International Journal of Mathematics Trends and Technology (IJIMTT) — Volume 65 Issue 12 - Dec 2019

Stability And Hopf Branch of A FAST
TCP/RED Network Congestion Model with
Feedback Control

SU Xiao-ya ", ZHAIYan-hui™
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Abstract — This paper mainly investigated aFAST TCP/RED network congestion model with a hybrid
controller by using the control and bifurcation theory and discussed the effect of the communication delay
on the stability. It is found that the hybrid controller can effectively delay the generation of Hopf branch
and increase the stability of wireless network.Besides, the linear stability of the model and the local Hopf
bifurcation are studied and we derived the conditions for the stability and the existence of Hopf
bifurcation at the equilibrium of the system. At last, some numerical simulation results are confirmed that
the feasibility of the theoretical analysis.
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I. INTRODUCTION

In recent years, with the rapid development of science and technology,the Internet congestion control
becomes a serious problem in practical application.When the required resources exceed the network
transmission capacity, it will cause congestion, which may lead to the loss of information and even the
destruction of the whole system[1-3].Therefore, more and more people pay attention to the stability and

dynamic characteristics of wireless network congestion control system.Many congestion control mechanisms
are developed to avoid the system congestion and collapse[4-7].TCP and AQM are central to these congestion
control mechanisms[8-10] .According to the characteristic of differential equation dynamical system and the
related theory of cybernetics, network propagation can be regarded as a nonlinear dynamic model with
time-delay feedback regulation.

The FAST TCP system model is given in literature[11] , the specific model is as follows:

N a q)
M= ey
. _l W(t—rf) B

PO= G o)~

where W(t) indicates the average value of the source side congestion window size, C is the queue
capacity , p(t) represents the queuing delay,and q(t) = p(t—z")is the queuing delay observed by the
source.lt is should be noted that the congestion window value and queue delay value are both non-negative. The
round trip time R(t):z'f +7°, where 7" is the forward delay from source to link and z° is the
backward delay in the feedback path from link to source, and d represents the constant round trip
propagation time defined as the minimum achievable round trip delay. Thus, R(t)=d + p(t—z"). The
parameter o (« >0) is the number of the packets that each source attempts to maintain in the network
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buffers at equilibrium point; » is the source control parameter with y € (0,1] .The congestion window
w(t) and the queuing delay p(t) are non-negative.In literature [12], the author applied dynamics theory to
analyze the local stability of the FAST TCP model.In literature[13],Liu used pulse control method to control

the branching problem. We can take communication delay as a branching parameter and only considered the
network topology of single source and single link. The following model is proposed.

A a p(t—R)
w(t) = - =~ w(t),
= =R @rper)y "V o
2
. 1 w(t)
t)=—(————-0C).
PO c(d+p(t—R) )
First, let the equilibrium point of model (2) be (W, p,) » so it satisfies the following equation:
a Py 1, w,
- w,)=0;= —¢)=0
Maep, @epy ™ clarp, 7Y
That is

w, =oR/(R—-d), alc=p,=R—d.
We can draw the following conclusion:For the no-control system (2),when

b2 _ g2 b? —a?)? + 4c? 2
wo:\/ a +\/( a‘) +4c ,Roziarctan[bwo +ac],
2 @, (c—ab)a,
Wherea=£20, b:i, Czl2
R R R

If R < R, ,the system is locally asymptotically stable at the equilibrium point.
If R > R, ,the system is unstable at the equilibrium point.
If R = R, ,the system generates Hopf bifurcation near the equilibrium point, resulting in periodic solution.

In this article, to delay the Hopf branch, we added a hybrid controller (1—K)(w(t) —w,) to the FAST
TCP network congestion model,then model (2) becomes

N a B p(t—R) B B
W(t) =ky( 4+ p(-R) (At p-R) w(t) + (LK) (w(t) Wo),(g)
N P

p(t)_c(d+p(t—R) )

WhereK is the hybrid control parameter, appropriate control parameters can be selected to delay or even
eliminate the generation of Hopf branches.

