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I. Introduction 

In 1963, N. Levine [5] introduced the notion of semi-open sets which is a weaker form of open sets in 

topological spaces. In 1965, Njastad [11] introduced the notion of -open sets. In 1975, Maheswari and Prasad 
[6] used semi-open sets to introduce the concepts of semi-T0, semi-T1 and semi-T2 spaces. In 1980, Maheswari 

and Prasad [7] introduced the concept of -T2 space. In 1982, Mashhour [8] introduced the notion of pre-open 

sets and obtained their properties. In 1983, Monsef et al.  [1] introduced and investigated the notion of -open 

sets in topological spaces. In 1993, Maki et al. [9] introduced the concept of -T0 and -T0 spaces. In 1996, 
Andrijevic [2] introduced a new class of generalized open sets, called, b-open sets in topological spaces. This 

type of open sets were discussed by [4] under the name of -open sets. In 2006, Park [12] introduced the concept 
of b-T2 spaces. In 2007, Caldas and Jafari [3] introduced and studied b-T0 and b-T1 spaces via b-open sets due to 

Andrijevic [2]. In 2019, Mohammed and Abdullah [10] introduced and investigated the notion of ii-open sets. 

II. Preliminaries 

Throughout this paper, spaces (X, ), (Y, ), and (Z, ) (or simply X, Y and Z) always mean topological spaces 
on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. For a subset 

A of X, Cl(A) and Int(A) represents the closure of A and Interior of A respectively.  

Definition 2.1. A subset A of a topological space (X, ) is said to be  

(i) pre-open set [8] if A  Int(Cl(A)); 

(ii) semi-open set [5] if A  Cl(Int(A));      

(iii) -open [11] if A  Int(Cl(Int(A))); 

(iv) -open [1] if A  Cl(Int(Cl(A))); 

(v) b-open [2] (or -open [4]) if A  In(Cl(A))  Cl(Int(A)). 

The complement of the pre-open (resp. semi-open, -open, -open, b-open) set is called pre-closed (resp. semi-

closed, -closed, -closed, b-closed).   

Definition 2.1. A subset A of a topological space (X, ) is said to be ii-open [10] set if there exists an open set 

G  , such that      

(i) G  , X      

(ii) A  Cl(A  G)         

(iii) Int(A) = G. 

The complement of the ii-open set is called ii-closed. We denote the family of all ii-open (resp. ii-closed) sets of 

a topological space by ii-O(X) (resp. ii-C(X)). The ii-closure of a subset A of X, is the intersection of all ii-
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closed sets containing A in X and is denoted by ii-Cl(A). The ii-interior of a subset A of X is the union of all ii-

open sets contained in A and is denoted by ii-Int(A). 

Remark 2.2. For a subset of a space, we have following implications: 

  b-open             -open              

                                                                                                                                                                                                                                                

                                             pre-open              ii-open              semi-open                                                                                                                                                                                               

                                                                                                                      

                                             b- open            - open            b-open                                                         

Where none of the implications is reversible as can be seen from the following examples: 

Example 2.3. Let X = {a, b, c, d} and  = {, {a}, {b}, {a, b}, {a, b, c}, X}. Then  

(1) b-open sets in (X, ) are , X, {a}, {b}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, 

c, d}.  

(2) pre-open sets in (X, ) are , X, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}. 

(3) semi-open sets in (X, ) are , X, {a}, {b}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {a, c, d}, 

{b, c, d}.  

(4) -open sets in (X, ) are , X, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}.  

(5) -open sets in (X, ) are , X, {a}, {b}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, 

c, d}.  

(6) ii-open sets in (X, ) are , X, {a}, {b}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, 

c, d}.  

Example 2.4. Let X = {a, b, c} and  = {, {a}, {b}, {a, b}, X}. Then  

(1) b-open sets in (X, ) are , X, {a}, {b}, {a, b}, {a, c}, {b, c}.  

(2) pre-open sets in (X, ) are , X, {a}, {b}, {a, b}. 

(3) semi-open sets in (X, ) are , X, {a}, {b}, {a, b}, {b, c}.  

(4) -open sets in (X, ) are , X, {a}, {b}, {a, b}.  

(5) -open sets in (X, ) are , X, {a}, {b}, {a, b}, {a, c}.  

(6) ii-open sets in (X, ) are , X, {a}, {b}, {a, b}, {a, c}, {b, c}.  

Example 2.5. Let X = {a, b, c} and  = {, {a}, {b, c}, X}. Then  

(1) b-open sets in (X, ) are , X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}.  

(2) pre-open sets in (X, ) are , X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}. 

(3) semi-open sets in (X, ) are , X, {a}, {b, c}.  

(4) -open sets in (X, ) are , X, {a}, {b, c}.  

(5) -open sets in (X, ) are , X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}.  

(6) ii-open sets in (X, ) are , X, {a}, {b, c}.  

Example 2.6. Let X = {a, b, c, d} and  = {, {a}, {b, c, d}, X}. Then  
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(1) b-open sets in (X, ) are , X, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, 

d}, {a, c, d}, {b, c, d}.  

(2) pre-open sets in (X, ) are , X, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, 

b, d}, {a, c, d}, {b, c, d}.  

(3) semi-open sets in (X, ) are , X, {a}, {b, c, d}.  

(4) -open sets in (X, ) are , X, {a}, {b, c, d}.  

(5) -open sets in (X, ) are , X, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, 

d}, {a, c, d}, {b, c, d}.  

 (6) ii-open sets in (X, ) are , X, {a}, {b}, {c}, {d}, {b, c}, {b, d}, {c, d}, {b, c, d}. 

