Coupled Fixed Point Theorems in Vector bmetric Space

Mamta Kamra ${ }^{1}$, Rahul Hooda ${ }^{2}$, Archana Malik ${ }^{3}$
${ }^{1}$ Ass. Professor. Department of Mathematics, Indira Gandhi University, Meerpur (Rewari)-122502, Haryana, India.
2,3 Department of Mathematics, Maharshi Dayanand University, Rohtak-124001, Haryana, India

Abstract

This paper consists of some coupled and common coupled fixed point theorems in vector b-metric spaces. Vector b-metric space or E-b-metric space was introduced by Petre [6] merging the concepts of vector metric space as introduced by Cevik [4] and b-metric space as introduced by Czerwik [5]. We generalize the results of Shatnanawi and Hani [8] and Rao et al. [7].

Keywords - coupled and common coupled fixed point theorems, vector b-metric spaces

I. Introduction

The notion of coupled fixed point for metric spaces was initiated by Bhaskar and Lakshmikantan [12]. Thereafter several authors investigated coupled fixed point theorems for various general metric spaces [12-14]. In 1989, Bakhtin [3] introduced the concept of b-metric space. Chao et al. [13] and Lakshikanthan [14] have probed coupled fixed point theorems on b-metric space. Cevik and Altun [4] introduced the concept of vector metric space and proved some fixed point theorems on this space. Petre [6] defined the vector b-metric space or E-b-metric space. We prove some results related to coupled fixed points on E-b-metric space.

II. Preliminaries

We present here various definitions and results that will be used in the sequel.. For definitions and results related to Riesz space, we refer Aliprantis and Border [2] and that for vector metric spaces, one can see Cevik and Altun [4].

Definition 2.1 A set Z with binary relation (\leq) which is reflexive, antisymmetric and transitive is called partial ordered set(poset).

A poset (Z, \leq) is said to be linearly ordered or totally ordered or chain if for each pair $u, v \in Z$, we have either $u \leq v$ or $v \leq u$.
Definition 2.2 A poset in which every subset with two elements has a supremum or an infimum is called lattice. A lattice in Z is said to be complete if every subset has a supremum or infimum. A lattice is Dedekind complete if every non empty subset of a lattice which is bounded below (above) has a infimum (supremum).
Definition 2.3 A partially ordered vector space is poset (E, \leq) where E is a real vector space such that for all $u, v, w \in E$ and $\lambda>0$
(i) $u \leq v \quad \Rightarrow u+w \leq v+w$
(ii) $u \leq v \quad \Rightarrow \lambda u \leq \lambda v$

Definition 2.4 A partially ordered vector space which is also a lattice under its ordering is called a Riesz space.
Notation In a Riesz space, for a decreasing sequence $\left\{u_{n}\right\}_{\text {whose inf }} u_{n}=u$. We use the notation $u_{n} \downarrow u$.
Definition 2.5 An Archimedean Riesz space E is a Riesz space in which $\frac{1}{n} u \downarrow 0$ for every $u \in E_{+}$, where $E_{+}=\{u \in E: u \geq 0\}$.

Definition 2.6 In a Riesz space E, A sequence $\left\{u_{n}\right\}$ is order convergent to u written as $u_{n} \xrightarrow{0} u$, if there exists a sequence $\left\{a_{n}\right\}_{\text {in E satisfying }} a_{n} \downarrow 0$ and $\left|u_{n}-u\right| \leq a_{n}$ for all n, where $|u|=u \vee-u$.
 $a_{n} \downarrow 0$ and $\left|u_{n}-u_{n+m}\right| \leq a_{n}$ forall n and forall m.

Lemma 2.7 [15] In a Riesz space E, if $u \leq k u$, where $u \in E_{+}, k \in[0,1)$ and $E_{+}=\{u \in E: u \geq 0\}$, then $u=0$.

Example 2.8 \square^{2} is a Riesz space with coordinate wise ordering defined by $\left(u_{1}, u_{2}\right) \leq\left(v_{1}, v_{2}\right)$ iff $u_{1} \leq v_{1}, u_{2} \leq v_{2}$ for all $\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right) \in \square^{2}$.

Definition 2.9 A function $d: Z \times Z \rightarrow E$, where Z is nonempty set and E is Riesz space is called a E-metric(vector metric) on Z if it satisfies the following properties :
(i) $d\left(z_{1}, z_{2}\right)=0_{\text {iff }} z_{1}=z_{2}$
(ii) $d\left(z_{1}, z_{2}\right) \leq d\left(z_{1}, z_{3}\right)+d\left(z_{3}, z_{2}\right) \quad \forall z_{1}, z_{2}, z_{3} \in Z$

Then triplet (Z, d, E) is said to be vector metric space.
For any $z_{1}, z_{2}, z_{3}, z_{4}$ in a vector metric space, some inequalities listed below are trivial
(a) $0 \leq d\left(z_{1}, z_{2}\right)$
(b) $d\left(z_{1}, z_{2}\right)=d\left(z_{2}, z_{1}\right)$
(c) $\left|d\left(z_{1}, z_{3}\right)-d\left(z_{2}, z_{3}\right)\right| \leq d\left(z_{1}, z_{2}\right)$
(d) $\left|d\left(z_{1}, z_{3}\right)-d\left(z_{2}, z_{4}\right)\right| \leq d\left(z_{1}, z_{2}\right)+d\left(z_{3}, z_{4}\right)$.

Example 2.10 Every Riesz space E is a vector metric space with $d\left(z_{1}, z_{2}\right)=\left|z_{1}-z_{2}\right|$ for all $z_{1}, z_{2} \in E$.

Example 2.11 Let $d: \square \times \square \rightarrow \square^{2}$ be defined as $d(x, y)=\left(\alpha_{1}|x-y|, \alpha_{2}|x-y|\right)$, where $\alpha_{1}, \alpha_{2} \geq 0$ and $\alpha_{1}+\alpha_{2}>0$. Then d is a vector metric with coordinatewise or lexicographical ordering and $\left(\square, d, \square^{2}\right)$ is a vector metric space.

Example 2.12 \square^{n} is a Riesz space corresponds to partial order defined by

$$
\left(u_{1}, u_{2}, \ldots, u_{n}\right) \leq\left(v_{1}, v_{2}, \ldots, v_{n}\right) \text { if and only if } u_{1} \leq v_{1}, u_{2} \leq v_{2}, \ldots, u_{n} \leq v_{n}
$$

Define $d: \square^{n} \times \square^{n} \rightarrow \square$ by

$$
d\left(\left(u_{1}, u_{2}, \ldots, u_{n}\right),\left(v_{1}, v_{2}, \ldots, v_{n}\right)\right)=\left(\alpha_{1}\left|u_{1}-v_{1}\right|, \alpha_{2}\left|u_{2}-v_{2}\right|, \ldots, \alpha_{n}\left|u_{n}-v_{n}\right|\right)
$$

where $\alpha_{i}, i \leq 1 \leq n$, are non-negative real numbers with $\alpha_{1}+\alpha_{2}+\ldots .+\alpha_{n}>0$.Then $\left(\square^{n}, d, \square^{n}\right)_{\text {is a vector }}$ metric space.

