ii-Separation Axioms in Topological Spaces

Hamant kumar

Department of Mathematics

Government Degree College, Bilaspur-Rampur, 244921, U.P. (India)

Abstract. The aim of this paper is to study and investigate the ii-open sets in topological spaces and to obtain a relationship among b-open, pre-open, semi-open, α -open and β -open sets. Some new types of separation axioms such as ii- T_0 , ii- T_1 , ii- R_0 and ii- R_1 axioms in topological spaces by using ii-open sets also are introduced. The relationships among ii- T_0 , ii- T_1 , ii- T_2 and some other separation axioms are investigated.

Keywords: *ii-open and ii-closed sets; ii-continuous and ii-irresolute functions; ii-T_k* (k = 0, 1, 2) *and ii-R_k* (k = 0, 1) *spaces.* **2010 AMS Subject classification**: 54A05, 54C08, 54C10, 54D15.

I. Introduction

In 1963, N. Levine [5] introduced the notion of semi-open sets which is a weaker form of open sets in topological spaces. In 1965, Njastad [11] introduced the notion of α -open sets. In 1975, Maheswari and Prasad [6] used semi-open sets to introduce the concepts of semi-T₀, semi-T₁ and semi-T₂ spaces. In 1980, Maheswari and Prasad [7] introduced the concept of α -T₂ space. In 1982, Mashhour [8] introduced the notion of pre-open sets and obtained their properties. In 1983, Monsef et al. [1] introduced and investigated the notion of β -open sets in topological spaces. In 1993, Maki et al. [9] introduced the concept of α -T₀ and α -T₀ spaces. In 1996, Andrijevic [2] introduced a new class of generalized open sets, called, b-open sets in topological spaces. This type of open sets were discussed by [4] under the name of γ -open sets. In 2006, Park [12] introduced the concept of b-T₂ spaces. In 2007, Caldas and Jafari [3] introduced and studied b-T₀ and b-T₁ spaces via b-open sets due to Andrijevic [2]. In 2019, Mohammed and Abdullah [10] introduced and investigated the notion of ii-open sets.

II. Preliminaries

Throughout this paper, spaces (X, \Im) , (Y, τ) , and (Z, η) (or simply X, Y and Z) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. For a subset A of X, **Cl**(A) and **Int**(A) represents the closure of A and Interior of A respectively.

Definition 2.1. A subset A of a topological space (X, \mathfrak{I}) is said to be

(i) pre-open set [8] if $A \subset Int(Cl(A))$;

(ii) semi-open set [5] if $A \subset Cl(Int(A))$;

(iii) α -open [11] if $A \subset Int(Cl(Int(A)))$;

(iv) β -open [1] if $A \subset Cl(Int(Cl(A)))$;

(v) b-open [2] (or γ -open [4]) if $A \subset In(Cl(A)) \cup Cl(Int(A))$.

The complement of the pre-open (resp. semi-open, α -open, β -open, b-open) set is called pre-closed (resp. semiclosed, α -closed, β -closed, b-closed).

Definition 2.1. A subset A of a topological space (X, \mathfrak{I}) is said to be **ii-open** [10] set if there exists an open set $G \in \mathfrak{I}$, such that

(i) $G \neq \phi$, X

(ii) $A \subset Cl(A \cap G)$

(iii) Int(A) = G.

The complement of the ii-open set is called ii-closed. We denote the family of all ii-open (resp. ii-closed) sets of a topological space by ii-O(X) (resp. ii-C(X)). The ii-closure of a subset A of X, is the intersection of all ii-

closed sets containing A in X and is denoted by ii-Cl(A). The ii-interior of a subset A of X is the union of all ii-open sets contained in A and is denoted by ii-Int(A).

Remark 2.2. For a subset of a space, we have following implications:

Where none of the implications is reversible as can be seen from the following examples:

Example 2.3. Let $X = \{a, b, c, d\}$ and $\Im = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$. Then

(1) b-open sets in (X, \Im) are ϕ , X, {a}, {b}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}.

(2) pre-open sets in (X, \Im) are ϕ , X, $\{a\}$, $\{b\}$, $\{a, b\}$, $\{a, b, c\}$, $\{a, b, d\}$.

(3) semi-open sets in (X, \Im) are ϕ , X, {a}, {b}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}.

(4) α -open sets in (X, \Im) are ϕ , X, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}.

(5) β -open sets in (X, \Im) are ϕ , X, {a}, {b}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}.

(6) ii-open sets in (X, \Im) are ϕ , X, {a}, {b}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}.

Example 2.4. Let $X = \{a, b, c\}$ and $\Im = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then

(1) b-open sets in (X, \Im) are ϕ , X, {a}, {b}, {a, b}, {a, c}, {b, c}.

- (2) pre-open sets in (X, \Im) are $\phi, X, \{a\}, \{b\}, \{a, b\}$.
- (3) semi-open sets in (X, \Im) are ϕ , X, {a}, {b}, {a, b}, {b, c}.
- (4) α -open sets in (X, \Im) are ϕ , X, {a}, {b}, {a, b}.

(5) β -open sets in (X, \Im) are ϕ , X, {a}, {b}, {a, b}, {a, c}.

(6) ii-open sets in (X, \Im) are ϕ , X, {a}, {b}, {a, b}, {a, c}, {b, c}.

Example 2.5. Let $X = \{a, b, c\}$ and $\Im = \{\phi, \{a\}, \{b, c\}, X\}$. Then

(1) b-open sets in (X, \Im) are ϕ , X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}.

(2) pre-open sets in (X, \Im) are ϕ , X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}.

- (3) semi-open sets in (X, \Im) are ϕ , X, $\{a\}$, $\{b, c\}$.
- (4) α -open sets in (X, \Im) are ϕ , X, {a}, {b, c}.
- (5) β -open sets in (X, \Im) are ϕ , X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}.

(6) ii-open sets in (X, \Im) are ϕ , X, {a}, {b, c}.

Example 2.6. Let $X = \{a, b, c, d\}$ and $\Im = \{\phi, \{a\}, \{b, c, d\}, X\}$. Then

(1) b-open sets in (X, \Im) are ϕ , X, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}.

(2) pre-open sets in (X, \Im) are ϕ , X, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}.

(3) semi-open sets in (X, \mathfrak{I}) are $\phi, X, \{a\}, \{b, c, d\}$.

(4) α -open sets in (X, \Im) are ϕ , X, {a}, {b, c, d}.

(5) β -open sets in (X, \Im) are ϕ , X, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}.

(6) ii-open sets in (X, \Im) are ϕ , X, {a}, {b}, {c}, {d}, {b, c}, {b, d}, {c, d}, {b, c, d}.

Remark 2.7. The concepts of ii-open and pre-open sets are independent as shown in the above examples.

Remark 2.8. The concepts of ii-open and β -open sets are independent as shown in the above examples.

Definition 2.9. A space X is said to be:

(i) **b-T**₀ [3] if for each pair of distinct points x and y in X, there exists a b-open set G containing x but not y or a b-open set H containing y but not x.

