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Abstract 

In this paper, we present a  new time-dependent model for image restoration. This model constructed by 

evolving the Euler-Lagrange equations of the optimization problem. We propose to apply prior smoothness on 

the solution image and then denoise it by minimizing the total variation norm of the estimated solution. The 
main idea is to apply a priori smoothness to the solution image. 2D numerical experimental results by explicit 

numerical schemes are discussed. 
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I. Introduction 

The total variation  (TV)  deblurring and denoising models are based on a variational problem with constraints 

using the TV norms as a nonlinear non-differentiable functional. The formulation of these models was first 

given by Rudin, Osher and Fatemi in [12] for denoising case and Rudin and Osher in [13] for the denoising and 

deblurring case. In spite of the fact that the variational problem is convex, the Euler Lagrange’s equation is non-

linear and ill-conditioned. Linear semi-implicit fixed point procedures devised by Vogel and Oman [19] and 

interior-point primal-dual implicit quadratic methods by Chain, Golub and Mulet [3], were introduced to solve 

the models. Those models give good results when treating pure denoising problem, but the models become 

highly ill-conditioned for the deblurring and denoising case. 

In this paper,  we have used Improvement in the signal quality (ISNR) to measure the goodness of restored 

image: 

                                                                 ISNR = 10 log10   
  𝑢𝑖𝑗− 𝑢0 𝑖𝑗  

2𝑛
𝑖,𝑗

 [𝑢 𝑖𝑗−( 𝑢𝑛𝑒𝑤  𝑖𝑗 ]2𝑛
𝑖,𝑗

  dB,                                         (1.2) 

Where unew is the restored image. That is, the value of  ISNR is larger, the restored image is better. 

In this paper, we present a new time-dependent model for image restoration. We have tested our algorithm on 

various types of images and found our model better than the previously known models. To quantify results, the 

experimental values in terms of  ISNR are given in Figure 2 and Table 1. 

II. Total variation based restoration algorithms 

Image restoration is a fundamental problem in both image processing and computer vision with numerous 

application. Given in [12, 13] a blurry and noisy image u0 : Ω →R is given by 

                                                                       u0 = (k ∗ u) (x, y) + n (x, y),                                                        (2.1) 

where Ω is a bounded open set in R2, u0 is the observed image, u is the original image, k is the PSF (point spread 

function) and also called blur kernel (* stands for convolution) and n is additive white noise assumed to be close 

to Gaussian. The values n(i, j) of n at the pixels (i, j) are independent random variables, each with a Gaussian 

distribution of zero mean and variance σ2. 

In ref. [13] gave another models 

http://www.ijmttjournal.org/


International Journal of Mathematics Trends and Technology (IJMTT) – Volume 65 Issue 11 - Nov 2019 

 

ISSN: 2231-5373                                http://www.ijmttjournal.org                               Page 169 

                                                                   u0 = [(k ∗ u)(x, y)][n(x, y)],                                                             (2.2) 

and 

                                                               u0 = (k ∗ u)(x, y) + (u(x, y))(n(x, y)),                                                  (2.3) 

where n is multiplicative noise. Equation (2.2) and (2.3) have been treated in [22] and [13] 
respectively, for example, using homomorphic filtering, i.e., basically taking the log of u0 and treating 
it as a problem involving additive noise, then filtering and applying the exponential. This is not 
appropriate for equation (2.3). We present below our restoration algorithms for (2.2) and (2.3).The 

total variation based image denoising model, which is based on the constrained minimization problem appeared 

in [12], is as follows: 

                                                               Minimize     ∇𝑢 𝑑𝑥 𝑑𝑦 =    𝑢𝑥
2 + 𝑢𝑦

2𝑑𝑥 𝑑𝑦,
ΩΩ

                                (2.4) 

subject to constraints 

                                                                𝑢 𝑑𝑥 𝑑𝑦 =   𝑢0𝑑𝑥 𝑑𝑦,
ΩΩ

                                                                   (2.5) 

                                                             
1

2
(𝑘 ∗  𝑢 − 𝑢0)2𝑑𝑥 𝑑𝑦 = 𝜎2

Ω
                                                            (2.6) 

The first constraint corresponds to the assumption that the noise has zero mean and the second constraint uses a 
priori information that the standard deviation of the noise n(x, y) is σ.  