Definition 2.13 Suppose (Z, d, E) is a vector metric space. A sequence $\left\langle z_{n}\right\rangle$ in Z is said to be E-converges(or vectorial converges) to some $z \in Z$, written as $z_{n} \xrightarrow{d, E} z$, if there exists a sequence $\left\langle a_{n}\right\rangle$ in E such that $a_{n} \downarrow 0$ and $d\left(z_{n}, z\right) \leq a_{n}$ for all n .

Definition 2.14 A sequence $\left\langle z_{n}\right\rangle$ in a vector metric space (Z, d, E) is said to be E-Cauchy if if there exists a sequence $\left\langle a_{n}\right\rangle$ in E such that $a_{n} \downarrow 0$ and $d\left(z_{n}, z_{n+m}\right) \leq a_{n} \forall \mathrm{n}$ and m.
Definition 2.15 Let Y be any subset of a vector metric space Z. Y is said to be E-closed if for every sequence $\left\{z_{n}\right\} \subseteq Y$ and $z_{n} \xrightarrow{d, E}, \quad$ imply $z \in Y$.
It is easy to see that if $z_{n} \xrightarrow{d, E} z$, then the limit of the sequence z_{n} is unique and every subsequence of $\left\langle z_{n}\right\rangle$ Econverges to z. If $y_{n} \stackrel{d, E}{ } y$, then $d\left(z_{n}, y_{n}\right) \xrightarrow{0} d(z, y)$.
The concepts of convergence in metric similar to vectorial convergence when $E=\square$. Also, If d is the absolute valued metric and $Z=E$ then concepts of convergence in order and vectorial convergence coincide.
Definition 2.16 An E-complete vector metric space Z is a vector metric space in which every E-Cauchy sequence in Z E-converges to a limit in Z .

Definition 2.17 [16] A mapping $f:(Z, d, E) \rightarrow\left(Y, d^{\prime}, F\right)$ is vectorially continuous at z if $\stackrel{d, E}{\rightarrow} z_{n}$ in Z implies $f\left(z_{n}\right) \xrightarrow{d^{\prime}, F} f(z)$ in Y and the function f is vectorially continuous on Z if it is vectorically continuous at each element of Z .

Definition 2.18 [6]A function $d: Z \times Z \rightarrow E_{+}$, where E is Riesz space and Z is nonempty set, is said to be E-b-metric if, for any $z_{1}, z_{2}, z_{3} \in Z$ and $s \geq 1$ any real number, the following conditions are satisfied:
(i) $d\left(z_{1}, z_{2}\right) \leq s\left[d\left(z_{1}, z_{3}\right)+d\left(z_{2}, z_{3}\right)\right]$
(i) $d\left(z_{1}, z_{2}\right)=0$ if and only if $z_{1}=z_{2}$.

The triple $(Z, d, E)_{\text {is said to be E-b-metric space. }}$
Example 2.19 Let $Z=L^{p}[0,1]_{\text {with }} 0<p<1$ and $E=\square^{2}$. Let $d: L^{p}[0,1] \times L^{p}[0,1] \rightarrow_{+}^{2}$ be defined by

$$
d\left(f_{1}, f_{2}\right)=\left(\alpha\left\|f_{1}-f_{2}\right\|_{p}, \beta\left\|f_{1}-f_{2}\right\|_{p}\right)
$$

where $\alpha, \beta \geq 0$ and $\alpha+\beta>0$. Then we can deduce that

$$
d\left(f_{1}, f_{2}\right) \leq 2^{\frac{1}{p}}\left[d\left(f_{1}, f_{2}\right)+d\left(f_{2}, f_{3}\right)\right]
$$

Hence $\left(Z, d, \square^{2}\right)_{\text {is E-b-metric space with parameter }} s=2^{\frac{1}{p}}>1$.
Example 2.20 Suppose $0<p<1, Z=l_{p}$, and $d: l_{p} \times l_{p} \rightarrow \square_{+}^{2}$ is defined as

$$
d(u, v)=\left(\alpha\|u-v\|_{p}, \beta\|u-v\|_{p}\right)
$$

where $\alpha, \beta \geq 0$ and $\alpha+\beta>0$, then $\left(Z, d, \square^{2}\right)$ is E-b-metric space with parameter $s=2^{\frac{1}{p}}>1$.
Definition 2.21 Let $Z=C[-1,1]=E$ and $d: Z \times Z \rightarrow E_{+}$be defined as

$$
d\left(f_{1}, f_{2}\right)=\left(f_{1}-f_{2}\right)^{p}, p>1
$$

Then (Z, d, E) is E-b-metric space with parameter $s=2^{\frac{1}{p}}>1$. Since the function $x^{p}(p>1)$ is convex, we have

$$
\left(\frac{1}{2} x+\frac{1}{2} y\right)^{p} \leq \frac{1}{2} x^{p}+\frac{1}{2} y^{p}
$$

so that $(x+y)^{p} \leq 2^{p-1}\left(x^{p}+y^{p}\right)$
Therefore

$$
\begin{aligned}
d\left(f_{1}, f_{3}\right) & =\left(f_{1}-f_{3}\right)^{p}=\left(f_{1}-f_{2}+f_{2}-f_{3}\right)^{p} \\
& \leq 2^{p-1}\left[\left(f_{1}-f_{2}\right)^{p}+\left(f_{2}-f_{3}\right)^{p}\right] \\
& =2^{p-1}\left[d\left(f_{1}, f_{2}\right)+d\left(f_{2}, f_{3}\right)\right]
\end{aligned}
$$

Thus the relaxed triangular inequality holds with $s=2^{\frac{1}{p}}>1$

Example 2.22 Let $Z=\square^{2}, E=\square^{2}$ and $d: Z \times Z \rightarrow \square^{2}$ be defined as

$$
d\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right)=\left(\alpha\left|u_{1}-u_{2}\right|^{2}, \beta\left|v_{1}-v_{2}\right|^{2}\right) .
$$

where $\alpha, \beta \geq 0$ and $\alpha+\beta>0$, then $\left(Z, d, \square^{2}\right)$ is E-b-metric space with parameter $s=2>1$.
Example 2.23 Let $Z=\{0,1,2\}, E=\square^{2}$ and $d: Z \times Z \rightarrow \square^{2}$ be defined as

$$
\begin{aligned}
& d(0,1)=d(1,0)=(1,1) \\
& d(1,2)=d(2,1)=(1,1) \\
& d(0,2)=d(2,0)=(4,4)
\end{aligned}
$$

Since $d(0,2)=(4,4) \npreceq d(0,1)+d(1,2),(Z, d, E)$ is E-b-metric space with $s=2$ but not a metric space.
Definition 2.24 Suppose (Z, \leq) is a poset and $T: Z \times Z \rightarrow Z$ be a map. If $T(u, v)$ is monotone nondecreasing in first argument i.e. u and is monotone nonincreasing in second argument i.e. v , that is, for ${ }_{\text {all }} p, q \in Z, p \leq q$ implies $T(p, v) \leq T(q, v)_{\text {for any }} v \in Z$ and for all $x, y \in Z, y \leq x$ implies $T(u, x) \leq T(u, y)$ for any $u \in Z$, then one can say that T has mixed monotone property .

