M_{1}^{\prime}(G)=28 \mathrm{n}+240 \mathrm{~m}+504 \mathrm{mn}-256$,
(ii) $\quad M_{2}^{*}(G)=1140 \mathrm{~m}-600 \mathrm{n}+3528 \mathrm{mn}-1776$,
(iii) $\quad F_{N}^{*}(G)=2400 \mathrm{~m}-1248 \mathrm{n}+7200 \mathrm{mn}-3584$,
(iv) $\quad M_{2}^{n m}(G)=0.1216 \mathrm{~m}+0.1214 \mathrm{n}+0.0952 \mathrm{mn}+0.0140$,
(v) $\quad N R_{\alpha}(G)=4\left[72^{\alpha}+4(144)^{\alpha}-2(168)^{\alpha}+216^{\alpha}-252^{\alpha}\right] \mathrm{m}+2\left[2(60)^{\alpha}+4(120)^{\alpha}+\right.$ $\left.6(144)^{\alpha}-6(168)^{\alpha}-3(252)^{\alpha}\right]+4\left[2(60)^{\alpha}-72^{\alpha}+4(120)^{\alpha}-7(144)^{\alpha}-216^{\alpha}+252^{\alpha}\right]$,
(vi) $\quad N D_{3}(G)=19200 \mathrm{~m}-34368 \mathrm{n}+100800 \mathrm{mn}-45696$,
(vii) $\quad N D_{5}(G)=26.22 \mathrm{~m}+12.66 \mathrm{n}+36.66 \mathrm{mn}-7.74$,
(viii) $\quad N H(G)=0.589 \mathrm{~m}+0.465 \mathrm{n}+0.649 \mathrm{mn}+0.137$,
(ix) $\quad N I(G)=57.62 \mathrm{~m}+5.83 \mathrm{n}+124.788 \mathrm{mn}-12.34$,
(x) $\quad S(G)=1572.7 \mathrm{~m}-2264.32 \mathrm{n}+7672.2 \mathrm{mn}-5596.06$.

Proof:Let $N M(G)=(4 \mathrm{n}+8) x^{6} y^{10}+(4 \mathrm{~m}-4) x^{6} y^{12}+(8 \mathrm{n}+16) x^{10} y^{12}+(16 \mathrm{~m}+12 \mathrm{n}-28) x^{12} y^{12}+$ $(12 m n-8 m-12 n) x^{12} y^{14}+(4 m-4) x^{12} y^{18}+(6 m n-4 m-6 n+4) x^{14} y^{18}$.