II.STABILITY AND LOCAL HOPF BIFURCATION ANALYSIS

In this section, we focus on the problems of the Hopf bifurcation and stability for the system(3).1t is clear
that the controlled system has the same equilibrium point as the system (2)

w, =aR/(R—-d), alc=p,=R—-d. (4
Let X, (t) = w(t) —w,, X, (t) = p(t) — p, ,then the linearized approximation equation corresponding to model

(3) at the equilibrium point (W,, p,) is:
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X (1) =, (t) + a,%, (t—R),

®)
X, ®= blxl(t) + bzxz (t-R).
kD, kyod 1 1
where a, =— +1-k, aa=—2", pb=—", b=—=
al R2 2 p0R2 bl RC 2 R
The correspoding characteristic equation of system (3) is as follows.
X —al-b,e™ +(ab, —ba,)e ™ =0. (6)

Obviously, because the roots of the characteristic equation (6) have a continuous dependence on the
parameters A, when the delay R gradually approaches zero, equation (6) has no negative real part roots. That
is,the system is stable.When the delay R in equation (6) increases slowly and slightly larger than zero, as long
as it is small enough, the system will remain stable.That is, there is a critical time delay R = R, so that the real

part of the characteristic root of the characteristic equation (6) less than zero is true.We have the following
lemma.

T
Lemma 1. For the system (3), assume thata,R, <Eis satisfied.Then equation(6) has a pair of purely

imaginary roots 4 = £i@,when R = R, where

oy =

Jbﬁ ~a’ + (b ~a")" +4(ab, -ba,)’ o

2

1 b,w,” +a,(ab, —ba
Roz—arctan[ 2% al(ai 2 b1 2)] @®)
Wy a,b,a,
Proof.First, we assume that A =i@(w > 0)is a root of the characteristic equation (6), then it satisfies the

following equation

— o’ -iwa, —iab,e"® +(ab, —ba,)e”"* =0. ©9)

That is — o’ -iwa, +(ab, —ba, —iah,)(cos wR —isin wR) =0. (10)

The separation of the real and imaginary parts, it follows

{—a)z +(a,b, —b,a,) cos wR — whb, sin wR =0, )
a0+ (ab, —ba,)sin wR + wb, cos wR =0.
From (11) we obtain
o* +a’w® = (ab, -ba,)?* +b,’w? W)
' +(a, ~b," )0’ ~ (ab, ~ba,)* =0
So, we can get
. Jbﬁ—aﬁ+J(b;—a122)2+4(a1b2—b1a2>2 .
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2
R= iarctan[bza’0 *3,(ab, ~ba,) +kz], k=012, (14)
0] a,b,w,
Obviously, setk =0, then
= \/bzz _a12 +\/(b22 _312)4 +4(ab, ~ba,)’ . R = iarctan[bza)o2 +a(ab, _blaz)]
2 @, a,bw,

As a result, when R = R, the characteristic equation (6) have a pair of purely imaginary root. This

completes the proof.
Lemma 2.Let A(R) = a(R) +i@(R) be the root of (6) with z(R,) = 0and @(R,) = e, then we have

di ..
the following transversality condition Re(d—) ! ‘ rer, > O is satisfied.
0

AR
Proof. Multiply both sides of the characteristic equation (6) by € and you get
(# -a)e™ -b,A+(ab, —ba,)=0. (15)

By differentiating both sides of equation (15) with regard to R and applying the implicit function theorem, we
have :

da _ (aA—A)1e®
dR (21-a)e”™ +(# -a1)e"R-b,’
Therefore,
(d_/l)—l _ (22’ — a:l.)elR — b2 _B

drR (@A-A)1e® 2
It can be obtained from equation (15) that

e/IR — a1b2 B blaZ - bz/1

al—x
So
di, 24 —a, b
Re(—)"|,_. =Re[————=—-],.. —Re 2 o
(dR) |i_|a)o [(a1/1 _Az)i]ﬂ—lwo [/l(aibz _ blaz _bzi)]/l—lwo
_ 2C"oz + a12 bz2