Definition 2.25 Suppose (Z, \leq) is a poset and $T: Z \times Z \rightarrow Z$ and $g: Z \rightarrow Z$ be two mappings. T has the mixed g-monotone property if for any $p, q \in Z, g p \leq g q_{\text {implies }} T(p, y) \leq T(q, y)_{\text {for any }} y \in Z$ and for any $u, v \in Z, g u \leq g v{ }_{\text {implies }} T(z, v) \leq T(z, u)$ for any $z \in Z$.

Definition 2.26 Suppose (Z, d, E) be E-b-metric space. An element $\left(z_{1}, z_{2}\right) \in Z \times Z$ is said to be coupled fixed point of a function $T: Z \times Z \rightarrow Z_{\text {if }} T\left(z_{1}, z_{2}\right)=z_{1}$ and $T\left(z_{2}, z_{1}\right)=z_{2}$.

Definition 2.27 An element of $\left(z_{1}, z_{2}\right) \in Z \times Z$ is said to be coupled coincidence point of the mapping $T: Z \times Z \rightarrow Z$ and $g: Z \rightarrow Z{ }_{\text {if }} T\left(z_{1}, z_{2}\right)=g\left(z_{1}\right)=z_{1}$ and $T\left(z_{2}, z_{1}\right)=g\left(z_{2}\right)=z_{2}$.

Definition 2.28 Suppose Z is a non empty set. The mapping $T: Z \times Z \rightarrow Z$ and $g: Z \rightarrow Z$ are said to be commutative if $g\left(T\left(z_{1}, z_{2}\right)\right)=T\left(g\left(z_{1}\right), g\left(z_{2}\right)\right) \forall x, y \in Z$.

Definition 2.29 Suppose $Z \neq \phi$ and $T: Z \times Z \rightarrow Z$ and $g: Z \rightarrow Z$. The pair (T, g) is said to be weakly compatible if $g\left(T\left(z_{1}, z_{2}\right)\right)=T\left(g\left(z_{1}\right), g\left(z_{2}\right)\right)$ whenever $g\left(z_{1}\right)=T\left(z_{1}, z_{2}\right) \quad$ and $g\left(z_{2}\right)=T\left(z_{2}, z_{1}\right) \forall z_{1}, z_{2} \in Z \times Z$

III. Main Results

Theorem 3.1 Suppose $\left(Z, \leq_{Z}\right)$ is a poset and $d: Z \times Z \rightarrow E_{+}$be E-b-metric defined on Z with coefficient $s \geq 1$ and E-Archimedean. Let $T: Z \times Z \rightarrow Z$ and $g: Z \rightarrow Z$ be two mappings such that

$$
d(T(u, v), T(p, q))+d(T(v, u), T(q, p)) \leq_{E} k[d(g u, g p)+d(g v, g q)]
$$

for some $k \in\left(0, \frac{1}{s}\right)$ and for all $u, v, p, q \in Z_{\text {with }} g p \leq_{Z} g u$ and $g v \leq_{Z} g q$. We further assume the following hypothesis
(1) $T(Z \times Z) \subseteq g(Z)$
(2) $g(Z)$ is E-complete.
(3) g is vectorially continuous and commute with T .
(4) T has the mixed ${ }^{g}$ - monotone property on Z .
(5) Either T is vectorially continuous or
A. for every non decreasing sequence, if $\left\{u_{n}\right\} \rightarrow u_{\text {then }} u_{n} \leq_{z} u$.
B. for every increasing sequence if $\left\{v_{n}\right\} \rightarrow v$ then $v \leq_{Z} v_{n}$.

Then if there exists two elements $u_{0}, v_{0} \in Z_{\text {with }} g\left(u_{0}\right) \leq_{Z} T\left(u_{0}, v_{0}\right)$ and $T\left(u_{0}, v_{0}\right) \leq_{Z} g\left(v_{0}\right)$, T and g have coupled coincident fixed point.

Proof: - Let $u_{0}, v_{0} \in Z$ be such that $g u_{0} \leq_{Z} T\left(u_{0}, v_{0}\right)$ and $T\left(v_{0}, u_{0}\right) \leq_{Z} g v_{0}$.
Since $T(Z \times Z) \subseteq g(Z)$, it is to find $u_{1}, v_{1} \in Z$ such that

$$
g\left(u_{1}\right)=T\left(u_{0}, v_{0}\right) \text { and } g\left(v_{1}\right)=T\left(v_{0}, u_{0}\right)
$$

Again since $T(Z \times Z) \subseteq g(Z)$, we can select $u_{2}, v_{2} \in Z$ such that

$$
g\left(u_{2}\right)=T\left(u_{1}, v_{1}\right) \text { and } g\left(v_{2}\right)=T\left(v_{1}, u_{1}\right) .
$$

Continuing this process, we can construct two sequences $\left\{u_{n}\right\}_{\text {and }}\left\{v_{n}\right\}_{\text {in } \mathrm{Z}}$ such that,

$$
\begin{gather*}
g\left(u_{n+1}\right)=T\left(u_{n}, v_{n}\right) \tag{1}\\
g\left(v_{n+1}\right)=T\left(v_{n}, u_{n}\right), \quad \forall n \tag{2}
\end{gather*}
$$

Now we will prove that $\forall n \geq 0$,

$$
\begin{align*}
& g\left(u_{n}\right) \leq_{Z} g\left(u_{n+1}\right) \tag{3}\\
& g\left(v_{n+1}\right) \leq_{Z} g\left(v_{n}\right) \tag{4}
\end{align*}
$$

We will prove (3) and (4) by the use of principle mathematical induction.
Suppose $n=0$.
Since $g\left(u_{0}\right) \leq_{Z} T\left(u_{0}, v_{0}\right)$ and $T\left(v_{0}, u_{0}\right) \leq_{Z} g\left(v_{0}\right)$.
Thus we have $g\left(u_{0}\right) \leq_{Z} g\left(u_{1}\right)$ and $g\left(v_{1}\right) \leq_{Z} g\left(v_{0}\right)$.
So (3) and (4) hold for $n=0$.
Now we suppose that (3) and (4) hold for some $n>0$.
Since the mapping T is mixed g-monotone and $g\left(u_{n}\right) \leq_{Z} g\left(u_{n+1}\right)$ and $g\left(v_{n+1}\right) \leq_{Z} g\left(v_{n}\right)$.
We get

$$
g\left(u_{n+1}\right)=T\left(u_{n}, v_{n}\right) \leq_{z} T\left(u_{n+1}, v_{n}\right)
$$

and

$$
T\left(v_{n+1}, u_{n}\right) \leq_{z} T\left(v_{n}, u_{n}\right)=g\left(v_{n+1}\right)
$$