(ii) $b-T_1$ [3] if for each pair of distinct points x, y in X, there exist a b-open set G containing x but not y and a b-open set H containing y but not x.

(iii) **b-T₂** [12] if for each pair of distinct points x, y of X, there exist two disjoint b-open sets U and V containing x and y respectively.

Definition 2.10. A space X is said to be:

(i) α -T₀ [9] if for each pair of distinct points x and y in X, there exists an α -open set G containing x but not y or an α -open set H containing y but not x.

(ii) α -T₁ [9] if for each pair of distinct points x, y in X, there exist an α -open set G containing x but not y and an α -open set H containing y but not x.

(iii) α -T₂ [7] if for each pair of distinct points x, y of X, there exist two of disjoint α -open sets U and V containing x and y respectively.

Definition 2.11. A space X is said to be:

(i) semi- T_0 [6] if for each pair of distinct points x and y in X, there exists a semi-open set G containing x but not y or a semi-open set H containing y but not x.

(ii) semi- T_1 [6] if for each pair of distinct points x, y in X, there exist a semi-open set G containing x but not y and a semi-open set H containing y but not x.

(iii) semi- T_2 [6] if for each pair of distinct points x, y of X, there exist two disjoint semi-open sets U and V containing x and y respectively.

Theorem 2.12. (i) Every open set is ii-open.

(ii) Every α -open set is ii-open.

(iii) Every semi-open set is ii-open.

(iv) Every ii-open set is b-open.

Definition 2.13. Let X and Y be topological spaces. A function $f : X \to Y$ is said to be **ii-continuous** if the inverse image of every open set in Y is ii-open in X.

Definition 2.14. Let X and Y be topological spaces. A function $f: X \to Y$ is said to be **ii-closed** if the image of every closed set in X is ii-closed in Y.

Definition 2.15. Let X and Y be topological spaces. A function $f : X \rightarrow Y$ is said to be **ii-irresolute** if the inverse image of every ii-closed set in Y is ii-closed in X.

Definition 2.16. Let X be a topological space. A subset $N \subset X$ is called an **ii-neighbourhood** (briefly **ii-nhd**) of a point $x \in X$ if there exists an ii-open set G such that $x \in G \subset N$.

III. ii-T₀ Spaces

In this section, we define $ii-T_0$ space and study some of their properties via some other weaker forms of open sets.

Definition 3.1. A topological space (X, \Im) is said to be **ii**-T₀ if for each pair of distinct points x, y in X, there exists an ii-open set U such that either $x \in U$ and $y \notin U$ or $x \notin U$ and $y \in U$.

Theorem 3.2. (i) Every semi- T_0 space is ii- T_0 .

(ii) Every α -T₀ space is ii-T₀.

(iii) Every ii- T_0 space is b- T_0 .

Proof. (i) Let X be a semi-T₀ space. Let x and y be any two distinct points in X. Since X is semi-T₀, there exists a semi-open set U such that $x \in U$ and $y \notin U$ or $y \in U$ and $x \notin U$. By **Theorem 2.12 (iii)**, U is an ii-open set such that $x \in U$ and $y \notin U$ or $y \in U$ and $x \notin U$. Thus X is ii-T₀.

(ii) Since every α -open set is ii-open and so, by the **Theorem 2.12** (ii), every α -T₀ space is ii-T₀.

(iii) Since every ii-open set is b-open and so, by the **Theorem 2.12** (iv), every ii- T_0 space is b- T_0 .

Theorem 3.3. Every topological space is ii-T₀.

Proof. Since every open set is ii-open and so, by the **Theorem 2.12** (i), every T_0 space is ii- T_0 .

Theorem 3.4. A topological space (X, \Im) is ii-T₀ if and only if for each pair of distinct points x, y of X, ii-Cl({x}) \neq ii-Cl({y}).

Proof. Necessity. Let (X, \mathfrak{I}) be an ii- T_0 space and x, y be any two distinct points of X. There exists an ii-open set U containing x or y, say x but not y. Then X - U is an ii-closed set which does not contain x but contains y. Since ii-bCl($\{y\}$) is the smallest ii-closed set containing y, ii-Cl($\{y\}$) $\subset X - U$ and therefore $x \notin ii$ -Cl($\{y\}$). Consequently ii-Cl($\{x\}$) \neq ii-Cl($\{y\}$).

Sufficiency. Suppose that x, $y \in X$, $x \neq y$ and ii-Cl({x}) \neq ii-Cl({y}). Let z be a point of X such that $z \in$ ii-Cl({x}) but $z \notin$ ii-Cl({y}). We claim that $x \notin$ ii-Cl({y}). For, if $x \in$ ii-Cl({y}) then ii-Cl({x}) \subset ii-Cl({y}). This contradicts the fact that $z \notin$ ii-Cl({y}). Consequently x belongs to the ii-open set X – ii-Cl({y}) to which y does not belong.

Theorem 3.5. Every subspace of an $ii-T_0$ space is $ii-T_0$.

Proof. Let (Y,τ) be a subspace of a topological space (X, \mathfrak{T}) , where τ is the relative topology of \mathfrak{T} on Y. Let x, y be two distinct points of Y. As $Y \subset X$, x and y are also distinct points of X and there exists an ii-open set G such that $x \in G$ but $y \notin G$, since X is ii- T_0 . Then $G \cap Y$ is an ii-open set in (Y, τ) which contains x but does not contain y. Hence (Y, τ) is an ii- T_0 space.

IV. ii-T₁ Spaces

In this section, we define $ii-T_1$ space and study some of their properties via some other weaker forms of open sets.

Definition 4.1. A topological space (X, \Im) is said to be **ii**-T₁ if for each pair of distinct points x, y in X, there exist two ii-open sets U and V such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$.

Theorem 4.2. (i) Every semi- T_1 space is ii- T_1 .

(ii) Every α -T₁ space is ii-T₁.

(iii) Every ii- T_1 space is b- T_1 .

Proof. (i). Suppose X is a semi-T₁ space. Let x and y be two distinct points in X. Since X is semi-T₁, there exist semi-open sets U and V such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$. By **Theorem 2.12 (iii)**, every semi-open set is ii-open, so U and V are ii-open sets such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$. Hence X is ii-T₁.

(ii). Since every α -open set is ii-open and so, by the **Theorem 2.12** (ii), every α -T₁ space is ii-T₁.

(iii) Since every ii-open set is b-open and so, by the **Theorem 2.12** (iv), every ii- T_1 space is b- T_1 .

Theorem 4.3. Let $f: X \to Y$ be an ii-irresolute, injective map. If Y is ii-T₁, then X is ii-T₁.

Proof. Assume that Y is ii-T₁. Let x, $y \in Y$ with $x \neq y$. Then there exists a pair of ii-open sets U, V of Y such that $f(x) \in U$, $f(y) \in V$ and $f(x) \notin V$, $f(y) \notin U$. Then $x \in f^{-1}(U)$, $y \notin f^{-1}(U)$ and $y \in f^{-1}(V)$, $x \notin f^{-1}(V)$. Since f is ii-irresolute, X is ii-T₁.

