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Abstract: A chemical graph is a graph such that vertices correspond to the atoms and the edges to the bonds.
The graph indices are applied to measure the chemical characteristics of compounds in Chemical Graph
Theory. In this paper, we introduce the first and second (a, b)-KA indices of a chemical graph. Furthermore, we
study the mathematical properties of these indices for polycyclic aromatic hydrocarbons and benzenoid systems.
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1. Introduction

A graph index is the numeric quantity from the structural graph of a molecule. Graph indices have been
found to be useful in chemical documentation, isomer discrimination, structure property relationships, structure
activity relationships and pharmaceutical drug design in Chemistry. There has been considerable interest in the
general problem of determining graph indices [1, 2, 3].

Throughout this paper, we consider only finite, simple, connected graphs. Let G be a finite, simple,
connected graph. We denote the set of vertices of G by V(G) and the set of edges by E(G). The degree dg(u) of a
vertex u is the number of vertices adjacent to u. For terms and concepts not given here, we refer [4].

The first and second Zagreb indices [5] of a graph G are defined as

M (G)= Y de?= 3 [dg(W+ds ()],

ueVv(G) uveE(G)
uveE(G)

Many properties and chemical applications of these indices can be found in [7,8,9]. Recently, some
graph indices were studied in [10,11,12].

In [13], Shirdel et al. proposed the first hyper Zagreb index, defined as
2
HM,(G)= > [dgu)+dg (V)]
uveE(G)

Some properties of this index were obtained in [14, 15].
The second hyper Zagreb index was defined as [16]

HM, ()= 3 [dg (Wds W]
uveE(G)
Recently, some new hyper graph indices were studied in [17,18,19,20].
In [21] and [22], the generalization of Zagreb indices were proposed, defined as

M2(G)= Y dg W= 3 [dg W +dg W],

uev(G) uveE(G)
MEG)= > [de(Wds W],
uveE(G)

where a is a real number.
In [23], Zhou et al. introduced the general sum connectivity index, defined as

MEG)= 3 [dgW)+dg W]

uveE(G)

The forgotten topological index or F-index is defined as [24]

ISSN: 2231-5373 http://www.ijmttjournal.org Page 115



http://www.ijmttjournal.org/

International Journal of Mathematics Trends and Technology (IIMTT) — Volume 65 Issue 11 - Nov 2019

FG) = Y de@’= Y [dgW+ds ()]
ueVv(G) uveE(G)

Many results on F(G) can be found in [25, 26].

In [27], the sum connectivity index was introduced, defined as

S(G)= !

WEG) Jdg (W +dg (v)

The product connectivity index was introduced by Randi¢ in [28], defined as

P(G)= !

uve%(G) \fdG (U)dG (V)

The reciprocal product connectivity index was defined in [29] as
RP(G)= Y fdg (Wdg (V).

uveE(G)

Recently, some new connectivity indices were studied in [30,31,32].
We introduce the first and second (a, b)-KA indices and coindices of a graph G and they are defined as

b
KA, (G)= 3 [dgW?+dg W],

uveE(G)
— a a P
Khas(G)= 3 [dg (W) +dg(v)? ],
uveE(G)
b
KA2,(G)= > [dgW)?de ()],
uveE(G)
— a AP
Khas(G)= 3 [de(W)Pdg )],

uveE(G)
where a, b are real numbers.
We easily see that

(1) M, (G)=KA} (G). (2) HM,(G) = KA}, (G).
(3) M;(G)=KAL,, (G). 4) M2 (G)=KA, (G).
(5) F(G)=KA;, (G). (6) S(G):KAll_1 (G).
Furthermore, we also see that i
1) M, (G)=KA? (G). (2) HM, (G) = KA, (G).
(3) M3 (G)=KA% (G)=KAZ (G). (4 P(G):KAE_1 (G)zKAil(G).
2

(5) RP(G) = KAf1 (G)= KAfl(G).
'E Ev
Clearly, we obtain some other graph indices directly as a special case of (a, b)-KA indices for some

special values of a and b.
In this paper, we compute the first and second (a, b)-KA indices of polycyclic aromatic hydrocarbons

and benzenoid systems.

I1. Results for Polycyclic Aromatic Hydrocarbons

We focus on the chemical graph structure of the family polycyclic aromatic hydrocarbons, denoted by
PAH,. The first three members of the family PAH, are presented in Figure 1.
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PAH PAH, PAH

Figure 1
In the following theorem, we determine the first (a, b)-KA index of PAH,.

Theorem 1. The first (a, b)-KA index of PAH, is given by

KAL, (PAH,)=(12 +3%)" 6n+(2x3*)’ (9n? —3n). 0

Proof: Let G = PAH, . Clearly, the vertices of G are either of degree 1 or 3, see Figure 1. By calculation, we see
that G has 6n°+6n vertices and 9n°+3n edges. In G, there are two types of edges based on the degree of end
vertices of each edge as given in Table 1.

do(u), de(V)\uv E(G) @, 3) @3, 3)

Number of edges 6n 9n”—3n
Table 1. Edge partition of PAH,

To compute KA, , (PAH,, ), we see that

a a b
KAL, (PAH,) = 3 [dg (W) +dg (v)?]

uveE(G)
~(1* +3*) 6n+ (32 +3%)" (9n? —3n)
(12 +32) 6n+(2x3%) (9n? —3n).
We obtain the following results by using equation (i).