- a12a)02 + a’o4 B b22w02 +(ab, _b1a2)2
_ b w,* + (2w’ +a,°)(ah, —ba,)?
(6‘120)02 + w04)[b22a)02 +(ayb, - b@z)z]

dA
Obviously, Re(d?)"1 ‘ rer, > 0the proof is completed.
0

Lemma 3. For equation (6), whenR €[0,R;), all of its roots have negative real parts. The equilibrium
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(W,, py)is locally asymptotically stable, and system (3) produces a Hopf bifurcation at the equilibrium
(Wy, py)when R=R,.

By applying the Hopf bifurcation theorem for delayed differential equation and the three lemmas[14-15],
we have the following results.

Theorem 1. For system (3), the following conclusions are true:
If R < R, the equilibrium point is asymptotically uniformly stable.

If R = R, ,model (3) generates Hopf branch at the equilibrium point (W, p,) .
If R > R, ,model (3) is unstable at the equilibrium point (W,, p,) .

1. DIRECTION AND STABILITY OF THE HOPF BIFURCATION

In the analysis in the above section, we have obtained the conditions for the system to generate Hopf branch.
In this section, by using the normal form theory and the center manifold theorem introduced in [16-17], we
discuss the Hopf bifurcation direction and bifurcated periodic solution stability of model (3).

First, we consider the Taylor expansion of model (3) at the equilibrium point (W, p,) .

%, () = a,%, (t) + 3,%, (t = R) + a,x, (1) X, (t - R) + a,x,"(t —R) +

agX (1), (t—R)+agx, (t—R)+---, "

Xz (t) = blxl(t) +b2X2 (t - R) +b3X1(t)X2 (t - R) +b4X22 (t - R) +
b, (£)%,” (t = R) +b,x,° (t— R) +---.

Kya kycd ky(e—cd) 2kycd ky(2cd — )
3kycd 1 1 1 1 1 1
TR TR TR PR TR B TR BT

let R=R,+ 2, U(t)=(x(t),x,(t))" and u,(8) =u(t+80),0 [-R,0), clearly, =0 is model(3)
generates Hopf branches atR,.Then the model (3) is equivalent to the following Functional Differential
Equation (FDE) system

u(t) =L, +F (U, ). (17)

Lo =B,p(0)+B,p(-R) (18)

and

F( ) = a3X1(t)X2(t—R)+a4X22(t—R)+a5X1(t)X22(t—R)+a6)(23(t_R)+,,, (19)
X ()%, (t— R) +b,%,2 (t = R) + box, (£)%,° (t— R) +byx, (t —R) +--- |

Where L, is the one family of bounded linear operator in C([-R, 0], R?) —» R%and

T 0 0 2
0(0)=(.(6).,(0) eC[—R,O],Bf[Ej 0]’32{0 Zj

Bythe Riesz representation theorem, there exists a bounded variation function 77(6, z2) :[-R,0] = R*?,

such that
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0
L=, dn(6, 1)e(6),p<C. (20)
In fact, we can choose

(6, 1)=B,3(0) +B,5(0+R). (21)

where 5(6’) is a Delta function. For @ € C([-R,0]), the operators A and R are defined as follow

m’ 0e [—R,O),
Au)p(0)={ 40 o
[ d@©.me@), 0=0.
_J0 0 <[-R,0),
RUDP(0)= {F (w,9), 6=0. (23)

Hence the equation (17) can be written as the following form:
ut = A(,u)ut + R(ﬂ)ut (24)

For y €C[0,R], we define the adjoint operator A"(0) of A(0)as

_dy(s) sc (ORI,

A p(s)=y & (25)
J_R d(n' .0y (-t)), s=0.