Also, we have

$$
\begin{gathered}
T\left(u_{n+1}, v_{n}\right) \leq_{Z} T\left(u_{n+1}, v_{n+1}\right)=g\left(u_{n+2}\right) \\
g\left(v_{n+2}\right)=T\left(v_{n+1}, u_{n+1}\right) \leq_{Y} T\left(v_{n+1}, u_{n}\right)
\end{gathered}
$$

Then from (1) and (2),

$$
g\left(u_{n+1}\right) \leq_{z} g\left(u_{n+2}\right) \text { and } g\left(v_{n+2}\right) \leq_{z} g\left(v_{n+1}\right)
$$

Thus by the use of principle of Mathematical Induction, (3) and (4) holds for all $n \geq 0$. After repeating the above process, one can deduce the following

$$
\begin{align*}
& g\left(u_{0}\right) \leq_{Z} g\left(u_{1}\right) \leq_{Z} g\left(u_{2}\right) \leq_{Z} g\left(u_{3}\right) \leq_{Z} g\left(u_{4}\right) \leq_{Z} \ldots \ldots . \leq_{Z} g\left(u_{n+1}\right) \leq_{Z} \cdots \cdots \tag{5}\\
& \ldots \ldots \ldots \leq_{Z} g\left(v_{n+1}\right) \leq_{Z} \ldots \ldots \leq_{Z} g\left(v_{2}\right) \leq_{Z} g\left(v_{1}\right) \leq_{Z} g\left(v_{0}\right) \tag{6}
\end{align*}
$$

and
Now, if we assume $\left(u_{n+1}, v_{n+1}\right)=\left(u_{n}, v_{n}\right)$, then the result is trivial.
So, we assume $\left(u_{n+1}, v_{n+1}\right) \neq\left(u_{n}, v_{n}\right) \quad \forall n \geq 0$
Thus we assume that either

$$
\begin{aligned}
& g\left(u_{n+1}\right)=T\left(u_{n}, v_{n}\right) \neq g\left(u_{n}\right) \text { or } \\
& g\left(v_{n+1}\right)=T\left(v_{n}, u_{n}\right) \neq g\left(v_{n}\right)
\end{aligned}
$$

Again

$$
\begin{align*}
& \qquad \begin{array}{l}
d\left(g u_{n}, g u_{n+1}\right)+d\left(g v_{n}, g v_{n+1}\right)=d\left(T\left(u_{n-1}, v_{n-1}\right), T\left(u_{n}, v_{n}\right)\right)+d\left(T\left(v_{n-1}, u_{n-1}\right), T\left(v_{n}, u_{n}\right)\right) \\
\qquad \leq_{E} k\left[d\left(g u_{n-1}, g u_{n}\right)+d\left(g v_{n-1}, g v_{n}\right)\right] \\
\text { Let } d\left(g u_{n}, g u_{n+1}\right)+d\left(g v_{n}, g v_{n+1}\right)=d_{n} \\
\text { where } d_{n} \text { is some element of E. } \\
\text { Then } d_{n} \leq_{E} k d_{n-1} \\
\Rightarrow d_{n} \leq_{E} k d_{n-1} \leq_{E} k^{2} d_{n-2} \leq_{E} \ldots \ldots \ldots \leq_{E} k^{n} d_{0}
\end{array} \text { (7) }
\end{align*}
$$

Again let m, n be two positive integers, such that $m>n$. Then we can write

$$
\begin{gathered}
d\left(g u_{n}, g u_{m}\right) \leq_{E} s d\left(g u_{n}, g u_{n+1}\right)+s^{2} d\left(g u_{n+1}, g u_{n+2}\right)+s^{3} d\left(g u_{n+2}, g u_{n+3}\right)+\ldots \ldots \ldots \\
\ldots \ldots \ldots+s^{m-n-1} d\left(g u_{m-2}, g u_{m-1}\right)+s^{m-n-1} d\left(g u_{m-1}, g u_{m}\right)
\end{gathered}
$$

(By repeated use of triangular inequality)

$$
\begin{gathered}
d\left(g v_{n}, g v_{m}\right) \leq_{E} s d\left(g v_{n}, g v_{n+1}\right)+s^{2} d\left(g v_{n+1}, g v_{n+2}\right)+s^{3} d\left(g v_{n+2}, g v_{n+3}\right)+\ldots \ldots \ldots \\
\ldots \ldots+s^{m-n-1} d\left(g v_{m-2}, g v_{m-1}\right)+s^{m-n-1} d\left(g v_{m-1}, g v_{m}\right)
\end{gathered}
$$

Therefore,
$d\left(g u_{n}, g u_{m}\right)+d\left(g v_{n}, g v_{m}\right) \leq_{E} s d_{n}+s^{2} d_{n+1}+s^{3} d_{n+2}+\ldots \ldots+s^{m-n-1} d_{m-2}+s^{m-n-1} d_{m-1}$
[using (7)]
$\leq_{E} s k^{n} d_{0}+s^{2} k^{n+1} d_{0}+s^{3} k^{n+2} d_{0}+\ldots \ldots+s^{m-n-1} k^{m-2} d_{0}+s^{m-n-1} k^{m-1} d_{0}$

$$
\leq_{E} s k^{n} d_{0}+s^{2} k^{n+1} d_{0}+s^{3} k^{n+2} d_{0}+\ldots \ldots .+s^{m-n-1} k^{m-2} d_{0}+s^{m-n} k^{m-1} d_{0}
$$

$$
\leq_{E} s k^{n} d_{0}\left[1+s k+s^{2} k^{2}+\ldots \ldots .+s^{m-n-1} k^{m-n-1}\right]
$$

$$
\leq_{E} s k^{n} d_{0}\left[1+s k+s^{2} k^{2}+\ldots \ldots \ldots\right]
$$

$$
\leq_{E} s k^{n} d_{0} \frac{1}{1-s k}
$$

Thus $d\left(g u_{n}, g u_{m}\right)+d\left(g v_{n}, g v_{m}\right)_{E} \leq 0$
$\Rightarrow d\left(g u_{n}, g u_{m}\right) \leq_{E} 0, d\left(g v_{n}, g v_{m}\right) \leq_{E} 0$
Hence $\left\{g u_{n}\right\}$ and $\left\{g v_{n}\right\}$ are two E-Cauchy sequence in $g Z$ and we supposed the hypothesis that $g Z$ is Ecomplete.