Then we have,
$\left(D_{x}+D_{y}\right)(f(x, y))=16(4 \mathrm{n}+8) x^{6} y^{10}+18(4 \mathrm{~m}-4) x^{6} y^{12}+22(8 \mathrm{n}+16) x^{10} y^{12}+24(16 \mathrm{~m}+12 \mathrm{n}-$ 28) $x^{12} y^{12}+26(12 \mathrm{mn}-8 \mathrm{~m}-12 \mathrm{n}) x^{12} y^{14}+30(4 \mathrm{~m}-4) x^{12} y^{18}+32(6 \mathrm{mn}-4 \mathrm{~m}-6 \mathrm{n}+4) x^{14} y^{18}$,
$\left(D_{x} D_{y}\right)(f(x, y))=60(4 \mathrm{n}+8) x^{6} y^{10}+72(4 \mathrm{~m}-4) x^{6} y^{12}+120(8 \mathrm{n}+16) x^{10} y^{12}+144(16 \mathrm{~m}+12 \mathrm{n}-$ 28) $x^{12} y^{12}+168(12 \mathrm{mn}-8 \mathrm{~m}-12 \mathrm{n}) x^{12} y^{14}+216(4 \mathrm{~m}-4) x^{12} y^{18}+252(6 \mathrm{mn}-4 \mathrm{~m}-6 \mathrm{n}+4) x^{14} y^{18}$,
$\left(D_{x}^{2}+D_{y}^{2}\right)(f(x, y))=136(4 \mathrm{n}+8) x^{6} y^{10}+180(4 \mathrm{~m}-4) x^{6} y^{12}+244(8 \mathrm{n}+16) x^{10} y^{12}+288(16 \mathrm{~m}+$ $12 \mathrm{n}-28) x^{12} y^{12}+340(12 \mathrm{mn}-8 \mathrm{~m}-12 \mathrm{n}) x^{12} y^{14}+468(4 \mathrm{~m}-4) x^{12} y^{18}+520(6 m n-4 m-6 n+$ 4) $x^{14} y^{18}$,
$\left(S_{x} S_{y}\right)(f(x, y))=\frac{(\mathrm{n}+2)}{15} x^{6} y^{10}+\frac{(\mathrm{m}-1)}{18} x^{6} y^{12}+\frac{(n+2)}{15} x^{10} y^{12}+\frac{(4 \mathrm{~m}+3 \mathrm{n}-7)}{36} x^{12} y^{12}+\frac{(3 \mathrm{mn}-2 \mathrm{~m}-3 \mathrm{n})}{42} x^{12} y^{14}+$ $\frac{(\mathrm{m}-1)}{54} x^{12} y^{18}+\frac{(3 \mathrm{mn}-2 \mathrm{~m}-3 \mathrm{n}+2)}{126} x^{14} y^{18}$,
$D_{x}^{\alpha} D_{y}^{\alpha}(f(x, y))=60^{\alpha}(4 \mathrm{n}+8) x^{6} y^{10}+72^{\alpha}(4 \mathrm{~m}-4) x^{6} y^{12}+120^{\alpha}(8 \mathrm{n}+16) x^{10} y^{12}+144^{\alpha}(16 \mathrm{~m}+$ $12 \mathrm{n}-28) x^{12} y^{12}+168^{\alpha}(12 \mathrm{mn}-8 \mathrm{~m}-12 \mathrm{n}) x^{12} y^{14}+216^{\alpha}(4 \mathrm{~m}-4) x^{12} y^{18}+252^{\alpha}(6 \mathrm{mn}-4 \mathrm{~m}-6 \mathrm{n}+$ 4) $x^{14} y^{18}$,
$D_{x} D_{y}\left(D_{x}+D_{y}\right)(f(x, y))=960(4 n+8) x^{6} y^{10}+1296(4 m-4) x^{6} y^{12}+2640(8 n+16) x^{10} y^{12}+$ $3456(16 m+12 n-28) x^{12} y^{12}+4368(12 m n-8 m-12 n) x^{12} y^{14}+6480(4 m-4) x^{12} y^{18}+$ 8064($6 m n-4 m-6 n+4) x^{14} y^{18}$,
$\left(D_{x} S_{y}+S_{x} D_{y}\right)(f(x, y))=\frac{136(n+2)}{15} x^{6} y^{10}+10(m-1) x^{6} y^{12}+\frac{122(2 n+4)}{15} x^{10} y^{12}+2(16 m+12 n-$ 28) $x^{12} y^{12}+\frac{170(3 m n-2 m-3 n)}{21} x^{12} y^{14}+\frac{78(m-1)}{9} x^{12} y^{18}+\frac{130(6 m n-4 m-6 n+4)}{63} x^{14} y^{18}$,
$S_{x} J(f(x, y))=\frac{(\mathrm{n}+2)}{4} x^{16}+\frac{(2 \mathrm{~m}-2)}{9} x^{18}+\frac{(4 \mathrm{n}+8)}{11} x^{22}+\frac{(4 \mathrm{~m}+3 \mathrm{n}-7)}{6} x^{24}+\frac{(6 \mathrm{mn}-4 \mathrm{~m}-6 \mathrm{n})}{13} x^{26}+\frac{(2 \mathrm{~m}-2)}{15} x^{30}+$ $\frac{(3 \mathrm{mn}-2 \mathrm{~m}-3 \mathrm{n}+2)}{16} x^{32}$,
$S_{x} J D_{x} D_{y}(f(x, y))=15(\mathrm{n}+2) x^{16}+4(4 \mathrm{~m}-4) x^{18}+\frac{60(8 \mathrm{n}+16)}{11} x^{22}+6(16 \mathrm{~m}+12 \mathrm{n}-28) x^{24}+$ $\frac{84(12 \mathrm{mn}-8 \mathrm{~m}-12 \mathrm{n})}{13} x^{26}+\frac{36(4 \mathrm{~m}-4)}{5} x^{30}+\frac{63(3 \mathrm{mn}-2 \mathrm{~m}-3 \mathrm{n}+2)}{4} x^{32}$,
$S_{x}^{3} Q_{-2} J D_{x}^{3} D_{y}^{3}(f(x, y))=\frac{54000(2 \mathrm{n}+4)}{343} x^{14}+\frac{729(\mathrm{~m}-1)}{2} x^{16}+216(8 \mathrm{n}+16) x^{20}+\frac{373248(16 \mathrm{~m}+12 \mathrm{n}-28)}{1331} x^{22}+$ $343(12 \mathrm{mn}-8 \mathrm{~m}-12 \mathrm{n}) x^{24}+\frac{157464(4 \mathrm{~m}-4)}{343} x^{28}+592.704(6 \mathrm{mn}-4 \mathrm{~m}-6 \mathrm{n}+4) x^{30}$.

Fig. 5TheNM-polynomial for bismuth tri-iodide sheet.

Fig. 6The plotting of $M_{1}^{\prime}, M_{2}^{*}$, and F_{N}^{*} indicesforthe bismuth tri- iodide sheet from left to right respectively.

Fig. 7The plotting of $M_{2}^{n m}, N D_{3}$, and $N D_{5}$ indicesfor the bismuth tri- iodide sheet from left to right respectively.

Fig. 8The plotting of $N H, N I$, and S indicesfor the bismuth tri- iodide sheet from left to right respectively.