Remark 2.7. The concepts of ii-open and pre-open sets are independent as shown in the above examples.  

Remark 2.8. The concepts of ii-open and β-open sets are independent as shown in the above examples.  

Definition 2.9. A space X is said to be:  

(i) b-T0 [3] if for each pair of distinct points x and y in X, there exists a b-open set G containing x but not y or a 

b-open set H containing y but not x. 

(ii) b-T1 [3] if for each pair of distinct points x, y in X, there exist a b-open set G containing x but not y and a b-

open set H containing y but not x.  

(iii) b-T2 [12] if for each pair of distinct points x, y of X, there exist two disjoint b-open sets U and V containing 

x and y respectively.  

Definition 2.10. A space X is said to be:  

(i) -T0 [9] if for each pair of distinct points x and y in X, there exists an -open set G containing x but not y or 

an -open set H containing y but not x.  

(ii) -T1 [9] if for each pair of distinct points x, y in X, there exist an -open set G containing x but not y and an 

-open set H containing y but not x.  

(iii) -T2 [7] if for each pair of distinct points x, y of X, there exist two of disjoint -open sets U and V 

containing x and y respectively.  

Definition 2.11. A space X is said to be: 

(i) semi-T0 [6] if for each pair of distinct points x and y in X, there exists a semi-open set G containing x but not 

y or a semi-open set H containing y but not x.  

(ii) semi-T1 [6] if for each pair of distinct points x, y in X, there exist a semi-open set G containing x but not y 

and a semi-open set H containing y but not x.  

(iii) semi-T2 [6] if for each pair of distinct points x, y of X, there exist two disjoint semi-open sets U and V 

containing x and y respectively.  

Theorem 2.12. (i) Every open set is ii-open.   

(ii) Every -open set is ii-open.  

(iii) Every semi-open set is ii-open. 

(iv) Every ii-open set is b-open. 

Definition 2.13. Let X and Y be topological spaces. A function f : X  Y is said to be ii-continuous if the 

inverse image of every open set in Y is ii-open in X. 

Definition 2.14. Let X and Y be topological spaces. A function f : X  Y is said to be ii-closed if the image of 

every closed set in X is ii-closed in Y. 
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Definition 2.15. Let X and Y be topological spaces. A function f : X  Y is said to be ii-irresolute if the 

inverse image of every ii-closed set in Y is ii-closed in X. 

Definition 2.16. Let X be a topological space. A subset N  X is called an ii-neighbourhood (briefly ii-nhd) of 

a point x  X if there exists an ii-open set G such that x  G  N. 

III. ii-T0 Spaces 

In this section, we define ii-T0 space and study some of their properties via some other weaker forms of open 

sets.  

Definition 3.1. A topological space (X, ) is said to be ii-T0 if for each pair of distinct points x, y in X, there 

exists an ii-open set U such that either x ∈ U and y  U or x  U and y ∈ U. 

Theorem 3.2. (i) Every semi-T0 space is ii-T0. 

(ii) Every -T0 space is ii-T0. 

(iii) Every ii-T0 space is b-T0. 

Proof. (i) Let X be a semi-T0 space. Let x and y be any two distinct points in X. Since X is semi-T0, there exists 

a semi-open set U such that x  U and y  U or y  U and x  U. By Theorem 2.12 (iii), U is an ii-open set 

such that x  U and y  U or y  U and x  U. Thus X is ii-T0. 

(ii) Since every -open set is ii-open and so, by the Theorem 2.12 (ii), every -T0 space is ii-T0. 

(iii) Since every ii-open set is b-open and so, by the Theorem 2.12 (iv), every ii-T0 space is b-T0. 

Theorem 3.3. Every topological space is ii-T0. 

Proof. Since every open set is ii-open and so, by the Theorem 2.12 (i), every T0 space is ii-T0. 

Theorem 3.4. A topological space (X, ) is ii-T0 if and only if for each pair of distinct points x, y of X, ii-

Cl({x})  ii-Cl({y}).  

Proof. Necessity. Let (X, ) be an ii-T0 space and x, y be any two distinct points of X. There exists an ii-open 

set U containing x or y, say x but not y. Then X  U is an ii-closed set which does not contain x but contains y. 

Since ii-bCl({y}) is the smallest ii-closed set containing y, ii-Cl({y})  X  U and therefore x  ii-Cl({y}). 

Consequently ii-Cl({x})  ii-Cl({y}).  

Sufficiency. Suppose that x, y  X, x  y and ii-Cl({x})  ii-Cl({y}). Let z be a point of X such that z  ii-

Cl({x}) but z  ii-Cl({y}). We claim that x  ii-Cl({y}). For, if x  ii-Cl({y}) then ii-Cl({x})  ii-Cl({y}). This 

contradicts the fact that z  ii-Cl({y}). Consequently x belongs to the ii-open set X  ii-Cl({y}) to which y does 

not belong. 

Theorem 3.5. Every subspace of an ii-T0 space is ii-T0. 

Proof. Let (Y,) be a subspace of a topological space (X, ), where  is the relative topology of  on Y. Let x, y 

be two distinct points of Y. As Y  X, x and y are also distinct points of X and there exists an ii-open set G such 

that x  G but y  G, since X is ii-T0. Then G  Y is an ii-open set in (Y, ) which contains x but does not 

contain y. Hence (Y, ) is an ii-T0 space. 

IV.  ii-T1 Spaces 

In this section, we define ii-T1 space and study some of their properties via some other weaker forms of open 

sets.  

