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1. Introduction  

It proved a turning point in the development of fuzzy mathematics when the notion of fuzzy set was introduced by 

L.A.Zadeh [15]. K.Atanassov [14] introduced and studied the concept of intuitionistic fuzzy sets. D.Coker [4] 

introduced the concept of intuitionistic fuzzy topological spaces. Jungck [13] common fixed point theorem in the 

setting of intuitionistic fuzzy metric space. Turkoglu et al. [5] further formulated the notions of weakly 

commuting and R weakly commuting mappings in intuitionistic fuzzy metric spaces and proved the intuitionistic 

fuzzy version of Pant’s theorem [16]. Gregori et al. [19], Saadati and Park [21] studied the concept of 

intuitionistic fuzzy metric space and its applications. No wonder that intuitionistic fuzzy fixed point theory has 

become an area of interest for specialists in fixed point theory as intuitionistic fuzzy mathematics has covered 

new possibilities for fixed point theorists. Recently, many authors have also studied the fixed point theory in 

fuzzy and intuitionistic fuzzy metric spaces Dimri et.al.[6], Grabiec [9], Imdad et. al.[11], J.S. Park, Y.C. Kwan, 

and J.H. Park[12]. H.Dubey and R.Jain [9] studied the concept on common fixed point theorems in 

intuitionistic fuzzy metric spaces. 

2. Preliminaries 

Definition 2.1[3]. A binary operation *: [0, 1]  [0, 1]  [0, 1] is a continuous t-norm if it satisfies the 

following conditions: 

(1) * is associative and commutative, 

(2) * is continuous, 

(3) a * 1 = a for all a  [0, 1], 

(4) a * b  c * d whenever a  c and b  d for all a, b, c, d  [0, 1],  

Two typical examples of continuous t-norm are a * b = ab and a * b = min (a, b). 

Definition 2.2[3]. A binary operation : [0, 1]  [0, 1]  [0, 1] is a continuous t-co-norm if it satisfies the 

following conditions: 

(1)  is associative and commutative, 
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(2)  is continuous, 

(3) a 1 = a for all a  [0, 1], 

(4) a b  c  d whenever a  c and b  d for all a, b, c, d  [0, 1],  

Two typical examples of continuous t-co norm are a   b = ab and a  b = min (a, b). 

Definition 2.3[4]. A 5-tuple (X, M, N,  ) is said to be an intuitionistic fuzzy metric space if X is an arbitrary 

set,  is a continuous t-norm,  is a continuous t-co-norm and M,N are fuzzy sets on satisfying the 

following conditions: 

  

(i)  

 

(ii)   

 

(iii)      

 

(iv)   

 

(v)  

 

(vi)   

 

(vii)   

 

  

 

      (ix)   

 

      (x)   

 

     (xi)  

 

     (xii)  

 

     (xiii)   

 

Then (M, N) is called an intuitionistic fuzzy metric space on X. The functions M(x, y, t) and N(x, y, t) denote the 

degree of nearness and the degree of non-nearness between x and y w.r.t. t respectively. 

Remark 2.1[4]. Every fuzzy metric space  is an intuitionistic fuzzy metric space of the form 

 such that t-norm  and t-co norm ⟡ defined by  

  In intuitionistic fuzzy metric space     

 is non-decreasing and  is non-increasing. 

Remark 2.2[17]. Let  be a metric space. Define t-norm a * b = min (a, b) and t-co norm a  b = max 

(a, b),   
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 Then  is an intuitionistic fuzzy metric 

space induced by the metric. It is obvious that   

Alaca, Turkoglu and Yildiz [4] introduced the following notions: 

Definition 2.4. Let (X, M, N,  ) be an intuitionistic fuzzy metric space. Then  

(a) a sequence  in X is called Cauchy-sequence if, for all t > 0 and P > 0, 

      and        

(b) a sequence  in X is said to be convergent to a point   if , for all     

     and           

Definition 2.5. Let (X, M, N,  ) be an intuitionistic fuzzy metric space and  be a sequence in X if   there 

exists a number   such that: 

1.  