Theorem 4.4. A topological space (X, \Im) is ii-T₁ if and only if the singletons are ii-closed sets.

Proof. Let (X, \mathfrak{I}) be ii-T₁ and x be any point of X. Suppose $y \in X - \{x\}$, then $x \neq y$ and so there exists an ii-open set U such that $y \in U$ but $x \notin U$. Consequently $y \in U \subset X - \{x\}$, that is $X - \{x\} = \bigcup \{U : y \in X - \{x\}\}$ which is ii-open.

Conversely, suppose {p} is ii-closed for every $p \in X$. Let x, $y \in X$ with $x \neq y$. Now $x \neq y$ implies $y \in X - \{x\}$. Hence $X - \{x\}$ is an ii-open set contains y but not x. Similarly $X - \{y\}$ is an ii-open set contains x but not y. Accordingly, X is an ii-T₁ space.

Theorem 4.5. Let $f : X \rightarrow Y$ be bijective.

(i) If f is ii-continuous and (Y, \mathfrak{I}_2) is T_1 , then (X, \mathfrak{I}_1) is ii- T_1 .

(ii) If f is ii-open and (X, \mathfrak{I}_1) is ii- T_1 , then (Y, \mathfrak{I}_2) is ii- T_1 .

Proof. Let $f: (X, \mathfrak{I}_1) \to (Y, \mathfrak{I}_2)$ be bijective.

(i) Suppose $f : (X, \mathfrak{I}_1) \to (Y, \mathfrak{I}_2)$ is ii-continuous and (Y, \mathfrak{I}_2) is T_1 . Let $x_1, x_2 \in X$ with $x_1 \neq x_2$. Since f is bijective, $y_1 = f(x_1) \neq f(x_2) = y_2$ for some $y_1, y_2 \in Y$. Since (Y, \mathfrak{I}_2) is T_1 , there exist open sets G sand H such that $y_1 \in G$ but $y_2 \notin G$ and $y_2 \in H$ but $y_1 \notin H$. Since f is bijective, $x_1 = f^{-1}(y_1) \in f^{-1}(G)$ but $x_2 = f^{-1}(y_2) \notin f^{-1}(G)$ and $x_2 = f^{-1}(y_2) \notin f^{-1}(H)$ but $x_1 = f^{-1}(y_1) \notin f^{-1}(H)$. Since f is ii-continuous, $f^{-1}(G)$ and $f^{-1}(H)$ are ii-open sets in (X, \mathfrak{I}_1) . It follows that (X, \mathfrak{I}_1) is ii- T_1 . This proves (i).

(ii) Suppose f is ii-open and (X, \mathfrak{I}_1) is ii-T₁. Let $y_1 \neq y_2 \in Y$. Since f is bijective, there exist x_1, x_2 in X, such that $y_1 = f(x_1)$ and $f(x_2) = y_2$ with $x_{1 \neq} x_2$. Since (X, \mathfrak{I}_1) is ii-T₁, there exist ii-open sets G sand H in X such that $x_1 \in G$ but $x_2 \notin G$ and $x_2 \in H$ but $x_1 \notin H$. Since f is ii-open, f(G) and f(H) are ii-open in Y such that $y_1 = f(x_1) \in f(G)$ and $y_2 = f(x_2) \in f(H)$. Again since f is bijective, $y_2 = f(x_2) \notin f(G)$ and $y_1 = f(x_1) \notin f(H)$. Thus (Y, \mathfrak{I}_2) is ii-T₁. This proves (ii).

Definition 4.6. A topological space (X, \mathfrak{I}) is said to be **ii-symmetric** if for x and y in X, $x \in \text{ii-Cl}(\{y\})$ implies $y \in \text{ii-Cl}(\{x\})$.

Theorem 4.7. If (X, \mathfrak{I}) is a topological space, then the following are equivalent:

(i) (X, \Im) is an ii-symmetric space.

(ii) $\{x\}$ is ii-closed, for each $x \in X$.

Proof. (i) \Rightarrow (ii). Assume that $\{x\} \subset U \in ii$ -O(X), but ii-Cl($\{x\}$) $\subset U$. Then ii-Cl($\{x\}$) $\cap (X - U) \neq \phi$. Now, we take $y \in ii$ -Cl($\{x\}$) $\cap (X - U)$, then by hypothesis $x \in ii$ -Cl($\{y\}$) $\subset X - U$ and $x \notin U$, which is a contradiction. Therefore $\{x\}$ is ii-closed, for each $x \in X$.

(ii) \Rightarrow (i). Assume that $x \in ii$ -Cl({y}), but $y \notin ii$ -Cl({x}). Then $\{y\} \subset X - ii$ -Cl({x}) and hence ii-Cl({y}) $\subset X - ii$ -Cl({x}). Therefore $x \in X - ii$ -Cl({x}), which is a contradiction and hence $y \in ii$ -Cl({x}).

Corollary 4.8. If a topological space (X, \mathfrak{I}) is an ii-T₁ space, then it is ii-symmetric.

Proof. In an ii- T_1 space, every singleton is ii-closed (**Theorem 4.4**) and therefore is by **Theorem 4.7**, (X, \mathfrak{I}) is ii-symmetric.

Corollary 4.9. If a topological space (X, \mathfrak{I}) is ii-symmetric and ii-T₀, then (X, \mathfrak{I}) is ii-T₁.

Proof. Let $x \neq y$ and as (X, \mathfrak{I}) is ii-T₀, we may assume that $x \in U \subset X - \{y\}$ for some $U \in ii$ -O(X). Then $x \notin ii$ -Cl($\{y\}$) and hence $y \notin ii$ -Cl($\{x\}$). There exists an ii-open set V such that $y \in V \subset X - \{x\}$ and thus (X, \mathfrak{I}) is an ii-T₁ space.

V. ii-T₂ Spaces

In this section, we introduce $ii-T_2$ space and investigate some of their basic properties via some other weaker forms of open sets.

Definition 5.1. A space X is said to be $ii-T_2$ if for every pair of distinct points x and y in X, there exist disjoint ii-open sets U and V of X containing x and y respectively.

Remark 5.2. For a space, we have following implications:

 T_2 T_1 T_0 \downarrow \downarrow \downarrow α -T₂ $\alpha - T_1$ $\rightarrow \alpha - T_0$ \downarrow \downarrow \downarrow \rightarrow semi-T₁ \rightarrow semi-T₀ semi-T₂ \downarrow \downarrow \downarrow ii-T₂ ii-T₁ \rightarrow ii-T₀ \rightarrow \downarrow \downarrow \downarrow $b-T_2$ \rightarrow b-T₁ \rightarrow b-T₀

Where none of the implications are reversible as can be seen from the following examples.

Example 5.3.Consider the space (X, \Im), where X = {a, b, c, d} and \Im = { ϕ , {a}, {b}, {a, b}, {a, b, c}, X}. Clearly (X, \Im) is ii-T₁ as well as b-T₁. But it is neither T₁ nor α -T₁.