Definition 4.1. A topological space (X, ) is said to be ii-T1 if for each pair of distinct points x, y in X, there 

exist two ii-open sets U and V such that x  U but y  U and y  V but x  V . 

Theorem 4.2. (i) Every semi-T1 space is ii-T1.      

(ii) Every -T1 space is ii-T1. 

(iii) Every ii-T1 space is b-T1. 
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Proof. (i). Suppose X is a semi-T1 space. Let x and y be two distinct points in X. Since X is semi-T1, there exist 

semi-open sets U and V such that x  U but y  U and y  V but x  V. By Theorem 2.12 (iii), every semi-

open set is ii-open, so U and V are ii-open sets such that x  U but y  U and y  V but x  V. Hence X is ii-

T1. 

(ii). Since every -open set is ii-open and so, by the Theorem 2.12 (ii), every -T1 space is ii-T1. 

(iii) Since every ii-open set is b-open and so, by the Theorem 2.12 (iv), every ii-T1 space is b-T1. 

Theorem 4.3. Let f : X  Y be an ii-irresolute, injective map. If Y is ii-T1, then X is ii-T1.  

Proof. Assume that Y is ii-T1. Let x, y  Y with x  y. Then there exists a pair of ii-open sets U, V of Y such 

that f(x)  U, f(y)  V and f(x)  V, f(y)  U. Then x  f 
–1

(U), y  f 
–1

(U) and y  f 
–1

(V), x  f 
–1

(V). Since f 

is ii-irresolute, X is ii-T1.  

Theorem 4.4. A topological space (X,  ) is ii-T1 if and only if the singletons are ii-closed sets.  

Proof. Let (X, ) be ii-T1 and x be any point of X. Suppose y  X  {x}, then x  y and so there exists an ii-

open set U such that y  U but x  U. Consequently y  U  X  {x}, that is X  {x} =  {U : y  X  {x}} 

which is ii-open.  

Conversely, suppose {p} is ii-closed for every p  X. Let x, y  X with x  y. Now x  y implies y  X  {x}. 

Hence X  {x} is an ii-open set contains y but not x. Similarly X  {y} is an ii-open set contains x but not y. 

Accordingly, X is an ii-T1 space. 

Theorem 4.5. Let f : X  Y be bijective. 

(i) If f is ii-continuous and (Y, 2) is T1, then (X, 1) is ii-T1. 

(ii) If f is ii-open and (X, 1) is ii-T1, then (Y, 2) is ii-T1. 

Proof. Let f : (X, 1)  (Y, 2) be bijective. 

(i) Suppose f : (X, 1)  (Y, 2) is ii-continuous and (Y, 2) is T1. Let x1, x2  X with x1  x2. Since f is 

bijective, y1 = f(x1)  f(x2) = y2 for some y1, y2  Y. Since (Y, 2) is T1, there exist open sets G sand H such that 

y1  G but y2  G and y2  H but y1  H. Since f is bijective, x1 = f 
–1

(y1)  f 
–1

(G) but x2 = f 
–1

(y2)  f 
–1

(G) and 

x2 = f 
–1

(y2)  f 
–1

(H) but x1 = f 
–1

(y1)  f 
–1

(H). Since f is ii-continuous, f 
–1

(G) and f 
–1

(H) are ii-open sets in (X, 

1). It follows that (X, 1) is ii-T1. This proves (i). 

(ii) Suppose f  is ii-open and (X, 1) is ii-T1. Let y1  y2  Y. Since f is bijective, there exist x1, x2 in X, such 

that y1 = f(x1) and f(x2) = y2 with x1  x2. Since (X, 1) is ii-T1, there exist ii-open sets G sand H in X such that x1 

 G but x2  G and x2  H but x1  H. Since f is ii-open, f(G) and f(H) are ii-open in Y such that y1 = f(x1)  

f(G) and y2 = f(x2)  f(H). Again since f is bijective, y2 = f(x2)  f(G) and y1 = f(x1)  f(H). Thus (Y, 2) is ii-

T1. This proves (ii). 

Definition 4.6. A topological space (X, ) is said to be ii-symmetric if for x and y in X, x  ii-Cl({y}) implies 

y  ii-Cl({x}). 

Theorem 4.7. If (X, ) is a topological space, then the following are equivalent: 

(i) (X, ) is an ii-symmetric space.  

(ii) {x} is ii-closed, for each x  X.  

Proof. (i)  (ii). Assume that {x}  U  ii-O(X), but ii-Cl({x})  U. Then ii-Cl({x})  (X  U)   . Now, we 

take y  ii-Cl({x})  (X  U), then by hypothesis x  ii-Cl({y})  X  U and x  U, which is a contradiction. 

Therefore {x} is ii-closed, for each x  X.  

(ii)  (i). Assume that x  ii-Cl({y}), but y  ii-Cl({x}). Then {y}  X  ii-Cl({x}) and hence ii-Cl({y})  X 

 ii-Cl({x}). Therefore x  X  ii-Cl({x}), which is a contradiction and hence y  ii-Cl({x}).  

Corollary 4.8. If a topological space (X, ) is an ii-T1 space, then it is ii-symmetric.  
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Proof. In an ii-T1 space, every singleton is ii-closed (Theorem 4.4) and therefore is by Theorem 4.7, (X, ) is 

ii-symmetric.  

Corollary 4.9. If a topological space (X, ) is ii-symmetric and ii-T0, then (X, ) is ii-T1.  

Proof. Let x  y and as (X, ) is ii-T0, we may assume that x  U  X  {y} for some U  ii-O(X). Then x  

ii-Cl({y}) and hence y  ii-Cl({x}). There exists an ii-open set V such that y  V  X  {x} and thus (X, ) is 

an ii-T1 space.  