 

for all  t > 0 and n = 1 ,2 ,3……then  is a Cauchy sequence in X 

Definition 2.6. A pair of self-mappings (f, g) of an intuitionistic fuzzy metric space  

(X, M, N, ) is said to be compatible if  & 

 for every t > 0, whenever { } is a sequence in X such that 

for some.   

Definition 2.7. A pair of self-mappings (f, g) of an intuitionistic fuzzy metric space  

(X, M, N,  ) is said to be non-compatible if  & 

 for every     t > 0, whenever { } is a sequence in X such that 

for some.   

Definition 2.8. An intuitionistic fuzzy metric space (X, M, N,  ) is said to be complete if and only if every 

Cauchy sequence in X is convergent. 

Definition 2.9[7]. A pair of self mappings  of a metric space is said to be weakly compatible if they 

commute at the coincidence points i.e.  then  

Definition 2.10[7]. A pair of self mappings  intuitionistic fuzzy metric space is said to be weakly 

compatible if they commute at the coincidence points i.e.  then  
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Definition 2.11[8]. A pair of self mappings  intuitionistic fuzzy metric space is said to be occasionally 

weakly compatible iff there is a point x in X which is coincidence point of they commute at the coincidence 

points  at which  commute. 

Lemma 2.1[7]. Let (X, M, N,  ⟡) be an intuitionistic fuzzy metric space.  be self maps on X and  

  have a unique point of coincidence,  then w is the unique common fixed point of 

   

Lemma 2.2[2].  Let (X, M, N,  ⟡) be an intuitionistic fuzzy metric space and  and 

if for a number  such that   

then   

 

3. Main results 

Theorem 3.1. Let A, B, S and T be self maps of intuitionistic fuzzy metric spaces  

(X, M, N,  ) with continuous t-norm * and continuous t-co norm ⟡ defined by  and 

 for all  satisfying the following condition: 

(3.1.1) A(X) ⊆ S(X) and B(X) ⊆ T(X), 

(3.1.2) If one of the A, B, S and T is a complete subspace of X then {A, T} and {B, S} have a coincidence point, 

(3.1.3) The pairs (A, T) and (B, S) are weakly compatible, 

(3.1.4)  

 

and 

 

 

 

 &  , where  is a continuous function such that  & 

  for each 0 < t < 1 and  and  with  Then A, B, S and T 

have a unique common fixed point in X.
 

Proof : Since A(X) ⊆ S(X), therefore for any , there exists a point  such that  and  

for the point  , we can choose a point  such that  as  

B(X) ⊆ S(X). Inductively, we get Sequence  in x as follows    and  

 for n = 0,1,2…..Putting  in (3.1.4) we have, 
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i.e  as  for each   

 and  

 

 

      

 

 

i.e  as  for each  

 Thus  is an increasing sequence of positive real numbers in [0,1] 

which tends to a limit  also  is an decreasing sequence of positive real 

numbers [ 0 ,1] which tends to a limit   

Therefore for every   &  ,  

  &  Now any positive integer p, we 

obtain  and . Which shows that  is a 
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Cauchy sequence in X. Let  then  we shall use the fact that subquence  also 

converges to .Now by putting   in (3.4) and taking   

 

 

i.e   ……………………………………(*) 

also  

 

 

 

i.e  ………………………………….….…(**) 

From (*) and (**), Let . Since  we have  i.e. w is the coincidence point of 

B and S. As B(X) ⊆ T(X),  . Let  then  Now by putting  

 in (3.1.4)  

 

taking  

 

 

i.e  and  
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taking  

 

 

i.e  

Therefore, we get  we have     

Thus  is a coincidence point of a and T. 

Since the pairs  are weakly compatible i.e.  and 
 

 
Now by putting   in (3.1.4) 

 

 

 

taking  

 

 

 

 

i.e  and 

 

 

 

taking  
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i.e   

Therefore, we get  So we have    similarly by putting   in (3.1.4) 

as   Thus  i.e.  is a common fixed point of A, B, S and 

T. 

Uniqueness: Let  be another common fixed point of A, B, S and T. then by putting  

in (3.1.4) 

 

 

 

 

 

i.e   

and  

 

 

 

 

 

 

i.e . Hence for all  
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Therefore  is the unique common fixed point of a, B, S and T. 

This completes the proof. 
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