So there exists two points, say u and v in Z , such that the two E-Cauchy sequences $g u_{n} \rightarrow g u=\xi$ and $g v_{n} \rightarrow g v=\eta_{\text {as }} n \rightarrow \infty$.
Now let (5) holds, T is vectorially continuous and so
$g\left(g\left(u_{n+1}\right)\right)=g\left(T\left(u_{n}, v_{n}\right)\right)=T\left(g u_{n}, g v_{n}\right)_{\text {since T and } g \text { are commutative } . ~}^{\text {a }}$
$\Rightarrow g(\xi)=T(\xi, \eta)$, since T and g are vectorially continuous.
Similarly, we can show that $g(\eta)=T(\eta, \xi)$.
Hence (ξ, η) is a point of coincidence for T and g .
Again, let (5A) hold, by (5) we get that $\left\{g u_{n}\right\}_{\text {is a non-decreasing sequence and }} g u_{n} \rightarrow \xi$, therefore $g u_{n} \leq_{Z} \xi$, for all n.

Similarly by (5B) and (6), we get that $\left\{g v_{n}\right\}_{\text {is a non-increasing sequence and }} g v_{n} \rightarrow \eta$, therefore $\eta \leq_{Z} g v_{n}$, for all n .

Then

$$
\begin{aligned}
d(g \xi, T(\xi, \eta)) & \leq_{E} s d\left(g \xi, g g u_{n+1}\right)+s d\left(g g u_{n+1}, T(\xi, \eta)\right) \\
& =s d\left(g \xi, g g u_{n+1}\right)+s d\left(g\left(T\left(u_{n}, v_{n}\right)\right), T(\xi, \eta)\right) \\
& =s d\left(g \xi, g g u_{n+1}\right)+s d\left(T\left(g u_{n}, g v_{n}\right), T(\xi, \eta)\right)
\end{aligned}
$$

Add both side $s d\left(T\left(g v_{n}, g u_{n}\right), T(\eta, \xi)\right)$, thus we have

$$
\begin{aligned}
& d(g \xi, T(\xi, \eta))+s d\left(T\left(g v_{n}, g u_{n}\right), T(\eta, \xi)\right) \leq_{E} s d\left(g \xi, g g u_{n+1}\right) \\
& \\
& \quad+s d\left(T\left(g u_{n}, g v_{n}\right), T(\xi, \eta)\right)+s d\left(T\left(g v_{n}, g u_{n}\right), T(\eta, \xi)\right) \\
& d(g \xi, T(\xi, \eta))+s d\left(T\left(g v_{n}, g u_{n}\right), T(\eta, \xi)\right) \leq_{E} s d\left(g \xi, g g u_{n+1}\right)+s k\left[d\left(g g u_{n}, g \xi\right)+d\left(g g v_{n}, g \eta\right)\right]
\end{aligned}
$$

Since, g is vectorially E-continuous, $g g u_{n} \rightarrow g \xi$ and $g g v_{n} \rightarrow g \eta$ as $n \rightarrow \infty$ and hence (8) gives $g \xi=T(\xi, \eta)$.
Similarly, we can show that, $g \eta=T(\eta, \xi)$
Again, $d(g \xi, g \eta)+d(g \eta, g \xi)$
$=d(T(\xi, \eta), T(\eta, \xi))+d(T(\eta, \xi), T(\xi, \eta))$
$\leq_{E} k[d(g \xi, g \eta)+d(g \eta, g \xi)]$
$\Rightarrow 2 d(g \xi, g \eta) \leq_{E} 2 k d(g \xi, g \eta)$
$\Rightarrow d(g \xi, g \eta) \leq_{E} k d(g \xi, g \eta)$
Since $k<\frac{1}{s}, \quad d(g \xi, g \eta)=0$, thus $g \xi=g \eta$.

Hence $T(\xi, \eta)=g \xi=g \eta=T(\eta, \xi)$
Finally,

$$
\begin{aligned}
d(\xi, g \xi) & \leq_{E} s d\left(\xi, g u_{n+1}\right)+\operatorname{sd}\left(g u_{n+1}, g \xi\right) \\
& =\operatorname{sd}\left(\xi, g u_{n+1}\right)+\operatorname{sd}\left(T\left(u_{n}, v_{n}\right), T(\xi, \eta)\right)
\end{aligned}
$$

and in the same manner

$$
\begin{aligned}
d(\eta, g \eta) & \leq_{E} s d\left(\eta, g v_{n+1}\right)+s d\left(g v_{n+1}, g \eta\right) \\
& =\operatorname{sd}\left(\eta, g v_{n+1}\right)+\operatorname{sd}\left(T\left(v_{n}, u_{n}\right), T(\eta, \xi)\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& d(\xi, g \xi)+d(\eta, g \eta) \leq_{E} s\left[d\left(\xi, g u_{n+1}\right)\right]+d\left(\eta, g v_{n+1}\right) \\
& +s\left[d\left(T\left(u_{n}, v_{n}\right), T(\xi, \eta)\right)+d\left(T\left(v_{n}, u_{n}\right), T(\eta, \xi)\right)\right] \\
& \leq_{E} s\left[d\left(\xi, g u_{n+1}\right)\right]+d\left(\eta, g v_{n+1}\right)+s k\left[d\left(g u_{n}, g \xi\right)+d\left(g v_{n}, g \eta\right)\right] \\
& \leq_{E} s\left[d\left(\xi, g u_{n+1}\right)\right]+d\left(\eta, g v_{n+1}\right)+s^{2} k\left[d\left(g u_{n}, \xi\right)+d(\xi, g \xi)+d\left(g v_{n}, \eta\right)+d(\eta, g \eta)\right] \\
& \text { Thus }\left(1-k s^{2}\right)[d(\xi, g \xi)+d(\eta, g \eta)] \\
& \leq_{E} s\left[d\left(\xi, g u_{n+1}\right)+d\left(\eta, g v_{n+1}\right)\right]+s^{2} k\left[d\left(g u_{n}, \xi\right)+d\left(g v_{n}, \eta\right)\right] \rightarrow 0 \quad \text { as } n \rightarrow \infty \\
& \text { Thus } d(\xi, g \xi)=0=d(\eta, g \eta) \\
& \Rightarrow \xi=g \xi_{\text {and }} \eta=g \eta \\
& \Rightarrow g(\xi)=\xi=T(\xi, \eta), g(\eta)=\eta=T(\eta, \xi) \text {. }
\end{aligned}
$$

Theorem 3.2 Suppose (Z, d, E) is a E-b-metric space with $s>1$, E-Archimedean and $T: Z \times Z \rightarrow Z$ and $g: Z \rightarrow Z$ be two mappings on Z. Suppose that there exists non-negative constant $t_{i}, i=1,2, \ldots, 10$ such that

$$
\begin{aligned}
d(T(u, v), T(p, q)) & \leq_{E} t_{1} d(g u, g p)+t_{2} d(g v, g q)+t_{3} d(T(u, v), g u)+t_{4} d(T(v, u), g v) \\
& +t_{5} d(T(p, q), g p)+t_{6} d(T(q, p), g q)+t_{7} d(T(u, v), g p)+t_{8} d(T(v, u), g q) \\
& +t_{9} d(T(p, q), g u)+t_{10} d(T(q, p), g v)
\end{aligned}
$$

holds for all $u, v, p, q \in Z$.
Suppose
(i) $g(Z)$ is E-complete subspace of Z.
(ii) $T(Z \times Z) \subseteq g(Z)$
(iii) $s\left(t_{1}+t_{2}+t_{3}+t_{4}\right)+t_{5}+t_{6}+t_{7}+t_{8}+\left(s^{2}+s\right)\left(t_{9}+t_{10}\right)<1$