V.  ii-T2 Spaces 

In this section, we introduce ii-T2 space and investigate some of their basic properties via some other weaker 

forms of open sets. 

Definition 5.1. A space X is said to be ii-T2 if for every pair of distinct points x and y in X, there exist disjoint 

ii-open sets U and V of X containing x and y respectively.  

Remark 5.2. For a space, we have following implications:                                                                                                       

       T2              T1               T0 

                                                  

    -T2            -T1          -T0 

                                                  

semi-T2         semi-T1      semi-T0 

                                                  

    ii-T2             ii-T1          ii-T0 

                                                  

     b-T2           b-T1           b-T0 

Where none of the implications are reversible as can be seen from the following examples. 

Example 5.3.Consider the space (X, ), where X  {a, b, c, d} and   {, {a}, {b}, {a, b}, {a, b, c}, X}. 

Clearly (X, ) is ii-T1 as well as b-T1. But it is neither T1 nor -T1.  

Example 5.4. Consider the space (X, ), where X = {a, b, c, d} and  = {, {a, b}, {a, b, c}, {a, b, d}, X}. Then 

(X,) is b-T1 but not ii-T1. But it is neither semi-T1 nor -T1. 

Example 5.5. Consider the space (X, ), where X = {a, b, c} and  = {, {a, b}, X}. Then (X,) is b-T2 but not 

ii-T2. But it is neither semi-T2 nor -T2. 

Example 5.6. Consider the space (X, ), where X = {a, b, c} and  = {, {a}, {b, c}, X}. Then (X,) is b-T2 

but not ii-T2. But it is neither semi-T2 nor -T2. 

Example 5.7. Consider the space (X, ), where X = {a, b, c, d} and  = {, {a}, {b}, {a, b}, X}. Then (X,) is 

semi-T2 as well as ii-T2. But it is not -T2. 

Example 5.8. Consider the space (X, ), where X = {a, b, c} and  = {, {a}, {b, c}, X}. Then (X,) is b-T0. 

But it is neither ii-T0 nor -T0. 

Theorem 5.9. (i) Every semi-T2 space is ii-T2.   

(ii) Every -T2 space is ii-T2. 

(iii) Every ii-T2 space is b-T2. 
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Proof. (i) Let X be a semi-T2 space. Let x and y be two distinct points in X. Since X is semi-T2, there exist 

disjoint semi-open sets U and V such that x  U and y  V. By Theorem 2.12 (iii), U and V are disjoint ii-open 

sets such that x  U and y  V. Hence X is ii-T2.  

(ii) Suppose X is -T2 space. Let x and y be two distinct points in X. Since X is -T2, there exist disjoint -open 

sets U and V such that x  U and y  V. By Theorem 2.12 (ii), U and V are disjoint ii-open sets such that x  

U and y  V. Hence X is ii-T2.  

(iii) Suppose X is ii-T2 space. Let x and y be two distinct points in X. Since X is ii-T2, there exist disjoint ii-open 

sets U and V such that x  U and y  V. By Theorem 2.12 (iv), U and V are disjoint b-open sets such that x  

U and y  V. Hence X is b-T2.  

Theorem 5.10. Every ii-T2 space is ii-T1. 

Proof. Let X be an ii-T2 space. Let x and y be two distinct points of X. Since X is ii-T2, there exist disjoint ii-

open sets U and V such that x  U and y  V. Since U and V are disjoint, so x  U but y  U and y  V but x 

 V. Hence X is ii-T1.  

Theorem 5.11. For a topological space X, the following are equivalent: 

(i) X is an ii-T2 space.    

(ii) Let x  X. Then for each x  y, there exists an ii-open set U such that x  U and y  ii-Cl(U).    

(iii) For each x  X,  {ii-Cl(U) : U  ii-O(X) and x  U} = {x}. 

Proof. (i)  (ii). Suppose X is an ii-T2 space. Then for each x  y, there exist disjoint ii-open sets U and V such 

that x  U and y  V. Since V is ii-open, Vc is ii-closed and U  Vc. This implies that ii-Cl(U)  Vc. Since y  

Vc, y  ii-Cl(U). 

(ii)  (iii). If y  x, then there exists an ii-open set U such that x  U and y  ii-Cl(U). Therefore y   {ii-

Cl(U) : U  ii-O(X) and x  U}. Therefore  {ii-Cl(U) : U  ii-O(X) and x  U} = {x}. This proves (iii).  

(iii)  (i). Let y  x in X. Then y  {x} =  {ii-Cl(U) : U  ii-O(X) and x  U}. This implies that there exists 

an ii-open set U such that x U and y  ii-Cl(U). Let V = (ii-Cl(U))c. Then V is ii-open and y  V. Now U  V 

= U  (ii-Cl(U))c  U  (U)c = . Therefore, X is ii-T2 space. 

Theorem 5.12. Let f : X  Y be a bijection. 

(i) If f is ii-open and X is T2, then Y is ii-T2.   

(ii) If f is ii-continuous and Y is T2, then X is ii-T2.  

Proof. Let f : X  Y be a bijection. 

(i) Suppose F is ii-open and X is T2. Let y1  y2  Y. Since f is a bijection. There exist x1, x2 in X such that f(x1) 

= y1 and f(x2) = y2 with x1  x2. Since X is T2, there exist disjoint open sets U and V in X such that x1  U and 

x2  V. Since f is ii-open, f(U) and f (V) are ii-open in Y such that y1 = f(x1)  f(U) and y2 = f(x2)  f(V). Again 

since f is a bijection, f(U) and f(V) are disjoint in Y. Thus Y is ii-T2. 