Corollary 1.1. Let G=PAH, be the family of a polycyclic aromatic hydrocarbon. Then
(1) M,(G)=KA},(G)=54n> +6n.

(2) HM,(G) =KA},(G)=324n* -12n.

@) M2 (G)=KAL 1, (G)=(1*1 +3%)6n +(2x3%%)(9n2 - 3n).
(@) M2(G) = KAL, (G) =9x6°n? +(6x 4% —3x6%)n.

(5) F(G)=KAy,(G)=18n" +6n.

6) S(G)= KAl1 ! (G)=in2 +(1—ij3n.
2

G G

In the next theorem, we compute the second (a, b)-KA index of PAH,.

Theorem 2. The second (a, b)-KA index of PAH, is given by
KAZ, (PAH, ) =9x3%®n? 1+ (6x3% —3x3%®)n, (ii)
Proof: Let G = PAH, . By cardinalities of the edge partition of PAH,, we have

b
KAZ, (PAH, )= 3 [dg (W dg (v)° ]

uveE(G)
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b b
=(12x3%) 6n+(3* x3%) (9n? —3n)
=9x3%n? +(6x3% —3x3%)n,

We establish the following results by equation (ii).

Corollary 2.1. Let G = PAH, be the family of a polycylic aromatic hydrocarbon. Then
(1) M,(G)=KA% (G)=81In*-9n.
(2) HM, (G) = KA, (G) =729n* —189n.
(3) M2 (G)=KAZ, (G)=9x3%n? +(6x3% —3x3%)n.
4) P(G)=KA? | (G)=3n? +(£—1jn.
1 3

(5) RP(G) = KA121 (G)=27n% + (643 -9)n.
"2
I11. Results for Benzenoid Systems

We focus on the chemical graph structure of a jagged rectangle benzenoid system, denoted by By, , for
all m, n, in N. Three chemical graphs of a jagged rectangle benzenoid system are depicted in Figure 2.

1/ 2]3] 4 1 2}... [m

By B, B
Figure 2

In the following theorem, we determine the first (a, b)-KA index of B, n.
Theorem 3. Let By, , be the family of a jagged rectangle benzenoid system. Then
KALy (Byn) = (22 +2%)" (2n+4)+(22 +3*) (4m+ 4n-2)
+(32+3%)° (6mn+m—5n—4). (i)
Proof: Let H = B, .. Clearly the vertices of H are either of degree 2 or 3, see Figure 2. By calculation, we obtain

that H has 4mn + 4m + m — 2 vertices and 6mn + 5m + n — 4 edges. In H, there are three types of edges based on
the degree of end vertices of each edge as given in Table 2.

du(u) dy(W)\uv € E(H) (2,2) (2,3)) (3,3)

Number of edges 2n+4 4m+4n -4 6mn +m-5n-4

Table 2. Edge partition of By, ,

To compute KAL, (Br,n ), we see that

b
KAL (Bpa)= X [dy (0 +dy (07 ]

uveE(H)

b b b
—(22422) (2n+4)+(22 +37) (4m+4n—4)+(3* +3*) (Bmn+m—5n—4).

We establish the following results by using equation (iii).
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Corollary 3.1. Let H = By, , be the family of a jagged rectangle benzenoid system. Then
(1) My (H) =KA}; (H)=36mn +26m—2n-28.

(2) HM,(H)=KA}, (H) = 216mn +136m — 48n —180.

@) M2 (H)=KAL,, (H)=2x 2% (2n+4) + (222 + 351 )(4m + 4n - 4)
+2x3*1(6mn+m—5n—4).

(4) M2 (H)=KA}, (H)=4%(2n+4)+5%(4m+4n—4)+ 62 (6mn+m—5n—4),

(5) F(H)=KA}, (H)=108mn +70m—22n—92.

(6) S(H):KAll l(H):i(2n+4)+i(4m+4n—4)+i(6mn+m-5n—4).
"2

7 3 %

In the next theorem, we compute the second (a, b)-KA index of B, p.
Theorem 4. Let By, , be the family of a jagged rectangle benzenoid system. Then
b b
KAZ, (B )=(2%x2%) (2n+4)+(22 x3) (4m+4n-4)

b
+(32x3%) (6mn+m—5n—4). (iv)
Proof: Let H = B, . By cardinalities of the edge partition of B, », we obtain

b
KAaz,b(Bm,n): z |:d|-| (U)adH (V)a:'

uveE(H)

b b b
=(22x22) (2n+4)+(22x3%) (4m+4n—4)+(3*x3%) (6mn+m—5n—4).
We obtain the following results by using equation (iv).

Corollary 4.1. Let H=B, ,, be the family of a jagged rectangle benzenoid system. Then
(1) M, (H)=KAZ (H) =54mn +33m-13n - 28.

(2) HM, (H) = KA?, (H) = 486mn + 225m — 229n — 404.
(3) M2 (H)=KAZ, (H)=KA2, (H) =6x9%mn +(4x6° +9%)m
+(2x 42 +4x6% —5x 9% )n+(4x 42 —4x62 —4x9?)

_ KA? _ KA _ A Nm[ A2 (A2
@ P(H)—KAL_I(H)—KA_lyl(H)—Zmn+(\/E+3JmJ{\/g 3jn [J6+3j.

2 2
(5) RP(H) = KAfE (H)= KAil(H)=18mn +(46 +3)m +(46 —11)n - (46 + 4).
P >’
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