Example 5.4. Consider the space (X, \Im), where X = {a, b, c, d} and \Im = { ϕ , {a, b}, {a, b, c}, {a, b, d}, X}. Then (X, \Im) is b-T₁ but not ii-T₁. But it is neither semi-T₁ nor α -T₁.

Example 5.5. Consider the space (X, \Im), where X = {a, b, c} and \Im = { ϕ , {a, b}, X}. Then (X, \Im) is b-T₂ but not ii-T₂. But it is neither semi-T₂ nor α -T₂.

Example 5.6. Consider the space (X, \Im), where X = {a, b, c} and \Im = { ϕ , {a}, {b, c}, X}. Then (X, \Im) is b-T₂ but not ii-T₂. But it is neither semi-T₂ nor α -T₂.

Example 5.7. Consider the space (X, \Im), where X = {a, b, c, d} and \Im = { ϕ , {a}, {b}, {a, b}, X}. Then (X, \Im) is semi-T₂ as well as ii-T₂. But it is not α -T₂.

Example 5.8. Consider the space (X, \Im), where X = {a, b, c} and \Im = { ϕ , {a}, {b, c}, X}. Then (X, \Im) is b-T₀. But it is neither ii-T₀ nor α -T₀.

Theorem 5.9. (i) Every semi- T_2 space is ii- T_2 .

(ii) Every α -T₂ space is ii-T₂.

(iii) Every ii- T_2 space is b- T_2 .

Proof. (i) Let X be a semi-T₂ space. Let x and y be two distinct points in X. Since X is semi-T₂, there exist disjoint semi-open sets U and V such that $x \in U$ and $y \in V$. By **Theorem 2.12 (iii)**, U and V are disjoint ii-open sets such that $x \in U$ and $y \in V$. Hence X is ii-T₂.

(ii) Suppose X is α -T₂ space. Let x and y be two distinct points in X. Since X is α -T₂, there exist disjoint α -open sets U and V such that $x \in U$ and $y \in V$. By **Theorem 2.12 (ii)**, U and V are disjoint ii-open sets such that $x \in U$ and $y \in V$. Hence X is ii-T₂.

(iii) Suppose X is ii- T_2 space. Let x and y be two distinct points in X. Since X is ii- T_2 , there exist disjoint ii-open sets U and V such that $x \in U$ and $y \in V$. By **Theorem 2.12 (iv)**, U and V are disjoint b-open sets such that $x \in U$ and $y \in V$. Hence X is b- T_2 .

Theorem 5.10. Every $ii-T_2$ space is $ii-T_1$.

Proof. Let X be an ii- T_2 space. Let x and y be two distinct points of X. Since X is ii- T_2 , there exist disjoint iiopen sets U and V such that $x \in U$ and $y \in V$. Since U and V are disjoint, so $x \in U$ but $y \notin U$ and $y \in V$ but x $\notin V$. Hence X is ii- T_1 .

Theorem 5.11. For a topological space X, the following are equivalent:

(i) X is an ii-T₂ space.

(ii) Let $x \in X$. Then for each $x \neq y$, there exists an ii-open set U such that $x \in U$ and $y \notin ii-Cl(U)$.

(iii) For each $x \in X$, \cap {ii-Cl(U) : U \in ii-O(X) and $x \in U$ } = {x}.

Proof. (i) \Rightarrow (ii). Suppose X is an ii-T₂ space. Then for each $x \neq y$, there exist disjoint ii-open sets U and V such that $x \in U$ and $y \in V$. Since V is ii-open, V^c is ii-closed and $U \subset V^c$. This implies that ii-Cl(U) $\subset V^c$. Since $y \notin V^c$, $y \notin ii$ -Cl(U).

(ii) \Rightarrow (iii). If $y \neq x$, then there exists an ii-open set U such that $x \in U$ and $y \notin$ ii-Cl(U). Therefore $y \notin \cap \{\text{ii-Cl}(U) : U \in \text{ii-O}(X) \text{ and } x \in U\}$. Therefore $\cap \{\text{ii-Cl}(U) : U \in \text{ii-O}(X) \text{ and } x \in U\} = \{x\}$. This proves (iii).

(iii) \Rightarrow (i). Let $y \neq x$ in X. Then $y \notin \{x\} = \cap \{ii\text{-}Cl(U) : U \in ii\text{-}O(X) \text{ and } x \in U\}$. This implies that there exists an ii-open set U such that $x \in U$ and $y \notin ii\text{-}Cl(U)$. Let $V = (ii\text{-}Cl(U))^c$. Then V is ii-open and $y \in V$. Now $U \cap V = U \cap (ii\text{-}Cl(U))^c \subset U \cap (U)^c = \phi$. Therefore, X is ii-T₂ space.

Theorem 5.12. Let $f : X \rightarrow Y$ be a bijection.

(i) If f is ii-open and X is T_2 , then Y is ii- T_2 .

(ii) If f is ii-continuous and Y is T_2 , then X is ii- T_2 .

Proof. Let $f : X \to Y$ be a bijection.

(i) Suppose F is ii-open and X is T_2 . Let $y_1 \neq y_2 \in Y$. Since f is a bijection. There exist x_1, x_2 in X such that $f(x_1) = y_1$ and $f(x_2) = y_2$ with $x_1 \neq x_2$. Since X is T_2 , there exist disjoint open sets U and V in X such that $x_1 \in U$ and $x_2 \in V$. Since f is ii-open, f(U) and f (V) are ii-open in Y such that $y_1 = f(x_1) \in f(U)$ and $y_2 = f(x_2) \in f(V)$. Again since f is a bijection, f(U) and f(V) are disjoint in Y. Thus Y is ii- T_2 .

(ii) Suppose $f : X \to Y$ is ii-continuous and Y is T_2 . Let $x_1, x_2 \in X$ with $x_1 \neq x_2$. Let $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since f is one-one, $y_1 \neq y_2$. Since Y is T_2 , there exist disjoint open sets U and V containing y_1 and y_2 respectively. Since f is ii-continuous bijective, $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint ii-open sets containing x_1 and x_2 respectively. Thus X is ii- T_2 .

Theorem 5.13. A topological space (X, \Im) is ii-T₂ if and only if the intersection of all ii-closed, ii-neighbourhoods of each point of the space is reduced to that point.

Proof. Let (X, \mathfrak{I}) be ii-T₂ and $x \in X$. Then for each $y \neq x$ in X, there exist disjoint ii-open sets U and V such that $x \in U$, $y \in V$. Now $U \cap V = \phi$ implies $x \in U \subset V^c$. Therefore V^c is an ii-neighbourhood of x. Since V is ii-open, V^c is ii-closed and ii-neighbourhood of x to which y does not belong. That is there is an ii-closed, ii-

neighbourhoods of x which does not contain y. So we get the intersection of all ii-closed, ii-neighbourhood of x is $\{x\}$.

Conversely, let x, $y \in X$ such that $x \neq y$ in X. Then by assumption, there exist an ii-closed, ii-neighbourgood V of x such that $y \notin V$. Now there exists an ii-open set U such that $x \in U \subset V$. Thus U and V^c are disjoint ii-open sets containing x and y respectively. Thus (X, \mathfrak{I}) is ii-T₂.

