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Abstract: A chemical graph is a graph such that vertices correspond to the atoms and the edges to the bonds. 

The graph indices are applied to measure the chemical characteristics of compounds in Chemical Graph 

Theory. In this paper, we introduce the first and second (a, b)-KA indices of a chemical graph. Furthermore, we 

study the mathematical properties of these indices for polycyclic aromatic hydrocarbons and benzenoid systems. 
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1. Introduction 

 
 A graph index is the numeric quantity from the structural graph of a molecule. Graph indices have been 
found to be useful in chemical documentation, isomer discrimination, structure property relationships, structure 

activity relationships and pharmaceutical drug design in Chemistry. There has been considerable interest in the 

general problem of determining graph indices [1, 2, 3]. 

 Throughout this paper, we consider only finite, simple, connected graphs. Let G be a finite, simple, 

connected graph. We denote the set of vertices of G by V(G) and the set of edges by E(G). The degree dG(u) of a 

vertex u is the number of vertices adjacent to u. For terms and concepts not given here, we refer [4]. 

 The first and second Zagreb indices [5] of a graph G are defined as 
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 Many properties and chemical applications of these indices can be found in [7,8,9]. Recently, some 

graph indices were studied in [10,11,12]. 

 In [13], Shirdel et al. proposed the first hyper Zagreb index, defined as  
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 Some properties of this index were obtained in [14, 15]. 

 The second hyper Zagreb index was defined as [16] 
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Recently, some new hyper graph indices were studied in [17,18,19,20]. 

 In [21] and [22], the generalization of Zagreb indices were proposed, defined as 
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where a is a real number.  

 In [23], Zhou et al. introduced the general sum connectivity index, defined as 

      
 

1 .
aa

G G

uv E G

M G d u d v


     

 

 The forgotten topological index or F-index is defined as [24] 
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 Many results on F(G) can be found in [25, 26]. 

 In [27], the sum connectivity index was introduced, defined as 
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 The product connectivity index was introduced by Randić in [28], defined as 
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 The reciprocal product connectivity index was defined in [29] as 
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Recently, some new connectivity indices were studied in [30,31,32]. 

 

We introduce the first and second (a, b)-KA indices and coindices of a graph G and they are defined as 
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where a, b are real numbers. 

We easily see that  

 (1)    1
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Furthermore, we also see that 
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Clearly, we obtain some other graph indices directly as a special case of (a, b)-KA indices for some 

special values of a and b. 

 In this paper, we compute the first and second (a, b)-KA indices of polycyclic aromatic hydrocarbons 
and benzenoid systems. 

 

II. Results for Polycyclic Aromatic Hydrocarbons 

 

 We focus on the chemical graph structure of the family polycyclic aromatic hydrocarbons, denoted by 

PAHn. The first three members of the family PAHn are presented in Figure 1. 
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Figure 1 

 

 In the following theorem, we determine the first (a, b)-KA index of PAHn. 

 

Theorem 1. The first (a, b)-KA index of PAHn is given by 

        1 2
, 1 3 6 2 3 9 3 .

b b
a a a

a b nKA PAH n n n       (i) 

Proof: Let G = PAHn . Clearly, the vertices of G are either of degree 1 or 3, see Figure 1. By calculation, we see 

that G has 6n2+6n vertices and 9n2+3n edges.  In G, there are two types of edges based on the degree of end 

vertices of each edge as given in Table 1. 

 

dG(u), dG(v)\uv E(G) (1, 3) (3, 3) 

Number of edges 6n 9n2 – 3n 

Table 1. Edge partition of PAHn 
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 We obtain the following results by using equation (i). 

 

Corollary 1.1. Let G=PAHn be the family of a polycyclic aromatic hydrocarbon. Then 
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In the next theorem, we compute the second (a, b)-KA index of PAHn. 

 

Theorem 2. The second (a, b)-KA index of PAHn is given by  

    2 2 2 2
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Proof: Let G = PAHn . By cardinalities of the edge partition of PAHn, we have  
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We establish the following results by equation (ii). 

 

Corollary 2.1. Let G = PAHn be the family of a polycylic aromatic hydrocarbon. Then 
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III. Results for Benzenoid Systems 

 

 We focus on the chemical graph structure of a jagged rectangle benzenoid system, denoted by Bm, n for 

all m, n, in N. Three chemical graphs of a jagged rectangle benzenoid system are depicted in Figure 2. 

 
Figure 2 

 

 In the following theorem, we determine the first (a, b)-KA index of Bm, n. 

 

Theorem 3. Let Bm, n be the family of a jagged rectangle benzenoid system. Then 

          1
, , 2 2 2 4 2 3 4 4 4

b b
a a a a

a b m nKA B n m n         

    3 3 6 5 4 .
b

a a mn m n      (iii) 

Proof: Let H = Bm, n. Clearly the vertices of H are either of degree 2 or 3, see Figure 2. By calculation, we obtain 

that H has 4mn + 4m + m – 2 vertices and 6mn + 5m + n – 4 edges. In H, there are three types of edges based on 

the degree of end vertices of each edge as given in Table 2. 

 

dH(u) dH(v)\uv E(H) (2,2) (2,3)) (3, 3) 

Number of edges 2n+4 4m+4n – 4 6mn + m – 5n – 4 

Table 2. Edge partition of Bm, n 
 

 To compute  1
, ,a b m nKA B , we see that 
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 We establish the following results by using equation (iii). 
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Corollary 3.1. Let H = Bm, n be the family of a jagged rectangle benzenoid system. Then  

(1)    1
1 1,1 36 26 2 28.M H KA H mn m n      

(2)    1
1 1,2 216 136 48 180.HM H KA H mn m n       
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 In the next theorem, we compute the second (a, b)-KA index of Bm, n. 

 

Theorem 4. Let Bm, n be the family of a jagged rectangle benzenoid system. Then 
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Proof: Let H = Bm, n. By cardinalities of the edge partition of Bm, n, we obtain  
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We obtain the following results by using equation (iv). 

 

Corollary 4.1. Let H=Bm, n be the family of a jagged rectangle benzenoid system. Then 

(1)    2
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