(ii) Suppose f : X  Y is ii-continuous and Y is T2. Let x1, x2  X with x1  x2. Let y1 = f(x1) and y2 = f(x2). 

Since f is one-one, y1  y2. Since Y is T2, there exist disjoint open sets U and V containing y1 and y2 

respectively. Since f is ii-continuous bijective, f 
–1

(U) and f 
–1

(V) are disjoint ii-open sets containing x1 and x2 

respectively. Thus X is ii-T2. 

Theorem 5.13. A topological space (X, ) is ii-T2 if and only if the intersection of all ii-closed, ii-

neighbourhoods of each point of the space is reduced to that point. 

Proof. Let (X, ) be ii-T2 and x  X. Then for each y  x in X, there exist disjoint ii-open sets U and V such 

that x  U, y  V. Now U  V =  implies x  U  Vc. Therefore Vc is an ii-neighbourhood of x. Since V is ii-
open, Vc is ii-closed and ii-neighbourhood of x to which y does not belong. That is there is an ii-closed, ii-
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neigbourhoods of x which does not contain y. So we get the intersection of all ii-closed, ii-neighbourhood of x is 

{x}. 

Conversely, let x, y  X such that x  y in X. Then by assumption, there exist an ii-closed, ii-neighbourgood V 

of x such that y  V. Now there exists an ii-open set U such that x  U  V. Thus U and Vc are disjoint ii-open 

sets containing x and y respectively. Thus (X, ) is ii-T2. 

Theorem 5.14. If f : X  Y be bijective, ii-irresolute map and X is ii-T2, then (X, 2) is ii-T2. 

Proof. Suppose f : (X, 1)  (Y, 2) is bijective. f is ii-irresolute, and (Y, 2) is ii-T2. Let x1, x2  X with x1  

x2. Since f is bijective, y1 = f(x1)  f(x2) = y2 for some y1, y2  Y. Since (Y, 2) is ii-T2, there exist disjoint ii-

open sets G and H such that y1  G and y2  H. Again since f is bijective, x1 = f 
–1

(y1)  f 
–1

(G) and x2 = f 
–1

(y) 

 f 
–1

(H). Since f is ii-irresolute, f 
–1

(G) and f 
–1

(H) are ii-open sets in (X, 1). Also f is bijective, G  H =  

implies that f 
–1

(G)  f 
–1

(H) = f 
–1

(G  H) = f() = . It follows that (X, 2) is ii-T2. 

VI.  ii-Rk Space (k = 0, 1) 

In this section, new classes of topological spaces called, ii-R0 and ii-R1 spaces are introduced.  

Definition 6.1. A topological space (X, ) is said to be ii-R0 if U is an ii-open set and x  U then ii-Cl({x})  

U.  

Theorem 6.2. For a topological space (X, ) the following properties are equivalent:  

(i) (X, ) is ii-R0.     

(ii) For any F  ii-C(X), x  F implies F  U and x  U for some U  ii-O(X).  

(iii) For any F  ii-C(X), x  F implies F  ii-Cl({x}) = .  

(iv) For any distinct points x and y of X, either ii-Cl({x}) = ii-Cl({y}) or ii-Cl({x})  ii-Cl({y}) = .  

Proof. (i)  (ii). Let F  ii-C(X) and x  F. Then by (i), ii-Cl({x})  X  F. Set U = X  ii-Cl({x}), then U is 

an ii-open set such that F  U and x  U.  

(ii)  (iii). Let F  ii-C(X) and x  F. There exists U  ii-O(X) such that F  U and x  U. Since U  ii-O(X), 

U  ii-Cl({x}) =  and F  ii-Cl({x}) = .  

(iii)  (iv). Suppose that ii-Cl({x})  ii-Cl({y}) for distinct points x, y  X. There exists z  ii-Cl({x}) such 

that z  ii-Cl({y}) (or z  ii-Cl({y}) such that z  ii-Cl({x})). There exists V  ii-O(X) such that y  V and z  

V; hence x  V. Therefore, we have x  ii-Cl({y}). By (iii), we obtain ii-Cl({x})  ii-Cl({y}) = .  

(iv)  (i). Let V  ii-O(X) and x  V. For each y  V, x  y and x  ii-Cl({y}). This shows that ii-Cl({x})  ii-

Cl({y}). By (iv), ii-Cl({x})  ii-Cl({y}) =  for each y  X  V and hence ii-Cl({x})  (  y  X  V  ii-Cl({y})) 

= . On other hand, since V  ii-O(X) and y  X  V, we have ii-Cl({y})  X  V and hence X  V =  y  X  V  

ii-Cl({y}). Therefore, we obtain (X  V)  ii-Cl({x}) =  and ii-Cl({x})  V. This shows that (X, ) is an ii-R0 

space.  

Theorem 6.3. If a topological space (X, ) is ii-T0 and an ii-R0 space then it is ii-T1.  

Proof. Let x and y be any distinct points of X. Since X is ii-T0, there exists an ii-open set U such that x  U and 

y  U. As x  U implies that ii-Cl({x})  U. Since y  U, so y  ii-Cl({x}). Hence y  V = X  ii-Cl({x}) and 

it is clear that x  V. Hence it follows that there exist ii-open sets U and V containing x and y respectively, such 

that y  U and x  V. This implies that X is ii-T1.  

Theorem 6.4. For a topological space (X, ) the following properties are equivalent:  

(i) (X, ) is ii-R0.      