Theorem 5.14. If $f: X \to Y$ be bijective, ii-irresolute map and X is ii-T₂, then (X, \mathfrak{I}_2) is ii-T₂.

Proof. Suppose $f : (X, \mathfrak{I}_1) \to (Y, \mathfrak{I}_2)$ is bijective. f is ii-irresolute, and (Y, \mathfrak{I}_2) is ii-T₂. Let $x_1, x_2 \in X$ with $x_1 \neq x_2$. Since f is bijective, $y_1 = f(x_1) \neq f(x_2) = y_2$ for some $y_1, y_2 \in Y$. Since (Y, \mathfrak{I}_2) is ii-T₂, there exist disjoint ii-open sets G and H such that $y_1 \in G$ and $y_2 \in H$. Again since f is bijective, $x_1 = f^{-1}(y_1) \in f^{-1}(G)$ and $x_2 = f^{-1}(y) \in f^{-1}(H)$. Since f is ii-irresolute, $f^{-1}(G)$ and $f^{-1}(H)$ are ii-open sets in (X, \mathfrak{I}_1) . Also f is bijective, $G \cap H = \phi$ implies that $f^{-1}(G) \cap f^{-1}(H) = f^{-1}(G \cap H) = f(\phi) = \phi$. It follows that (X, \mathfrak{I}_2) is ii-T₂.

VI. ii- R_k Space (k = 0, 1)

In this section, new classes of topological spaces called, ii-R₀ and ii-R₁ spaces are introduced.

Definition 6.1. A topological space (X, \mathfrak{I}) is said to be **ii**-**R**₀ if U is an ii-open set and $x \in U$ then ii-Cl({x}) \subset U.

Theorem 6.2. For a topological space (X, \Im) the following properties are equivalent:

(i) (X, ℑ) is ii-R₀.

(ii) For any $F \in ii$ -C(X), $x \notin F$ implies $F \subset U$ and $x \notin U$ for some $U \in ii$ -O(X).

(iii) For any $F \in ii$ -C(X), $x \notin F$ implies $F \cap ii$ -Cl($\{x\}$) = ϕ .

(iv) For any distinct points x and y of X, either ii-Cl($\{x\}$) = ii-Cl($\{y\}$) or ii-Cl($\{x\}$) \cap ii-Cl($\{y\}$) = ϕ .

Proof. (i) \Rightarrow (ii). Let $F \in ii$ -C(X) and $x \notin F$. Then by (i), ii-Cl({x}) $\subset X - F$. Set U = X - ii-Cl({x}), then U is an ii-open set such that $F \subset U$ and $x \notin U$.

(ii) \Rightarrow (iii). Let $F \in ii$ -C(X) and $x \notin F$. There exists $U \in ii$ -O(X) such that $F \subset U$ and $x \notin U$. Since $U \in ii$ -O(X), $U \cap ii$ -Cl({x}) = ϕ and $F \cap ii$ -Cl({x}) = ϕ .

(iii) \Rightarrow (iv). Suppose that ii-Cl({x}) \neq ii-Cl({y}) for distinct points x, $y \in X$. There exists $z \in$ ii-Cl({x}) such that $z \notin$ ii-Cl({y}) (or $z \in$ ii-Cl({y}) such that $z \notin$ ii-Cl({x})). There exists $V \in$ ii-O(X) such that $y \notin V$ and $z \in V$; hence $x \in V$. Therefore, we have $x \notin$ ii-Cl({y}). By (iii), we obtain ii-Cl({x}) \cap ii-Cl({y}) = ϕ .

(iv) \Rightarrow (i). Let $V \in ii$ -O(X) and $x \in V$. For each $y \notin V$, $x \neq y$ and $x \notin ii$ -Cl($\{y\}$). This shows that ii-Cl($\{x\}$) $\neq ii$ -Cl($\{y\}$). By (iv), ii-Cl($\{x\}$) \cap ii-Cl($\{y\}$) = ϕ for each $y \in X - V$ and hence ii-Cl($\{x\}$) \cap ($\bigcup_{y \in X - V}$ ii-Cl($\{y\}$)) = ϕ . On other hand, since $V \in ii$ -O(X) and $y \in X - V$, we have ii-Cl($\{y\}$) $\subset X - V$ and hence $X - V = \bigcup_{y \in X - V}$ ii-Cl($\{y\}$). Therefore, we obtain $(X - V) \cap ii$ -Cl($\{x\}$) = ϕ and ii-Cl($\{x\}$) \subset V. This shows that (X, \Im) is an ii-R₀ space.

Theorem 6.3. If a topological space (X, \mathfrak{I}) is ii-T₀ and an ii-R₀ space then it is ii-T₁.

Proof. Let x and y be any distinct points of X. Since X is $ii \cdot T_0$, there exists an ii-open set U such that $x \in U$ and $y \notin U$. As $x \in U$ implies that $ii \cdot Cl(\{x\}) \subset U$. Since $y \notin U$, so $y \notin ii \cdot Cl(\{x\})$. Hence $y \in V = X - ii \cdot Cl(\{x\})$ and it is clear that $x \notin V$. Hence it follows that there exist ii-open sets U and V containing x and y respectively, such that $y \notin U$ and $x \notin V$. This implies that X is ii- T_1 .

Theorem 6.4. For a topological space (X, 3) the following properties are equivalent:

(i) (X, ℑ) is ii-R₀.

(ii) $x \in ii$ -Cl({y}) if and only if $y \in ii$ -Cl({x}), for any points x and y in X.

Proof. (i) \Rightarrow (ii). Assume that X is ii-R₀. Let $x \in \text{ii-Cl}(\{y\})$ and V be any ii-open set such that $y \in V$. Now, by hypothesis, $x \in V$. Therefore, every ii-open set which contain y contains x also. Hence $y \in \text{ii-Cl}(\{x\})$.

(ii) \Rightarrow (i). Let U be an ii-open set and $x \in U$. If $y \notin U$, then $x \notin ii$ -Cl($\{y\}$) and hence $y \notin ii$ -Cl($\{x\}$). This implies that ii-Cl($\{x\}$) \subset U. Hence (X, \Im) is ii-R₀.

From **Definition 4.6** and **Theorem 6.4**, the notions of ii-symmetric and ii-R₀ are equivalent.

Definition 6.5. Let A be a subset of a topological space (X, \mathfrak{I}) . The **ii-kernel** of A, denoted by ii-ker(A) is defined to be the set

$$ii\text{-ker}(A) = \cap \{U \in ii\text{-}O(X) : A \subset U\}.$$

Theorem 6.6. Let (X, \mathfrak{I}) be a topological space and $x \in X$. Then $y \in ii$ -ker $(\{x\})$ if and only if $x \in ii$ -Cl $(\{y\})$.

Proof. Suppose that $y \notin ii$ -ker({x}). Then there exists an ii-open set V containing x such that $y \notin V$. Therefore, we have $x \notin ii$ -Cl({y}). The proof of the converse case can be done similarly.