          The Euler-Lagrange equation, see the references [12, 21, 23], by 

                                                       0 = −∇.  
∇𝑢

|∇𝑢|
      + λk ∗ (k ∗ u − u0),                                                           (2.7) 

in Ω, with ∂u/∂n = 0 on the boundary of the domain. 

Since (2.7) is not well defined at points where ∇u = 0, due to the presence of the 

term 1/|∇u|, it is common to slightly perturb the TV algorithm to become 

                                                       |∇𝑢|𝛽  𝑑𝑥 𝑑𝑦 =    𝑢𝑥
2 + 𝑢𝑦

2 + 𝛽  
ΩΩ

 𝑑𝑥 𝑑𝑦                                              (2.8) 

where β is a small positive parameter [4]. 

Rudin and Osher [13] for the denoising and deblurring model is given by 

                                                         ut = ∇.  
∇𝑢

|∇u|
    − λk ∗ (k ∗ u – u0),                                                             (2.9) 

for t > 0, x, y ∈ Ω, ∂u ∂n = 0 on the boundary of the domain.  

The first constraint (2.5) is dropped because it is automatically enforced by the evolution procedure, i.e., the 

mean of u(x, y, 0) is the same as that of u0(x, y), see references [12, 13]. As t increases, a restoration version of 

the image is realized. The projection step is the gradient projection method [11] which just amounts to updating 

λ(t) so that (2.6) remains true in time. This follows [21] if we define                                                               λ(t) 

=
 ∇ 

∇𝑢

|∇𝑢 |
  .  𝑘   ∗ (𝑘  ∗ 𝑢 −𝑢0) 𝑑𝑥  𝑑𝑦Ω

 (𝑘 ∗ (𝑘 ∗ 𝑢 −𝑢0))2  𝑑𝑥  𝑑𝑦Ω

                                                       ( 2.10) 

 

We thus have a dynamic procedure for restoring the image. As t → ∞, the steady state solution is the desired 

restoration. 

Next we consider restoration involving multiplicative noise [23]. We are given an image u0(x, y) where 

                                                                                          u0 = u n.                                                                   (2.11) 
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The unknown function u(x,y) is the image we wish to restore, and n is Gaussian white noise. 

We are given the following information 

                                                                            𝑛 =  1,
Ω

                                                                              ( 2.12) 

                                                                              𝑛 − 1 2  =  𝜎2 ,
Ω

                                                                (2.13) 

where the equation (2.12) has mean one and equation (2.13) given variance. 

Thus the constrained optimization algorithm is (2.4) subject to the following constraints 

                                                                               
𝑢0

𝑢
= 1                                                                               (2.14) 

1

2
  

𝑢0

𝑢
− 1 

2

=  
𝜎2

2
=

1

2
   

𝑢0

𝑢
 

2

− 1                                                     (2.15) 

The gradient projection method leads to 

                                                                  𝑢𝑡 =  ∇.  
∇𝑢

|∇𝑢|
 −  𝜆 

𝑢0
2

𝑢3 + 𝜇
𝑢0

𝑢2.                                                         (2.16) 

Next we consider images which are both blurry and noisy. The model (2.2) is as follows. We are given an image 

u0(x, y) for which  

                                                                              u0 = (k ∗ u)n.                                                                       (2.17) 

The noise n is as above (2.12) and (2.14) are still satisfied. 