(ii) x  ii-Cl({y}) if and only if y  ii-Cl({x}), for any points x and y in X.  
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Proof. (i)  (ii). Assume that X is ii-R0. Let x  ii-Cl({y}) and V be any ii-open set such that y  V. Now, by 

hypothesis, x  V. Therefore, every ii-open set which contain y contains x also. Hence y  ii-Cl({x}).  

(ii)  (i). Let U be an ii-open set and x  U. If y  U, then x  ii-Cl({y}) and hence y  ii-Cl({x}). This 

implies that ii-Cl({x})  U. Hence (X, ) is ii-R0.  

From Definition 4.6 and Theorem 6.4, the notions of ii-symmetric and ii-R0 are equivalent. 

Definition 6.5. Let A be a subset of a topological space (X, ). The ii-kernel of A, denoted by ii-ker(A) is 

defined to be the set  

ii-ker(A) =   {U  ii-O(X) : A  U}. 

Theorem 6.6. Let (X, ) be a topological space and x  X. Then y  ii-ker({x}) if and only if x  ii-Cl({y}).  

Proof. Suppose that y  ii-ker({x}). Then there exists an ii-open set V containing x such that y  V. Therefore, 

we have x  ii-Cl({y}). The proof of the converse case can be done similarly.  

Theorem 6.7. Let (X, ) be a topological space and A be a subset of X. Then, ii-ker(A) = {x  X : ii-Cl({x})  

A  }.  

Proof. Let x  ii-ker(A) and suppose ii-Cl({x})  A = . Hence x  X  ii-Cl({x}) which is an ii-open set 

containing A. This is impossible, since x  ii-ker(A). Consequently, ii-Cl({x})  A  . Next, let x  X such 

that ii-Cl({x})  A   and suppose that x  ii-ker(A). Then, there exists an ii-open set V containing A and x  

V. Let y  ii-Cl({x})  A. Hence, V is an ii-neighbourhood of y which does not contain x. By this contradiction 

x  ii-ker(A) and the claim. 

Definition 6.8. A subset A of a topological space X is called an ii-difference set (briefly, ii-D-set) if there are 

U, V  ii-O(X) such that U  X and A = U  V.  

Theorem 6.9. The following properties hold for the subsets A, B of a topological space (X, ):  

(i) A  ii-ker(A).  

(ii) A  B implies that ii-ker(A)  ii-ker(B).  

(iii) If A is ii-open in (X, ), then A = ii-ker(A).  

(iv) ii-ker(ii-ker(A)) = ii-ker(A).  

Proof. (i), (ii) and (iii) are immediate consequences of Definition 6.5. To prove (iv), first observe that by (i) and 

(ii), we have ii-ker(A)  ii-ker(ii-ker(A)). If x  ii-ker(A), then there exists U  ii-O(X) such that A  U and x 

 U. Hence ii-ker(A)  U, and so we have x  ii-ker(ii-ker(A)). Thus ii-ker(ii-ker(A)) = ii-ker(A).  

Proposition 6.10. If a singleton {x} is an ii-D-set of (X, ), then ii-ker({x})  X.  

Proof. Since {x} is an ii-D-set of (X, ), then there exist two subsets U1, U2  ii-O(X) such that {x} = U1  U2, 

{x}  U1 and U1  X. Thus, we have that ii-ker({x})  U1  X and so ii-ker({x})  X.   

Theorem 6.11. The following statements are equivalent for any points x and y in a topological space (X, ):  

(i) ii-ker({x})  ii-ker({y}).     

(ii) ii-Cl({x})  ii-Cl({y}).  

Proof. (i)  (ii). Suppose that ii-ker({x})  ii-ker({y}), then there exists a point z in X such that z  ii-ker({x}) 

and z  ii-ker({y}). From z  ii-ker({x}) it follows that {x}  ii-Cl({z})   which implies x  ii-Cl({z}). By z 

 ii-ker({y}), we have {y}  ii-Cl({z}) = . Since x  ii-Cl({z}), ii-Cl({x})  ii-Cl({z}) and {y}  ii-Cl({x}) 

= . Therefore, it follows that ii-Cl({x})  ii-Cl({y}). Now ii-ker({x})  ii-ker({y}) implies that ii-Cl({x})  ii-

Cl({y}).  

http://www.ijmttjournal.org/


International Journal of Mathematics Trends and Technology (IJMTT) – Volume 65 Issue 11 - Nov 2019 

 

ISSN: 2231-5373                                  http://www.ijmttjournal.org                              Page 26 

(ii)  (i). Suppose that ii-Cl({x})  ii-Cl({y}). Then there exists a point z in X such that z  ii-Cl({x}) and z  

ii-Cl({y}). Then, there exists an ii-open set containing z and therefore x but not y, namely, y  ii-ker({x}) and 

thus ii-ker({x})  ii-ker({y}).  

Theorem 6.12. Let (X, ) be a topological space. Then  {ii-Cl({x}) : x  X} =  if and only if ii-ker({x})  X 

for every x  X.  

Proof. Necessity. Suppose that  {ii-Cl({x}) : x  X} = . Assume that there is a point y in X such that ii-

ker({y}) = X. Let x be any point of X. Then x  V for every ii-open set V containing y and hence y  ii-Cl({x}) 

for any x  X. This implies that y  {ii-Cl({x}) : x  X}. But this is a contradiction. 

Sufficiency. Assume that ii-ker({x})  X for every x  X. If there exists a point y in X such that y   {ii-

Cl({x}) : x  X}, then every ii-open set containing y must contain every point of X. This implies that the space 

X is the unique ii-open set containing y. Hence ii-ker({y}) = X which is a contradiction. Therefore,  {ii-

Cl({x}) : x  X} = .  

