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I. Introduction 

 Historically, the classical Polylogarithm function was invented in 1696, by Leibniz and Bernoulli, as mentioned in [3]. 

For |z| < 1 and c a natural number with 2c  , the polylogarithm function (which is also known as Jonquiere's function) 

is defined by the absolutely convergent series : 
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             (1.1) 

 Later on, many mathematicians studied the polylogarithm function such as Euler, Spence, Abel, Lobachevsky, Rogers, 

Ramanujan, and many others [4], where they discovered many functional  identities by using polylogarithm function. 

However, the work employing polylogartihm has been stopped many decades later. During the past four decades, the 

work using polylogarithm has again been intensified vividly due to its importance in many fields of mathematics, such as 

complex analysis, algebra, geometry, topology, and mathematical physics (quantum field theory) [5-7]. In 1996, 

Ponnusamy and Sabapathy discussed the geometric mapping properties of the generalized polylogarithm [8]. Recently, 

Al-Shaqsi and Darus generalized Ruscheweyh  and Salageean operators, using polylogarithm functions on class A of 

analytic functions in the open unit dist U = {z : |z| < 1}. By making use of the generalized operator they introduced 

certain new subclasses of A and investigated many related properties [9]. A year later, same  authors again employed the 

nth order polylogarithm function to define a multiplier transformation on the class A in U [10]. To the best of our 

knowledge, no research work has discussed the polylogarithm function in conjunction with meromorphic functions. 

Thus, in this present paper, we redefine the polylogarithm function to be on meromorphic type.  

   Let   denote the class of functions of the form 
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  Which are analytic in the punctured open unit disk 

     : { : ,0 | | 1} : \{0}U z z C z U           (1.3) 

  A function f (z) in   is said to be meromorphically starlike of order   if and only if    

     
( )

; ( ),
( )

zf z
z U

f z
  

    
 

      (1.4) 

  for some (0 1)   . We denote by ( )  the class of all meromorophically starlike order  .  

 Furthermore, a function ( )f z in   is said to be meromorphically convex of order   if and only if 
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for some (0 1)   . We denote ( )K   the class of all meromorphically convex order  .  For functions f   

given by (1.2) and g   given by 
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  ,       (1.6) 

  we define the Hadamard product (or convolution) of  f and g by    
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        (1.7) 

  Let p  be the class of functions of the form    
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         (1.8) 

  which are analytic and univalent in U 
          

   Liu and Srivastava [11] defined a function 
1 1( ,......., ; ,...., ; )p q sh z     by multiplying the   

 well known generalized hypergeometric function qFs, with 
pz  as follows: 

     1 1( ,......., ; ,...., ; )p q sh z          (1.9) 

     1 1( ,......., ; ,...., ; )p

q s q sz F z     

  Where, 1 1,......., ; ,....,q s    are complex parameters and q   s + 1, p N  

   Analogous to Liu and Srivastava work [9] and corresponding to a function ( )c z  given by 
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      (1.10) 

  we consider a linear operator ( ) :c f z   which is defined by the following Hadamard   

 product (or convolution): 

     ( ) ( )* ( )c cf z z f z         (1.11) 
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  Next, we define the linear operator ( ) :cD f z   as follows : 
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  Let ( , )cM    denote the class of function ( )f z in   satisfying the condition  
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  for some (0 1), (0 1)       , 

  and for all z U . We note that 
0( , ) ( , )M       

Let A  be the subclass of   which consisting of function of the form 
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   and let *

, ( , ) ( , )A C c AM        

  In this paper, coefficient inequalities  and distortion theorem for the class 
*

, ( , )A C    are determine. Techniques 

used are similar to these of Siliverman [ 13 ], Uralegaddi and Ganigi [14], Aouf and Darwish [1] and Aouf and Hossen 

[2]. Finally, the class preserving integral operators of the form 
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   is considered .   