For ¢(0) e C[-R,0)and y € C[0, R], we define a Bilinear form

<po>=7 OO~ [ [ 7(E-0dn@le()de. (26)

where 17(6) =1(6,0)

Lemma 4.The eigenvectors (6) =Ve'»’ and q*(s) = DV *e "*® are respectively the eigenvectors
correspondingto the eigenvalues i@, and —i@, of A(0) and A*(0), and

<q",q>=1, <q’,q>=0,
whereV = (L — )TV (BT BV RSBV,
i, —b,e™ ™ a, +iaw,
proof. £ ia)0 are the eigenvalues of A(0), so they are also the eigenvalues of A*(0) .In order to determine
the standard form of the operator A(0) ,we assume that the eigenvectors (&) and g,” (S) are respectively
the eigenvectors correspondingto the eigenvalues i@, and —i@, of A(0) and A"(0).We can obtain

{ A(0)q(0) =im,q(0)

* e . (27)
A(0)g, (s) =iy, (s)

From (20) and (22), (27) can be written as
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%ﬂwoq(@), 0 €[-R,0).

L,d(0) =iwq(0),  6=0.

(28)

therefore q(6) = q(0)e'*’, 0 [-R,0].
Where q(0) = (c,(0),g,(0))" e C?is a constant vector, obtained from (18), (27)
B,q(0) + B,e"*q(0) =i, 1q(0)

1
1
By direct calculate, we get q(0) = ( ] = [ by }
P

i, — e

etV =q(0) =(L— 2

i, —bze_i""’R") ’
then q(0) =Ve'™’

For non-zero vectors g, (s),s € [0, R], we have B," g (0) + B, e @, (0) = i, Iq; (0)

o [ B .
Similarly ql*(O):[ ZJ: i, +a, | letV’ =q(0) =(-—=>—))
1 1 lo, +a,

then g, (s) =V " ,we make g (s) = DV e **,
Now let's prove that <, >=1and < ,q>=1, from equation (26), we get

(aa)=aTa@- [, _ [ a7 (E-0)dn©O)aE)ds

=BV - [ °}RO ;\7 Terim 0 g n(PNed £}
DIV - L"}ROV Tdn(0)]0e NV ]
=D[VV -Re“*N " TBV].

Let D=[V"V -7,V BV ", wecanget <q’,q>=1.By(w, Ap)=(ATy,0), we obtain

i (0, @) ={a" Ad) = (A", 0) = (", q) =i (0. ).

So < q*, g >=0. The proof is completed.

Next, we will use the same notations as in Hassard et al.[18], we firstcompute the coordinates to describe

the centermanifold C, at =0. Define
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z(t)=<q",u, >
and W(t,6) =u,(0) —2Re{z(t)q(0)}.
On the center manifold C,, we have

W(t,0) =W (z(t),z(t),0)

2 2

WhereW (2,Z,6) =W, (0)%+W11(9) 27 +W,, (6) Z? e,

(31)

(32)

(33)

For the central epidemicC,, Z andZ respectively represent the local coordinates of the central epidemic in

the direction of g and q". Note that W is real if u, is real, therefore we onlyreal solutions. Since

1 =0, itis easy to see that
2(t) =<a’, 1) ={a", (A(0) + R(0)) t4,)
=<q", A, >+<q", Ry, >
=iw,z+7 " f,(z,2).
Let 2(t)=lw,z+9(z,7),
7’ z°
Where 9(z,7) = gzo?"' 91.2Z + Qg ?+

from (24) and (36), we have
.. .. |AW-=2Req"(0)f,(z,7)a(9),
W =uU,-720-7q =
AW —2Re{q 7 (0) f,(z, 7)q(O)}+ f,(2,2),
Which can be rewritten as
W =AW +H(z,Z,0)

where

2 2

H(z,2,0) = Hzo(e)%+ H,,(0)2Z + HOZ(H)%+--.