Then T and g have coupled coincidence point. Further, if T and g are weakly compatible then T and g have unique coupled fixed point.
Proof: - Take $v_{0} \in Z$.
Since $T(Z \times Z) \subseteq g(Z)$, then can find $v_{1} \in Z$ such that $T\left(v_{0}, v_{0}\right)=g\left(v_{1}\right)$
Again since $T(Z \times Z) \subseteq g(Z),{ }_{\text {then }} \exists v_{2} \in Z$ such that $T\left(v_{1}, v_{1}\right)=g\left(v_{2}\right)$.
Repeating the above process, we will get a sequence $\left\{u_{n}\right\}$ in $g(Z)$ such that

$$
\begin{equation*}
u_{n}=g\left(v_{n+1}\right)=T\left(v_{n}, v_{n}\right) \tag{9}
\end{equation*}
$$

$$
\begin{aligned}
& d\left(g v_{n+1}, g v_{n+2}\right)=d\left(T\left(v_{n}, v_{n}\right), T\left(v_{n+1}, v_{n+1}\right)\right) \leq_{E} t_{1} d\left(g v_{n}, g v_{n+1}\right)+t_{2} d\left(g v_{n}, g v_{n+1}\right) \\
& +t_{3} d\left(T\left(v_{n}, v_{n}\right), g v_{n}\right)+t_{4} d\left(T\left(v_{n}, v_{n}\right), g v_{n}\right)+t_{5} d\left(T\left(v_{n+1}, v_{n+1}\right), g v_{n}\right) \\
& +t_{6} d\left(T\left(v_{n+1}, v_{n+1}\right), g v_{n+1}\right)+t_{7} d\left(T\left(v_{n}, v_{n}\right), g v_{n+1}\right)+t_{8} d\left(T\left(v_{n}, v_{n}\right), g v_{n+1}\right) \\
& +t_{9} d\left(T\left(v_{n+1}, v_{n+1}\right), g v_{n}\right)+t_{10} d\left(T\left(v_{n+1}, v_{n+1}\right), g v_{n}\right)
\end{aligned}
$$

by using (9), we have

$$
\begin{aligned}
& \Rightarrow d\left(g v_{n+1}, g v_{n+2}\right) \leq_{E} t_{1} d\left(g v_{n}, g v_{n+1}\right)+t_{2} d\left(g v_{n}, g v_{n+1}\right)+t_{3} d\left(g v_{n+1}, g v_{n}\right)+t_{4} d\left(g v_{n+1}, g v_{n}\right) \\
& +t_{5} d\left(g v_{n+2}, g v_{n+1}\right)+t_{6} d\left(g v_{n+2}, g v_{n+1}\right)+t_{7} d\left(g v_{n+1}, g v_{n+1}\right) \\
& +t_{8} d\left(g v_{n+1}, g v_{n+1}\right)+t_{9} d\left(g v_{n+2}, g v_{n}\right)+t_{10} d\left(g v_{n+2}, g v_{n}\right) \\
& \left(1-t_{5}-t_{6}\right) d\left(g v_{n+1}, g v_{n+2}\right) \leq_{E}\left(t_{1}+t_{2}+t_{3}+t_{4}\right) d\left(g v_{n}, g v_{n+1}\right)+\left(t_{9}+t_{10}\right) d\left(g v_{n+2}, g v_{n}\right) \\
& \text { Since, } d\left(g v_{n}, g v_{n+2}\right) \leq_{E} s d\left(g v_{n}, g v_{n+1}\right)+s d\left(g v_{n+1}, g v_{n+2}\right) \\
& \left(1-t_{5}-t_{6}\right) d\left(g v_{n+1}, g v_{n+2}\right) \leq_{E}\left(t_{1}+t_{2}+t_{3}+t_{4}\right) d\left(g v_{n}, g v_{n+1}\right) \\
& +s\left(t_{9}+t_{10}\right)\left[d\left(g v_{n}, g v_{n+1}\right)+d\left(g v_{n+1}, g v_{n+2}\right)\right] \\
& \Rightarrow\left(1-t_{5}-t_{6}-s\left(t_{9}+t_{10}\right)\right) d\left(g v_{n+1}, g v_{n+2}\right) \leq_{E}\left(t_{1}+t_{2}+t_{3}+t_{4}+s\left(t_{9}+t_{10}\right)\right) d\left(g v_{n}, g v_{n+1}\right) \\
& \Rightarrow d\left(g v_{n+1}, g v_{n+2}\right) \leq_{E} \frac{t_{1}+t_{2}+t_{3}+t_{4}+s\left(t_{9}+t_{10}\right)}{1-t_{5}-t_{6}-s\left(t_{9}+t_{10}\right)} d\left(g v_{n}, g v_{n+1}\right) \\
& \Rightarrow d\left(g v_{n+1}, g v_{n+2}\right) \leq_{E} r d\left(g v_{n}, g v_{n+1}\right)
\end{aligned}
$$

where $r=\frac{t_{1}+t_{2}+t_{3}+t_{4}+s\left(t_{9}+t_{10}\right)}{1-t_{5}-t_{6}-s\left(t_{9}+t_{10}\right)}$
$s r=\frac{s\left(t_{1}+t_{2}+t_{3}+t_{4}\right)+s^{2}\left(t_{9}+t_{10}\right)}{1-t_{5}-t_{6}-s\left(t_{9}+t_{10}\right)}$

Since $s\left(t_{1}+t_{2}+t_{3}+t_{4}\right)+t_{5}+t_{6}+\left(s^{2}+s\right)\left(t_{9}+t_{10}\right)<1$