Theorem 6.13. A topological space (X, ) is ii-R0 if and only if for every x and y in X, ii-Cl({x})  ii-Cl({y}) 

implies ii-Cl({x})  ii-Cl({y}) = .  

Proof. Necessity. Suppose that (X, ) is ii-R0 and x, y  X such that ii-Cl({x})  ii-Cl({y}). Then, there exists z 

 ii-Cl({x}) such that z  ii-Cl({y}) (or z  ii-Cl({y}) such that z  ii-Cl({x})). There exists V  ii-O(X) such 

that y  V and z  V, hence x  V. Therefore, we have x  ii-Cl({y}). Thus x  [X  ii-Cl({y})]  ii-O(X), 

which implies ii-Cl({x})  [X  ii-Cl({y})] and ii-Cl({x})  ii-Cl({y}) = .  

Sufficiency. Let V  ii-O(X) and let x  V. We still show that ii-Cl({x})  V. Let y  V,  that is y  X  V. 

Then x  y and x  ii-Cl({y}). This shows that ii-Cl({x})  ii-Cl({y}). By assumption, ii-Cl({x})  ii-Cl({y}) = 

. Hence y  ii-Cl({x}) and therefore ii-Cl({x})  V.  

Theorem 6.14. A topological space (X, ) is ii-R0 if and only if for any points x and y in X, ii-ker({x})  ii-

ker({y}) implies ii-ker({x})  ii-ker({y}) = .  

Proof. Suppose that (X, ) is an ii-R0 space. Thus by Theorem 6.11, for any points x and y in X if ii-ker({x})  

ii-ker({y}) then ii-Cl({x})  ii-Cl({y}). Now we prove that ii-ker({x})  ii-ker({y}) = . Assume that z  ii-

ker({x})  ii-ker({y}). By z  ii-ker({x}) and Theorem 6.6, it follows that x  ii-Cl({z}). Since x  ii-Cl({x}), 

by Theorem 6.2, ii-Cl({x}) = ii-Cl({z}). Similarly, we have ii-Cl({y}) = ii-Cl({z}) = ii-Cl({x}). This is a 

contradiction. Therefore, we have ii-ker({x})   ii-ker({y}) = .  

Conversely, let (X, ) be a topological space such that for any points x and y in X, ii-ker({x})  ii-ker({y}) 

implies ii-ker({x})  ii-ker({y}) = . If ii-Cl({x})  ii-Cl({y}), then by Theorem 6.11, ii-ker({x})  ii-ker({y}). 

Hence, ii-ker({x})  ii-ker({y}) =  which implies ii-Cl({x})  ii-Cl({y}) = . Because z  ii-Cl({x}) implies 

that x  ii-ker({z}) and therefore ii-ker({x})  ii-ker({z})  . By hypothesis, we have ii-ker({x}) = ii-ker({z}). 

Then z  ii-Cl({x})  ii-Cl({y}) implies that ii-ker({x}) = ii-ker({z}) = ii-ker({y}). This is a contradiction. 

Therefore, ii-Cl({x})  ii-Cl({y}) =  and by Theorem 6.2, (X, ) is an ii-R0 space.  

Theorem 6.15. For a topological space (X, ) the following properties are equivalent:  

(i) (X, ) is an ii-R0 space.             

(ii) For any non-empty set A and G  ii-O(X) such that A  G  , there exists F  ii-C(X) such that A  F   

and F  G.         

(iii) For any G  ii-O(X), we have G =  {F  ii-C(X) : F  G}.       

(iv) For any F  ii-C(X), we have F =  {G  ii-O(X) : F  G}.  

(v) For every x  X, ii-Cl({x})  ii-ker({x}).  
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Proof. (i)  (ii). Let A be a non-empty subset of X and G  ii-O(X) such that A  G  . There exists x  A  

G. Since x  G  ii-O(X), ii-Cl({x})  G. Set F = ii-Cl({x}), then F  ii-C(X), F  G and A  F  .  

(ii)  (iii). Let G  ii-O(X), then G  {F  ii-C(X) : F  G}. Let x be any point of G. There exists F  ii-

C(X) such that x  F and F  G. Therefore, we have x  F   {F  ii-C(X) : F  G} and hence G =  {F  

ii-C(X) : F  G}.  

(iii)  (iv). Obvious.  

(iv)  (v). Let x be any point of X and y  ii-ker({x}). There exists V  ii-O(X) such that x  V and y  V, 

hence ii-Cl({y})  V = . By (iv), ( {G  ii-O(X) : ii-Cl({y})  G})  V =  and there exists G  ii-O(X) 

such that x  G and ii-Cl({y})  G. Therefore ii-Cl({x})  G =  and y  ii-Cl({x}). Consequently, we obtain 

ii-Cl({x})  ii-ker({x}).  

(v)  (i). Let G  ii-O(X) and x  G. Let y  ii-ker({x}), then x  ii-Cl({y}) and y  G. This implies that ii-

ker({x})  G. Therefore, we obtain x  ii-Cl({x})  ii-ker({x})  G. This shows that (X, ) is an ii-R0 space.  

Corollary 6.16. For a topological space (X, ) the following properties are equivalent:  

(i) (X, τ ) is an ii-R0 space.     

(ii) ii-Cl({x}) = ii-ker({x}) for all x  X.  