Theorem 6.7. Let (X, \mathfrak{I}) be a topological space and A be a subset of X. Then, ii-ker $(A) = \{x \in X : ii-Cl(\{x\}) \cap A \neq \phi\}$.

Proof. Let $x \in ii$ -ker(A) and suppose ii-Cl({x}) $\cap A = \phi$. Hence $x \notin X - ii$ -Cl({x}) which is an ii-open set containing A. This is impossible, since $x \in ii$ -ker(A). Consequently, ii-Cl({x}) $\cap A \neq \phi$. Next, let $x \in X$ such that ii-Cl({x}) $\cap A \neq \phi$ and suppose that $x \notin ii$ -ker(A). Then, there exists an ii-open set V containing A and $x \notin V$. Let $y \in ii$ -Cl({x}) $\cap A$. Hence, V is an ii-neighbourhood of y which does not contain x. By this contradiction $x \in ii$ -ker(A) and the claim.

Definition 6.8. A subset A of a topological space X is called an **ii-difference set** (briefly, **ii-D-set**) if there are U, $V \in ii-O(X)$ such that $U \neq X$ and A = U - V.

Theorem 6.9. The following properties hold for the subsets A, B of a topological space (X, \mathfrak{I}) :

(i) $A \subset ii$ -ker(A).

(ii) $A \subset B$ implies that ii-ker(A) \subset ii-ker(B).

(iii) If A is ii-open in (X, \mathfrak{I}) , then A = ii-ker(A).

(iv) ii-ker(ii-ker(A)) = ii-ker(A).

Proof. (i), (ii) and (iii) are immediate consequences of **Definition 6.5**. To prove (iv), first observe that by (i) and (ii), we have ii-ker(A) \subset ii-ker(ii-ker(A)). If $x \notin$ ii-ker(A), then there exists $U \in$ ii-O(X) such that $A \subset U$ and $x \notin U$. Hence ii-ker(A) $\subset U$, and so we have $x \notin$ ii-ker(ii-ker(A)). Thus ii-ker(ii-ker(A)) = ii-ker(A).

Proposition 6.10. If a singleton $\{x\}$ is an ii-D-set of (X, \mathfrak{I}) , then ii-ker $(\{x\}) \neq X$.

Proof. Since $\{x\}$ is an ii-D-set of (X, \mathfrak{I}) , then there exist two subsets $U_1, U_2 \in \text{ii-O}(X)$ such that $\{x\} = U_1 - U_2, \{x\} \subset U_1$ and $U_1 \neq X$. Thus, we have that ii-ker $(\{x\}) \subset U_1 \neq X$ and so ii-ker $(\{x\}) \neq X$.

Theorem 6.11. The following statements are equivalent for any points x and y in a topological space (X, \Im) :

(i) ii-ker($\{x\}$) \neq ii-ker($\{y\}$).

(ii) ii-Cl($\{x\}$) \neq ii-Cl($\{y\}$).

Proof. (i) \Rightarrow (ii). Suppose that ii-ker({x}) \neq ii-ker({y}), then there exists a point z in X such that $z \in$ ii-ker({x}) and $z \notin$ ii-ker({y}). From $z \in$ ii-ker({x}) it follows that $\{x\} \cap$ ii-Cl({z}) $\neq \phi$ which implies $x \in$ ii-Cl({z}). By $z \notin$ ii-ker({y}), we have $\{y\} \cap$ ii-Cl({z}) = ϕ . Since $x \in$ ii-Cl({z}), ii-Cl({z}) and $\{y\} \cap$ ii-Cl({x}) \neq ii

(ii) \Rightarrow (i). Suppose that ii-Cl({x}) \neq ii-Cl({y}). Then there exists a point z in X such that $z \in$ ii-Cl({x}) and $z \notin$ ii-Cl({y}). Then, there exists an ii-open set containing z and therefore x but not y, namely, $y \notin$ ii-ker({x}) and thus ii-ker({x}) \neq ii-ker({y}).

Theorem 6.12. Let (X, \mathfrak{I}) be a topological space. Then $\cap \{\text{ii-Cl}(\{x\}) : x \in X\} = \phi$ if and only if ii-ker $(\{x\}) \neq X$ for every $x \in X$.

Proof. Necessity. Suppose that $\cap \{ii-Cl(\{x\}) : x \in X\} = \phi$. Assume that there is a point y in X such that ii-ker($\{y\}$) = X. Let x be any point of X. Then $x \in V$ for every ii-open set V containing y and hence $y \in ii-Cl(\{x\})$ for any $x \in X$. This implies that $y \in \cap\{ii-Cl(\{x\}) : x \in X\}$. But this is a contradiction.

Sufficiency. Assume that ii-ker({x}) $\neq X$ for every $x \in X$. If there exists a point y in X such that $y \in \cap$ {ii-Cl({x}) : $x \in X$ }, then every ii-open set containing y must contain every point of X. This implies that the space X is the unique ii-open set containing y. Hence ii-ker({y}) = X which is a contradiction. Therefore, \cap {ii-Cl({x}) : $x \in X$ } = ϕ .

Theorem 6.13. A topological space (X, \Im) is ii-R₀ if and only if for every x and y in X, ii-Cl({x}) \neq ii-Cl({y}) implies ii-Cl({x}) \cap ii-Cl({y}) = ϕ .

Proof. Necessity. Suppose that (X, \mathfrak{I}) is ii- R_0 and $x, y \in X$ such that ii- $Cl(\{x\}) \neq ii$ - $Cl(\{y\})$. Then, there exists $z \in ii$ - $Cl(\{x\})$ such that $z \notin ii$ - $Cl(\{y\})$ (or $z \in ii$ - $Cl(\{y\})$) such that $z \notin ii$ - $Cl(\{x\})$). There exists $V \in ii$ -O(X) such that $y \notin V$ and $z \in V$, hence $x \in V$. Therefore, we have $x \notin ii$ - $Cl(\{y\})$. Thus $x \in [X - ii$ - $Cl(\{y\})] \in ii$ -O(X), which implies ii- $Cl(\{x\}) \subset [X - ii$ - $Cl(\{y\})]$ and ii- $Cl(\{x\}) \cap ii$ - $Cl(\{y\}) = \phi$.

Sufficiency. Let $V \in ii$ -O(X) and let $x \in V$. We still show that ii-Cl({x}) $\subset V$. Let $y \notin V$, that is $y \in X - V$. Then $x \neq y$ and $x \notin ii$ -Cl({y}). This shows that ii-Cl({x}) $\neq ii$ -Cl({y}). By assumption, ii-Cl({x}) $\cap ii$ -Cl({y}) = ϕ . Hence $y \notin ii$ -Cl({x}) and therefore ii-Cl({x}) $\subset V$.

Theorem 6.14. A topological space (X, \mathfrak{I}) is ii- R_0 if and only if for any points x and y in X, ii-ker({x}) \neq ii-ker({y}) implies ii-ker({x}) \cap ii-ker({y}) = ϕ .