By using the condition (i),
$s\left(t_{1}+t_{2}+t_{3}+t_{4}\right)+t_{5}+t_{6}+t_{7}+t_{8}+\left(s^{2}+s\right)\left(t_{9}+t_{10}\right)<1$ and $r \leq s r$, we get $r<1$,
$\Rightarrow d\left(g v_{n+1}, g v_{n+2}\right) \leq_{E} r d\left(g v_{n}, g v_{n+1}\right)$
Repeating n-times,
$d\left(g v_{n+1}, g v_{n+2}\right) \leq_{E} r^{n+1} d\left(g v_{0}, g v_{1}\right)$
Let $n, m \in N, m>n$.
Therefore

$$
\begin{aligned}
& d\left(g v_{n}, g v_{m}\right) \leq_{E} s d\left(g v_{n}, g v_{n+1}\right)+s^{2} d\left(g v_{n+1}, g v_{n+2}\right)+\ldots \ldots \ldots . .+s^{m-n} d\left(g v_{m-1}, g v_{m}\right) \\
& \Rightarrow d\left(g v_{n}, g v_{m}\right) \leq_{E} s r^{n} d\left(g v_{0}, g v_{1}\right)+s^{2} r^{n+1} d\left(g v_{0}, g v_{1}\right)+\ldots \ldots \ldots .+s^{m-n} r^{m-1} d \\
& \\
& =s r^{n} d\left(g v_{0}, g v_{1}\right)\left[1+s r+s r^{2}+\ldots \ldots \ldots+s^{m-n-1} r^{m-n-1}\right] \\
& \\
& \leq_{E} s r^{n} d\left(g v_{0}, g v_{1}\right)\left[\frac{1}{1-s r}\right]
\end{aligned}
$$

Since

$$
\begin{aligned}
& r<1 \quad \Rightarrow r^{n} \rightarrow 0 \text { as } n \rightarrow \infty \\
& s r<1 \Rightarrow(1-s r)>0 \\
& \Rightarrow\left\{g v_{n}\right\} \text { is an E-Cauchy sequence in }(g(Z), d)
\end{aligned}
$$

Since $g(Z)$ is complete, $\exists t \in g(Z)$ such that

$$
\lim _{n \rightarrow \infty} g\left(v_{n}\right)=g(v)=t
$$

We will now prove that (y, y) is the coupled coincident point of T and g .

$$
\begin{aligned}
d\left(g v_{n+1}, T(v, v)\right)= & d\left(T\left(v_{n}, v_{n}\right), T(v, v)\right) \\
& \leq_{E} t_{1} d\left(g v_{n}, g v\right)+t_{2} d\left(g v_{n}, g v\right)+t_{3} d\left(T\left(v_{n}, v_{n}\right), g v_{n}\right)+t_{4} d\left(T\left(v_{n}, v_{n}\right), g v_{n}\right) \\
& +t_{5} d(T(v, v), g v)+t_{6} d(T(v, v), g v)+t_{7} d\left(T\left(v_{n}, v_{n}\right), g v\right)+t_{8} d\left(T\left(v_{n}, v_{n}\right), g v\right) \\
& +t_{9} d\left(T(v, v), g v_{n}\right)+t_{10} d\left(T(v, v), g v_{n}\right) \\
d\left(g v_{n+1}, T(v, v)\right)= & d\left(T\left(v_{n}, v_{n}\right), T(v, v)\right) \\
& \leq_{E} t_{1} d\left(g v_{n}, g v\right)+t_{2} d\left(g v_{n}, g v\right)+t_{3} d\left(g v_{n+1}, g v_{n}\right)+t_{4} d\left(g v_{n+1}, g v_{n}\right) \\
& +t_{5} d(T(v, v), g v)+t_{6} d(T(v, v), g v)+t_{7} d\left(g v_{n+1}, g v\right)+t_{8} d\left(g v_{n+1}, g v\right) \\
& +t_{9} d\left(T(v, v), g v_{n}\right)+t_{10} d\left(T(v, v), g v_{n}\right)
\end{aligned}
$$

$$
d(g v, T(v, v)) \leq_{E} s\left[d\left(g v, g v_{n+1}\right)+d\left(g v_{n+1}, T(v, v)\right)\right]
$$

$$
\begin{equation*}
\Rightarrow \frac{1}{s} d(g v, T(v, v)) \leq_{E} \lim _{n \rightarrow \infty} d\left(g v_{n+1}, T(v, v)\right) \tag{13}
\end{equation*}
$$

Also,

$$
d\left(g v_{n+1}, g v_{n}\right) \leq_{E} s\left[d\left(g v_{n+1}, g v\right)+d\left(g v, g v_{n}\right)\right]
$$

Thus $\quad \lim d\left(g v_{n+1}, g v_{n}\right)=0$
Further,
$d\left(T(v, v), g v_{n}\right) \leq_{E} s\left[d(T(v, v), g v)+d\left(g v, g v_{n}\right)\right]$
Letting $n \rightarrow \infty$ in above inequality,
$\lim _{n \rightarrow \infty} d\left(T(v, v), g v_{n}\right) \leq_{E} s d(T(v, v), g v)$
Taking $\lim n \rightarrow \infty$ in (12) and using (15)
$\frac{1}{s} d(g v, T(v, v)) \leq_{E} t_{5} d(T(v, v), g v)+t_{6} d(T(v, v), g v)+s t_{9} d(T(v, v), g v)+s t_{10} d(T(v, v), g v)$
$\Rightarrow d(g v, T(v, v)) \leq_{E}\left(s t_{5}+s t_{6}+s^{2} t_{9}+s^{2} t_{10}\right) d(T(v, v), g v)$
Since $\quad s t_{5}+s t_{6}+s^{2} t_{9}+s^{2} t_{10}<1$
Using condition (i)
and E is Archimedean
$\Rightarrow g(v)=T(v, v)$
$\Rightarrow(v, v)$ is a coupled coincidence point of T and g .
For uniqueness of couple coincidence point (v, v), suppose $\left(v^{\prime}, v^{\prime}\right)$ be another coupled coincidence point of T and g. Then

$$
\begin{aligned}
& d\left(g v, g v^{\prime}\right)= d\left(T(v, v), T\left(v^{\prime}, v^{\prime}\right)\right) \\
& \leq_{E} t_{1} d\left(g v, g v^{\prime}\right)+t_{2} d\left(g v, g v^{\prime}\right)+t_{3} d(T(v, v), g v)+t_{4} d(T(v, v), g v) \\
&+t_{5} d\left(T\left(v^{\prime}, v^{\prime}\right), g v\right)+t_{6} d\left(T\left(v^{\prime}, v^{\prime}\right), g v^{\prime}\right)+t_{7} d\left(T(v, v), g v^{\prime}\right) \\
&+t_{8} d\left(T(v, v), g v^{\prime}\right)+t_{9} d\left(T\left(v^{\prime}, v^{\prime}\right), g v\right)+t_{10} d\left(T\left(v^{\prime}, y^{\prime}\right), g v\right) \\
& d\left(g v, g v^{\prime}\right) \leq\left(t_{1}+t_{2}+t_{7}+t_{8}+t_{9}+t_{10}\right) d\left(g v, g v^{\prime}\right) \\
& \text { Since } t_{1}+t_{2}+t_{7}+t_{8}+t_{9}+t_{10}<1 \\
& \Rightarrow g(v)=g\left(v^{\prime}\right)
\end{aligned}
$$