The constraints are given by 

 
𝑢0

𝑘 ∗ 𝑢
= 1.                                                                      ( 2.18) 

  
𝑢0

𝑘 ∗ 𝑢
 

2

=
𝜎2

2
=   

𝑢0

𝑘 ∗ 𝑢
 

2

− 1.                                               (2.19) 

The gradient projection method leads to 

                     (2.20)

   

 

with u(x,y,0) given as initial data (the original blurred and noisy image u0 is taken as initial guess) and 

homogeneous Neumann boundary conditions ∂u /∂n = 0. 

Applying a priori smoothness on the solution image, our new time dependent model becomes, 

    (2.21) 

with u(x,y,0) given as initial data (the original blurred and noisy image u0 is taken as an initial guess) and 

homogeneous Neumann boundary conditions ∂u/∂n = 0. It should be noticed that (2.21) only replaces u in (2.20) 

by its estimate Gσ ∗ u. 

Within  [16]  noticed that the convolution of the signal with Gaussians at each scale was equivalent to solving 

the heat equation with the signal as an initial datum. The term (Gσ ∗∇u)(x, y, t) = (∇Gσ ∗ u)(x, y, t), which 

appears inside the divergence term of (2.21), is simply the gradient of the solution  at time σ of the heat equation 
with u(x, y, 0) as an initial datum. Then the restoration analysis associated with u0 consists in solving the 

problem, 
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The solution of this equation at time t is given by 

u(x, y, t) = Gσ ∗ u0, 

where Gσ is the Gaussian function. 

In order to preserve the notion of scale in the gradient estimate, it is convenient that this kernel Gσ  depends on a 

scale parameter [5,6]. In fact, the function Gσ  can be considered as “low-pass filter” or any smoothing kernel, 

i.e., a denoising technique is used before solving the nonlinear diffusion problem [1, 2]. 

We still write Gσ ∗ u as u. Let un
ij  be the approximation to the value u(xi, yj, tn), where 

 

 

 

where ∆x, ∆y and ∆t are the spatial step sizes and the time step size respectively. 

The explicit partial derivatives of models (2.20) and (2.21) can be expressed as: 

 

We define the derivative terms as, 

 

 

 

 

 

 

 

 

(2.23) 

 

(2.24) 

 

(2.25) 
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III. Numerical implementation 

We have used two gray scale images as shown in Figure 1. The pixel values of all images lie in interval [0, 255]. 
The Gaussian white noise is added by the normal imnoise function imnoise(I1,’speckle’,σ2) i.e., the mean M and 

variance σ
2
 in Matlab. We first scale the intensities of the images into the range between zero and one before we 

begin our experiments. We have taken ∆t/∆x2< 0.5 and Lagrange multiplier =0.85 see reference  [3,4,10]. 

 

 

 

 

 

 

  

                                (a)                (b) 

Figure 1: Original Test Images used for different experiments (A) Lena: 256×256, (B) Boat: 256 × 256. 

 

                      (a)                (b)                     (c) 

 

                          (d)    (e)    (f) 

Figure 2: (a) Noisy Boat image σ2 = 0.002, (b)-(c) corresponding  denoised  images by model (2.20) and (2.21) 

respectively, (d) Noisy Lena image σ2 = 0.002, (e)-(f) corresponding  denoised  images by model (2.20) and 

(2.21) respectively. 
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Table 1. Results obtained by using models (2.20) and (2.21) applied to the images in Figures 2(a) and 3(a) with 

Gaussian white noise (σ2 = 0.002). 

Images PSNR 
(Model-2.20) 

Images PSNR 
(Model-2.21) 

Figure 2(c) 0.5406 Figure 2(d) 0.8609 

Figure 2(e) 0.4504 Figure 2(f) 0.5511 

No. of 

iterations 

5 No. of 

iterations 

5 

 

IV. Concluding Remarks: 

We have presented a new time-dependent model (2.21) to solve the nonlinear total variation problem for image 
restoration. The main idea is to apply a priori smoothness to the solution image. Nonlinear explicit schemes are 

used to discretize models (2.21) and (2.20). The model (2.21) gives larger ISNR values than that of model 

(2.20), at the same iteration numbers. 
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