Proof. Suppose that (X, \mathfrak{I}) is an ii- R_0 space. Thus by **Theorem 6.11**, for any points x and y in X if ii-ker({x}) \neq ii-ker({y}) then ii-Cl({x}) \neq ii-Cl({y}). Now we prove that ii-ker({x}) \cap ii-ker({y}) = ϕ . Assume that $z \in$ ii-ker({x}) \cap ii-ker({y}). By $z \in$ ii-ker({x}) and **Theorem 6.6**, it follows that $x \in$ ii-Cl({z}). Since $x \in$ ii-Cl({x}), by **Theorem 6.2**, ii-Cl({x}) = ii-Cl({z}). Similarly, we have ii-Cl({y}) = ii-Cl({z}) = ii-Cl({x}). This is a contradiction. Therefore, we have ii-ker({x}) \cap ii-ker({y}) = ϕ .

Conversely, let (X, \mathfrak{I}) be a topological space such that for any points x and y in X, ii-ker $(\{x\}) \neq \text{ii-ker}(\{y\})$ implies ii-ker $(\{x\}) \cap \text{ii-ker}(\{y\}) = \phi$. If ii-Cl $(\{x\}) \neq \text{ii-Cl}(\{y\})$, then by **Theorem 6.11**, ii-ker $(\{x\}) \neq \text{ii-ker}(\{y\})$. Hence, ii-ker $(\{x\}) \cap \text{ii-ker}(\{y\}) = \phi$ which implies ii-Cl $(\{x\}) \cap \text{ii-Cl}(\{y\}) = \phi$. Because $z \in \text{ii-Cl}(\{x\})$ implies that $x \in \text{ii-ker}(\{z\})$ and therefore ii-ker $(\{z\}) \cap \text{ii-ker}(\{z\}) \neq \phi$. By hypothesis, we have ii-ker $(\{x\}) = \text{ii-ker}(\{z\})$. Then $z \in \text{ii-Cl}(\{x\}) \cap \text{ii-Cl}(\{y\})$ implies that ii-ker $(\{x\}) = \text{ii-ker}(\{z\}) = \text{ii-ker}(\{y\})$. This is a contradiction. Therefore, ii-Cl $(\{x\}) \cap \text{ii-Cl}(\{y\}) = \phi$ and by **Theorem 6.2**, (X, \mathfrak{I}) is an ii-R₀ space.

Theorem 6.15. For a topological space (X, \Im) the following properties are equivalent:

(i) (X, \mathfrak{I}) is an ii-R₀ space.

(ii) For any non-empty set A and G \in ii-O(X) such that A \cap G $\neq \phi$, there exists F \in ii-C(X) such that A \cap F $\neq \phi$ and F \subset G.

(iii) For any $G \in ii$ -O(X), we have $G = \bigcup \{F \in ii$ -C(X) : $F \subset G\}$.

(iv) For any $F \in ii$ -C(X), we have $F = \cap \{G \in ii$ -O(X) : $F \subset G\}$.

(v) For every $x \in X$, ii-Cl({x}) \subset ii-ker({x}).

Proof. (i) \Rightarrow (ii). Let A be a non-empty subset of X and G \in ii-O(X) such that A \cap G $\neq \phi$. There exists $x \in A \cap$ G. Since $x \in G \in$ ii-O(X), ii-Cl({x}) \subset G. Set F = ii-Cl({x}), then F \in ii-C(X), F \subset G and A \cap F $\neq \phi$.

(ii) \Rightarrow (iii). Let $G \in \text{ii-O}(X)$, then $G \supset \cup \{F \in \text{ii-C}(X) : F \subset G\}$. Let x be any point of G. There exists $F \in \text{ii-C}(X)$ such that $x \in F$ and $F \subset G$. Therefore, we have $x \in F \subset \cup \{F \in \text{ii-C}(X) : F \subset G\}$ and hence $G = \cup \{F \in \text{ii-C}(X) : F \subset G\}$.

(iii) \Rightarrow (iv). Obvious.

 $(iv) \Rightarrow (v)$. Let x be any point of X and $y \notin ii\text{-ker}(\{x\})$. There exists $V \in ii\text{-O}(X)$ such that $x \in V$ and $y \notin V$, hence $ii\text{-Cl}(\{y\}) \cap V = \phi$. By (iv), $(\cap \{G \in ii\text{-O}(X) : ii\text{-Cl}(\{y\}) \subset G\}) \cap V = \phi$ and there exists $G \in ii\text{-O}(X)$ such that $x \notin G$ and $ii\text{-Cl}(\{y\}) \subset G$. Therefore $ii\text{-Cl}(\{x\}) \cap G = \phi$ and $y \notin ii\text{-Cl}(\{x\})$. Consequently, we obtain $ii\text{-Cl}(\{x\}) \subset ii\text{-ker}(\{x\})$.

 $(v) \Rightarrow (i)$. Let $G \in ii$ -O(X) and $x \in G$. Let $y \in ii$ -ker({x}), then $x \in ii$ -Cl({y}) and $y \in G$. This implies that ii-ker({x}) $\subset G$. Therefore, we obtain $x \in ii$ -Cl({x}) $\subset ii$ -ker({x}) $\subset G$. This shows that (X, \mathfrak{I}) is an ii-R₀ space.

Corollary 6.16. For a topological space (X, \mathfrak{I}) the following properties are equivalent:

(i) (X, τ) is an ii-R₀ space.

(ii) ii-Cl($\{x\}$) = ii-ker($\{x\}$) for all $x \in X$.

Proof. (i) \Rightarrow (ii). Suppose that (X, \Im) is an ii-R₀ space. By **Theorem 6.15**, ii-Cl({x}) \subset ii-ker({x}) for each $x \in X$. Let $y \in$ ii-ker({x}), then $x \in$ ii-Cl({y}) and by **Theorem 6.2**, ii-Cl({x}) = ii-Cl({y}). Therefore, $y \in$ ii-Cl({x}) and hence ii-ker({x}) \subset ii-Cl({x}). This shows that ii-Cl({x}) = ii-ker({x}).

(ii) \Rightarrow (i). Follows from **Theorem 6.15**.

Theorem 6.17. For a topological space (X, \Im) the following properties are equivalent:

(i) (X, \mathfrak{I}) is an ii-R₀ space.

(ii) If F is ii-closed, then F = ii-ker(F).

(iii) If F is ii-closed and $x \in F$, then ii-ker({x}) $\subset F$.

(iv) If $x \in X$, then ii-ker({x}) \subset ii-Cl({x}).

Proof. (i) \Rightarrow (ii). Let F be an ii-closed and $x \notin F$. Thus (X - F) is an ii-open set containing x. Since (X, \mathfrak{I}) is ii-R₀, ii-Cl($\{x\}$) \subset (X - F). Thus ii-Cl($\{x\}$) \cap F = ϕ and by **Theorem 6.7**, $x \notin$ ii-ker(F). Therefore ii-ker(F) = F.

(ii) \Rightarrow (iii). In general, A \subset B implies ii-ker(A) \subset ii-ker(B). Therefore, it follows from (ii), that ii-ker({x}) \subset ii-ker(F) = F.