Proof. (i)  (ii). Suppose that (X, ) is an ii-R0 space. By Theorem 6.15, ii-Cl({x})  ii-ker({x}) for each x  

X. Let y  ii-ker({x}), then x  ii-Cl({y}) and by Theorem 6.2, ii-Cl({x}) = ii-Cl({y}). Therefore, y  ii-

Cl({x}) and hence ii-ker({x})  ii-Cl({x}). This shows that ii-Cl({x}) = ii-ker({x}).  

(ii)  (i). Follows from Theorem 6.15.  

Theorem 6.17. For a topological space (X, ) the following properties are equivalent:  

(i) (X, ) is an ii-R0 space.     

(ii) If F is ii-closed, then F = ii-ker(F).  

(iii) If F is ii-closed and x  F, then ii-ker({x})  F.     

(iv) If x  X, then ii-ker({x})  ii-Cl({x}).  

Proof. (i)  (ii). Let F be an ii-closed and x  F. Thus (X  F) is an ii-open set containing x. Since (X, ) is ii-

R0, ii-Cl({x})  (X  F). Thus ii-Cl({x})  F =  and by Theorem 6.7, x  ii-ker(F). Therefore ii-ker(F) = F.  

(ii)  (iii). In general, A  B implies ii-ker(A)  ii-ker(B). Therefore, it follows from (ii), that ii-ker({x})  ii-

ker(F) = F.  

(iii)  (iv). Since x  ii-Cl({x}) and ii-Cl({x}) is ii-closed, by (iii), ii-ker({x})  ii-Cl({x}).  

(iv)  (i). We show the implication by using Theorem 6.4. Let x  ii-Cl({y}). Then by Theorem 6.6, y  ii-

ker({x}). Since x  ii-Cl({x}) and ii-Cl({x}) is ii-closed, by (iv), we obtain y  ii-ker({x})  ii-Cl({x}). 

Therefore x  ii-Cl({y}) implies y  ii-Cl({x}). The converse is obvious and (X, ) is ii-R0.  

Definition 6.18. A topological space (X, ) is said to be ii-R1 if for x, y in X with ii-Cl({x})  ii-Cl({y}), there 

exist disjoint ii-open sets U and V such that ii-Cl({x})  U and ii-Cl({y})  V.  

Theorem 6.19. A topological space (X, ) is ii-R1 if it is ii-T2.  

Proof. Let x and y be any points of X such that ii-Cl({x})  ii-Cl({y}). By Theorem 5.10, every ii-T2 space is 

ii-T1. Therefore, by Theorem 4.4, ii-Cl({x}) = {x}, ii-Cl({y}) = {y} and hence {x}  {y}. Since (X, ) is ii-T2, 

there exist disjoint ii-open sets U and V such that ii-Cl({x}) = {x}  U and ii-Cl({y}) = {y}  V. This shows 

that (X, ) is ii-R1.  
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Theorem 6.20. If a topological space (X, ) is ii-symmetric, then the following are equivalent:  

(i) (X, ) is ii-T2.     

(ii) (X, ) is ii-R1 and ii-T1.      

(iii) (X, ) is ii-R1 and ii-T0.  

Proof. Straightforward.  

Theorem 6.21. For a topological space (X, ) the following statements are equivalent:  

(i) (X, ) is ii-R1.  

(ii) If x, y  X such that ii-Cl({x})  ii-Cl({y}), then there exist ii-closed sets F1 and F2 such that x  F1, y  F1, 

y  F2, x  F2 and X = F1  F2.  

Proof. Obvious.  

Theorem 6.22. If (X, ) is ii-R1, then (X, ) is ii-R0.  

Proof. Let U be an ii-open set such that x  U. If y  U, since x  ii-Cl({y}), we have ii-Cl({x})  ii-Cl({y}). 

So, there exists an ii-open set V such that ii-Cl({y})  V and x  V , which implies y  ii-Cl({x}). Hence ii-

Cl({x})  U. Therefore, (X, ) is ii-R0.  

Corollary 6.23. A topological space (X, ) is ii-R1 if and only if for x, y  X, ii-ker({x})  ii-ker({y}), there 

exist disjoint ii-open sets U and V such that ii-Cl({x})  U and ii-Cl({y})  V.  

Proof. Follows from Theorem 6.11.  

Theorem 6.24. A topological space (X, ) is ii-R1 if and only if x  X  ii-Cl({y}) implies that x and y have 

disjoint ii-open neighbourhoods.  

Proof. Necessity. Let x  X  ii-Cl({y}). Then ii-Cl({x})  ii-Cl({y}), so, x and y have disjoint ii-open 

neighbourhoods.  

Sufficiency. First, we show that (X, ) is ii-R0. Let U be an ii-open set and x  U. Suppose that y  U. Then, ii-

Cl({y})  U =  and x  ii-Cl({y}). There exist ii-open sets Ux and Uy such that x  Ux, y  Uy and Ux  Uy = 

. Hence, ii-Cl({x})  ii-Cl(Ux) and ii-Cl({x})  Uy  ii-Cl(Ux)  Uy = . Therefore, y  ii-Cl({x}). 

Consequently, ii-Cl({x})  U and (X, ) is ii-R0. Next, we show that (X, ) is ii-R1. Suppose that ii-Cl({x})  

ii-Cl({y}). Then, we can assume that there exists z  ii-Cl({x}) such that z  ii-Cl({y}). There exist ii-open sets 

Vz and Vy such that z  Vz, y  Vy and Vz  Vy = . Since z  ii-Cl({x}), x  Vz. Since (X, ) is ii-R0, we 

obtain ii-Cl({x})  Vz, ii-Cl({y})  Vy and Vz  Vy = . This shows that (X, ) is ii-R1.  
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