2.  Coefficient Inequalities 

Theorem 2.1.  Let 
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    Then  
*

,( ) ( , )A cf z    . 

Proof.   Suppose (2.1) holds for all and admissible values of ,  and c. It suffices to show that 
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  for |z| < 1. We have 
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 The last expression is bounded above by  , provided  
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 which is equivalent to 

            

1

( 2) (1 ) | | 2 (1 )c

k

k

k k a  






         (2.3)  

   

 which is true by hypothesis 

  

Theorem 2.2. A function ( ) Af z in  is in  *

, ( , )A c    if and only if 
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 Proof.  In view of Theorem 2.1 it suffices to show that the only if part. Let us assume that    
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     (ak   0) is in *

, ( , )A C   . Then  

http://www.ijmttjournal.org/


International Journal of Mathematics Trends and Technology (IJMTT) – Volume 65 Issue 11 - Nov 2019 
 

ISSN: 2231-5373                                http://www.ijmttjournal.org                               Page 183 

   

1 1

2

1

1 1

1

( 1) ( 2)
( ( ) 1

( ( )) (2 1)
2(1 ) ( 1) ( 2)

k c k

k

c k

k
k c kc

k

k

k k a z
z D f z

z D f z
k k a z







  




 



 


 
 

   





 

   for all z E . Using the fact that Re | |z z  for all z, it follows that  
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   Now choose the values of z on the real axis so that 
2( ( ))cz D f z   is real. Upon clearing the   

   denominator in (2.3) and letting 1z   through real values, we obtain       
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   This completes the proof of Theorem 2.2 

    

Corollary 2.1: Let the function f(z) defined by (1.14) be in the class *

, ( , )A C    
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        Equality holds for the function of the form 

      

                         11 2 (1 )
( ) ( 1)

( 2) (1 )

k k

k c
f z z

z k k

 








  

 
 

        

 

3. Distortion Theorems 

  Theorem 3.1. Let the function f(z) defined by (1.14) in the class 
*

, ( , )A C    then for 0 < |z| = r < 1, 

     
1 2 (1 ) 1 2 (1 )

( )
3 (1 ) 3 (1 )c c

r f z r
r r

   

  

 
   

 
    (3.1) 

                 with equality for the function  
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  Proof. suppose f(z) is in the class 
*

, ( , )A C   . In view of Theorem 2.1, we have  
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  which evidently yields  
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Consequently we obtain
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by (3.3) . This gives the right –hand inequality of (3.1)  
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By (3.3), which gives the left hand of side of (3.1).  

 

It can be easily seen that the function ( )f z defined by (3.2) is external for the theorem. 

 

Theorem 3.2:  let the function ( )f z  defined by (1.14) be in the class 
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The result is sharp the external function being of the form (3.2) 

 

Proof . From Theorem 2.1 we have 
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Consequently we obtain 
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This completes the proof of theorem 3.2 

 

Corollary 3.1:   Let the functions f(z) defined by (1.14) be in the class   
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The result is sharp. 
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Putting c=0 and 1  in theorem 2.1, we get                                                               

 

Corollary 3.2. Let the functions f(z) defined by (1.14) be in the class  * *

, ,,1 ( )A C A C    ,  

 

         then for 0 < |z| = r <1,  
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         The result is sharp. 

 

4. Class Preserving Integral operations 

 

In this section we consider the class preserving integral operators of the form (1.15) 

 

Theorem 4.1: let the function f(z) defined by (1.14) be in the class  *

, ,A C   , then 
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The result is sharp for 

 
 

1 2 (1 )

3 1c
f z z

z 

 
 


 

 

Proof :  Suppose *

,( ) ( , )A Cf z     , then   

     
1

2 1 2 1
c

k

k

k k a






      

In view of theorem 2.1, we shall find the largest values of  for which 
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Solving the above inequality for  we obtain 
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is an increasing functions of  1k k  ,letting k=1 in (4.2) we obtain 
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and the theorem follows at once. 
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