(iii) \Rightarrow (iv). Since $x \in ii$ -Cl({x}) and ii-Cl({x}) is ii-closed, by (iii), ii-ker({x}) \subset ii-Cl({x}).

 $(iv) \Rightarrow (i)$. We show the implication by using **Theorem 6.4**. Let $x \in ii$ -Cl({y}). Then by **Theorem 6.6**, $y \in ii$ -ker({x}). Since $x \in ii$ -Cl({x}) and ii-Cl({x}) is ii-closed, by (iv), we obtain $y \in ii$ -ker({x}) $\subset ii$ -Cl({x}). Therefore $x \in ii$ -Cl({y}) implies $y \in ii$ -Cl({x}). The converse is obvious and (X, \mathfrak{I}) is ii-R₀.

Definition 6.18. A topological space (X, \mathfrak{I}) is said to be **ii-R**₁ if for x, y in X with ii-Cl({x}) \neq ii-Cl({y}), there exist disjoint ii-open sets U and V such that ii-Cl({x}) \subset U and ii-Cl({y}) \subset V.

Theorem 6.19. A topological space (X, \Im) is ii- R_1 if it is ii- T_2 .

Proof. Let x and y be any points of X such that ii-Cl({x}) \neq ii-Cl({y}). By **Theorem 5.10**, every ii-T₂ space is ii-T₁. Therefore, by **Theorem 4.4**, ii-Cl({x}) = {x}, ii-Cl({y}) = {y} and hence {x} \neq {y}. Since (X, \Im) is ii-T₂, there exist disjoint ii-open sets U and V such that ii-Cl({x}) = {x} \subset U and ii-Cl({y}) = {y} \subset V. This shows that (X, \Im) is ii-R₁.

Theorem 6.20. If a topological space (X, \mathfrak{T}) is ii-symmetric, then the following are equivalent:

(i) (X, ℑ) is ii-T₂.

(ii) (X, \Im) is ii-R₁ and ii-T₁.

(iii) (X, \mathfrak{I}) is ii-R₁ and ii-T₀.

Proof. Straightforward.

Theorem 6.21. For a topological space (X, \Im) the following statements are equivalent:

(i) (X, \mathfrak{I}) is ii-R₁.

(ii) If x, $y \in X$ such that ii-Cl({x}) \neq ii-Cl({y}), then there exist ii-closed sets F_1 and F_2 such that $x \in F_1$, $y \notin F_1$, $y \in F_2$, $x \notin F_2$ and $X = F_1 \cup F_2$.

Proof. Obvious.

Theorem 6.22. If (X, \mathfrak{I}) is ii- R_1 , then (X, \mathfrak{I}) is ii- R_0 .

Proof. Let U be an ii-open set such that $x \in U$. If $y \notin U$, since $x \notin ii-Cl(\{y\})$, we have $ii-Cl(\{x\}) \neq ii-Cl(\{y\})$. So, there exists an ii-open set V such that $ii-Cl(\{y\}) \subset V$ and $x \notin V$, which implies $y \notin ii-Cl(\{x\})$. Hence $ii-Cl(\{x\}) \subset U$. Therefore, (X, \mathfrak{J}) is $ii-R_0$.

Corollary 6.23. A topological space (X, \mathfrak{I}) is ii- R_1 if and only if for $x, y \in X$, ii-ker $(\{x\}) \neq$ ii-ker $(\{y\})$, there exist disjoint ii-open sets U and V such that ii-Cl $(\{x\}) \subset$ U and ii-Cl $(\{y\}) \subset$ V.

Proof. Follows from Theorem 6.11.

Theorem 6.24. A topological space (X, \Im) is ii-R₁ if and only if $x \in X - \text{ii-Cl}(\{y\})$ implies that x and y have disjoint ii-open neighbourhoods.

Proof. Necessity. Let $x \in X - \text{ii-Cl}(\{y\})$. Then ii-Cl $(\{x\}) \neq \text{ii-Cl}(\{y\})$, so, x and y have disjoint ii-open neighbourhoods.

Sufficiency. First, we show that (X, \mathfrak{I}) is ii-R₀. Let U be an ii-open set and $x \in U$. Suppose that $y \notin U$. Then, ii-Cl({y}) \cap U = ϕ and $x \notin$ ii-Cl({y}). There exist ii-open sets U_x and U_y such that $x \in U_x$, $y \in U_y$ and $U_x \cap U_y = \phi$. Hence, ii-Cl({x}) \subset ii-Cl(U_x) and ii-Cl({x}) \cap U_y \subset ii-Cl(U_x) \cap U_y = ϕ . Therefore, $y \notin$ ii-Cl({x}). Consequently, ii-Cl({x}) \subset U and (X, \mathfrak{I}) is ii-R₀. Next, we show that (X, \mathfrak{I}) is ii-R₁. Suppose that ii-Cl({x}) \neq ii-Cl({y}). Then, we can assume that there exists $z \in$ ii-Cl({x}) such that $z \notin$ ii-Cl({y}). There exist ii-open sets V_z and V_y such that $z \in V_z$, $y \in V_y$ and $V_z \cap V_y = \phi$. Since $z \in$ ii-Cl({x}), $x \in V_z$. Since (X, \mathfrak{I}) is ii-R₀, we obtain ii-Cl({x}) \subset V_y ii-Cl({y}) \subset V_y and V_z \cap V_y = ϕ . This shows that (X, \mathfrak{I}) is ii-R₁.

References

- [1] M. E. Abd EI-Monsef, S. N. EI Deeb and R. A. Mohamoud, β -open sets and β -continuous mappings, Bull. Fac. Assiut Univ. Sci., **12**(1983), 77-90.
- [2] D. Andrijevic, on b-open sets, Mat. Vesnik, 48 (1996), 59-64.
- [3] M. Caldas and S. Jafari, On some applications of b-open sets in topological spaces, Kochi J. Math., 2(2007), 11-19.
- [4] A. A. El Atik, A study of some types of mappings on topological spaces, Master Thesis, Tanda University, Egypt, (1997).
- [5] N. Levine, Semiopen sets and semicontinuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [6] S. N. Maheswari and R. Prasad, some new separation axioms, annalesde lasociete, Scientifique de Bruxelles, T., III, 89(1975), 395-402.
- [7] S. N. Maheswari and S. S. Thakur, On α-irresolute mappings, Tamkang J, Math., 11(1980), 209-214.
- [8] A. S. Mashhour, M. E. Abd EI-Monsef and S. N. EI-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [9] H. Maki, R. Devi and K. Balachandran, Generalized –closed sets in topology, Bull. Fukuoka Univ. Ed., Part-III, 42(1993), 13-21.
- [10] A. A. Mohammed and B. S. Abdullah, ii-open sets in topological spaces, International Mathematical Forum, Vol. 14, No. 1, (2019), 41-48.
- [11] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961-970.
- [12] J. H. Park, Strongly θ-b-continuous functions, Acta Math. Hungar., 110(4), (2006), 347-359.