III. REMARKS ANDCONCLUSIONS

In this work we have considered two types of bismuth tri- iodide structures: bismuth tri- iodide chain $m-\mathrm{BiI}_{3}$ and bismuth tri- iodide sheet $\mathrm{BiI}_{3}(m \times n)$. Firstly we have obtained NM-polynomial of the aforesaid structures. Later some neighborhood degree some based topological indices for the structures under consideration have been derived using NM-polynomial. The results are depicted in Figure 2, Figure 3, and Figures 5-8. From the figures, a comparison can be made. In comparison with other indices, $N D_{3}$ has most dominating nature whereas $M_{2}^{n m}$ grows slowly. The behavior of F_{N}^{*} and S are very closed. The indices have the following order

$$
M_{2}^{n m}<N H<N D_{5}<N I<M_{1}^{\prime}<M_{2}^{*}<F_{N}^{*}<S<N D_{3},
$$

i.e., all the indices behave differently in each structure discussed above. This work is helpful to get the underlying topology of the aforesaid structures.

ACKNOWLEDGEMENT

The second author is very obliged to the department of science and technology (DST), Government of India for the Inspire Fellowship [IF170148].

REFERENCES

[1] H. Wiener, "Structural determination of the paraffin boiling points",J. Am. Chem. Soc., vol. 69, no. 1, pp. 17-20, 1947.
[2] S. M. Hosamani, "Computing Sanskruti index of certain nanostructures", J. Appl. Math. Comput., vol. 54, pp. 425-433, 2017.
[3] M. Ghorbani and M. A. Hosseinzadeh, "The third version of Zagreb index", Discrete Math. Algorithms Appl., vol. 5, 2013, doi: 10.1142/S1793830913500390.
[4] V. R. Kulli," Neighborhood Indices of Nanostructures", International Journal of Current Research in Science and Technology, vol. 5, no. 3, pp. 1-14, 2019.
[5] V. R. Kulli, "Multiplicative Neighborhood Indices", Annuls of Pure and Applied Mathematics, vol. 1x, 2019, doi: 10.22457/apam. 614 v 19 n 2 a 6.
[6] S. Mondal, N. De and A. Pal, "On Neighbourhood Zagreb index of product graphs", Preprint, arXiv:1805.05273, 2018.
[7] S. Mondal, N. De and A. Pal, "On some new neighbourhood degree based indices", ActaChemica Iasi, vol. 27, no. 1, pp. 31-46, 2019.
[8] S. Mondal, N. De and A. Pal, "QSPR analysis of some novel neighborhood degree based topological descriptors", Preprint, arXiv: 1906.06660.
[9] I. Gutman, "Some properties of the Wiener polynomials", Graph Theory Notes N.Y., vol. 125, pp. 13-18, 1993.
[10] V. Alamian, A. Bahrami and B. Edalatzadeh, "PI Polynomial of V-Phenylenic nanotubes and nanotori", Int. J. Mole. Sci., vol. 9, no. 3, pp. 229-234, 2008, doi: 10.3390/ijms9030229.
[11] M. R. Farahani, "Computing theta polynomial, and theta index of V-phenylenic planar, nanotubes and nanotoris", Int. J. Theoretical Chem., vol. 1, no. 1, pp. 1-9, 2013.
[12] E. Deutsch and S. Klavzar, "M-Polynomial, and degree-based topological indices", Iran. J. Math. Chem., vol. 6, pp. 93-102, 2015.
[13] Y. C. Kwun, M. Munir, W. Nazeer, S. Rafque and S. M. Kang, "M Polynomials and topological indices of V-Phenylenic Nanotubes and Nanotori", Scientific Reports, vol. 7, 2017, doi:10.1038/s41598-017-08309-y.
[14] S. Mondal, N. De, and A. Pal, "The M-Polynomial of Line graph of Subdivision graphs", Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat, vol. 68, no. 2, pp. 2104-2116, 2019.
[15] S. Mondal, N. De and A. Pal, "Neighborhood M-polynomial of crystallographic structures", Preprint.
[16] A. Cuna, I. Aguiar, A. Gancharov, M.E.P. Barthaburu, and L. Fornaro, "Correlation between growth orientation and growth temperature for bismuth tri-iodide films", Cryst. Res. Technol., vol. 39, no. 10, pp. 899-905, 2004.
[17] A. Cuna, A. Noguera, E. Saucedo, and L. Fornaro, "Growth of bismuth tri-iodide platelets by the physical vapor deposition method", Cryst. Res. Technol., vol. 39, no. 10, pp. 912-919, 2004.
[18] K. Watanabe, T. Karasawa, T. Komatsu, and Y. Kaifu, "Optical properties of extrinsic two-dimensional excitons in BiI_{3} single crystals", J. Phys. Soc. Jpn., vol. 55, pp. 897-907, 1986.
[19] R.W.G. Wyckoff, Crystal Structures, 2nd ed.; John Wiley \& Sons, Inc.: New York, NY, USA; London, UK; Sydney, Australia, 1964.
[20] H. Yorikawa and S. Muramatsu, "Theoretical Study of Crystal and Electronic Structures of BiI_{3} ", J. Phys. Condens. Matter, vol. 20, pp. 325-335, 2008.