Hence (v, v) is the unique coupled coincidence point of T and g .
Since T and g are weakly compatible, then

$$
\Rightarrow g(T(v, v))=T(g v, g v)
$$

Put $w=g(v)$
$g(w)=g(g v)=g(T(v, v))=T(g v, g v)$
$\Rightarrow(w, w)$ is coupled coincidence point of T and g .
By uniqueness of coupled coincidence point of T and $\mathrm{g}, w=v$ i.e. $g(y)=v$
${ }_{\text {But }} T(v, v)=g v=v$
$\Rightarrow(v, v)$ is coupled fixed point of T and g .
Corollary 3.3 Let (Z, d, E) be Archimedean E-b-metric space with constant $s \geq 1$ and E-Complete. Let $T: Z \times Z \rightarrow Z$ be a mapping. Suppose there exist non-negative constants $t_{i}, 1 \leq i \leq 10, i \in \square$ such that

$$
\begin{aligned}
d(T(u, v), T(p, q)) & \leq_{E} t_{1} d(u, p)+t_{2} d(v, q)+t_{3} d(T(u, y), u) \\
& +t_{4} d(T(v, u), v)+t_{5} d(T(p, q), p) \\
& +t_{6} d(T(q, p), q)+t_{7} d(T(u, v), p) \\
& +t_{8} d(T(v, u), q)+t_{9} d(T(p, q), u)+t_{10} d(T(q, p), v)
\end{aligned}
$$

holds for all $u, v, p, q \in Z$.
If $s\left(\sum_{i=1}^{6} t_{i}\right)+t_{7}+t_{8}+\left(s^{2}+s\right) t_{9}+\left(s^{2}+s\right) t_{10}<1$, then T has a unique coupled fixed point.

Proof: Simply take g=I (identity) in theorem 3.2.and repeat the above proof.

Corollary 3.4 Let (Z, d, E) be Archimedean E-b-metric space with constant $s \geq 1$ and E-Complete. Let $T: Z \times Z \rightarrow Z$ be a mapping. Suppose $\exists t_{i}, i=1,2, \ldots, 10$ where
$t_{i} \geq 0$ such that

$$
\begin{aligned}
d(T(u, v), T(p, q)) & \leq_{E} t_{1} d(u, p)+t_{2} d(v, q)+t_{3} d(T(u, v), u) \\
& +t_{4} d(T(v, u), v)+t_{5} d(T(p, q), p) \\
& +t_{6} d(T(q, p), q)+t_{7} d(T(u, v), p) \\
& +t_{8} d(T(v, u), q)+t_{9} d(T(p, q), u)+t_{10} d(T(q, p), v)
\end{aligned}
$$

holds $\forall u, v, p, q \in Z$.
If $\sum_{i=1}^{8} t_{i}+2 t_{9}+2 t_{10}<1$, then T has a unique coupled fixed point.
Proof: Put $\mathrm{s}=1$ in the proof of above corollary 3.3.

Example 3.5 If $Z=\square, E=\square^{2}$, let $d(u, v)=\left(\alpha|u-v|^{2}, \beta|u-v|^{2}\right)_{\text {where }} \alpha, \beta \geq 0, \alpha+\beta>0$.
Delineate $T: Z \times Z \rightarrow Z$ and $g: Z \rightarrow Z$ by
$T(u, v)=\frac{u-v}{12}, g(u)=1-\frac{u}{2}$
Then $T(Z \times Z) \subseteq g(Z)=Z$
Then

$$
\begin{aligned}
d(T(u, v), T(p, q)) & =d\left(\frac{u-v}{12}, \frac{p-q}{12}\right) \\
& =\left(\alpha \frac{|u-v-p+q|^{2}}{(12)^{2}}, \beta \frac{|u-v-p+q|^{2}}{(12)^{2}}\right) \\
& \leq\left(\alpha \cdot \frac{\left(|u-p|^{2}+|v-q|^{2}\right)}{(12)^{2}}, \beta \cdot \frac{\left(|u-p|^{2}+|v-q|^{2}\right)}{(12)^{2}}\right) \\
& =\frac{2}{72}\left(\alpha \frac{|u-p|^{2}}{2^{2}}+\alpha \frac{|v-q|^{2}}{2^{2}}, \beta \frac{|u-p|^{2}}{2^{2}}+\beta \frac{|v-q|^{2}}{2^{2}}\right) \\
& =\frac{1}{36}[d(g u, g p)+d(g v, g q)]
\end{aligned}
$$

$\Rightarrow t_{1}=t_{2}=\frac{1}{36}, t_{i}=0$ for $i=3,4, \ldots, 10$
$t_{1}+t_{2}=\frac{1}{18}<1$

References

[1] S. Agarwal, K. Qureshi, J.Nema, A fixed point theorem for b-metric space, International Journal of Pure and Applied Mathematical Sciences, 945-50, 2016.
[2] C.D. Aliprantis, K.C. Border, Infinite Dimensional Analysis, Springer-Verlag, Berlin, 1999.
[3] I.A.Bakhtin, The contraction mapping principle in quasi-metric spaces, Functional Analysis, 30, 26-37, 1989.
[4] Cevik, I. Altun, Vector metric spaces and some properties, Topol. Method Nonl. An., 34, 375-382, 2009.
[5] S.Czerwik, Contraction mappings in b-metric spaces, Acta Mathematica et Informatica Universitatis Ostrviensis, 1, 5-11, 1993.
[6] I.R.Petre, Fixed point theorems in E-b-metric spaces, J. Nonlinear Sci. App., 7, 264-271, 2014.
[7] K.P.R. Rao, K.R.K.Rao, V.C.C.Raju, A Suzuki type unique common coupled fixed point theorem in metric spaces, International Journal of Innovative Research in Science, Engineering and Technology, 2, 5187-5192, 2013.
[8] W. Shatanawi, M.B.Hani, A coupled fixed point theorem in b-metric spaces, International Journal of Pure and Applied Mathematics, vol. 19, 4, 889-897, 2016.
[9] I.Altun, A.Erduran, A Suzuki type fixed point theorem, Internat. Math. Math. Sci., vol. 2011, article ID 736063, 9, 2011.
[10] W. Shatanawi, Coupled fixed point theorems in generalized metric spaces, Hacettepe Journal of Mathematics and Statistics, vol. 40, 3441-447, 2011.
[11] W.Shatanawi, B.Samet, M.Abbas, Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces, Mathematical and Computer Modelling, 55, 680-687, 2012.
[12] T. Bhakar, V. Lakshmikanthan, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65, 13791393, 2006.
[13] Y.J. Cho, Z. Kadeelburg, R. Saadati, W.Shatanawi, Coupled fixed theorems under weak contractions, Discrete Dyanamics in Nature and Society 2012.
[14] V. Lakshmikantham, L.B. Ciric , Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal., 70, 2009.
[15] I.Altun, C.Cevik, Some common fixed point theorems in vector metric spaces, Filomat, 25:1, 105-113, 2011.
[16] C.Cevik, On continuity of functions between vector metric spaces, Hindawi Pub. Corporation, J.Funct. Space, 1-6, 2014.