On the other hand, on C,,

W =W,z +W,Z

Using (34) and (36) to replace W, and Z and their conjugates by their power series expansions, we obtain

W =iaW,y (0)2% — i\, (0)Z% +---.

Comparing the coefficients of the above equation with those of (39) and (41), we get

0 <[-R,,0),
6=0.

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)
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(A—2iwy )W, (0) =—H(0),
AWll (0) = _H11 (‘9)! (42)
(A+2ia, )Wy, (0) = —H, (6).

Notice that U, =u(t+68) =W (z(t),Z(t),0) +zq+2q and q(8) =L p,)"e"*’, we get

Ut:(xi(t+9)j W (z,z ,0) ( ]ei‘“”9+7 i _— 43)
X,(t+6) W(Z)(L Z,0) P %)

SO
x (t+60) =W®(z,Z,0)+ze'*" + fe’“"fﬂ
=ze"’+ 7" + W0 (49) +W(0) 27 +WS (6?) —+
X, ({t+60)=W?(z,Z,0)+zp, e’ +7p e’
2 52
=2p,6"+7p e’ +W2 () Z? +W, 2 (0)2Z +W (0) 27 +
Obviously,

2 =2
?.(0)=z+Z+W(0) % +W, P (0)zz +WS (0) % 4o

0,(-Ry) = 2p % + 75 + WD (—R ) = +W1‘f)( R,)ZZ +W (- Ro)

(2] (O)¢2 (_ Ro) = pleiinRO 2’ + (ﬁleii%RO + pleiinRO )ZZ + ,BleiwoRo 72
1 1_ iogRy —iawgRy =
+ [W11(2) (=Ry) + E\Nzo(Z) (—Ry) + > X Wzo(l) (0) + pe ™" Wll(l) (0)]z°Z +---

—2iawy —2 ZIwORO —2

foz? 1+ pe +2p,0,77 +

¢22(_Ro) = plze
[/51einROW20(2) (-Ry) + zpleilw(}ROWn(Z) (- RO)]ZZZ +--

2 (0)(022 (=Ry) = (p12e—2ia;0R0 +20,)2°7 +- -

(923 (-Ry) = 3,012/7)194%':{0 27+
From the (35 ) and (36), we obtain
- (KzZ*+K, 27+ K,7* +K,z°Z
f(Z Z):( l2 2_ 3_2 42_
Kez® + KezZ + K, Z° + K z°Z
where

2 —2Ia)0R0

K, =a,0e" ™ +a,pe
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K,=a, (:BleiwoRo + ple_iwoRO )+2a,0,0,

Ky = ae/_)lei%Ro + 3-41512e2iwORO

1 1 i —imgRy
Ki=28, [W11(2) (—Ry) + EWZO(Z) (-Ry)+ 2 Pe OROWZO(D 0)+pe " Wll(l) O]+
a,[5e Wy, ¥ (~Ry) + 2,0 "W, @ (R, )] + 85 (0’6 2 +29,5,) + 38,0, e
Ks = 3/01e_iwORO "'bmolze_ZinR0
Ke =b, (P + pe™ %) +2b, 0,5,

— LiopR —2_2impR
K; =b,pe"™™ +b,p ™™™

1 1 — Al —imgRy
Kg =D, [W11(2) (—Ro)+ EWZO(Z) (—Ro)+ > P ORowzo(l) (0) + pe™™" Wll(l) (0)]+
b, [ﬁlei%ROWzo(Z) (=Ry) + 2ple_iw0R0W11(2) (—=Rp)]1+Dy (Plze_Zi%Ro +2p,0)+ 3b6,012 /Sle_i%Ro

FromT " (0) = D(p,,1) , we obtain

9(2,2)=q" (0)fo(z,2)
2 = -2 2=
o ]
5 6 7 8
=D[(p,K, + Ky)z? +(p,K, + K, )2Z + (p,K, + K)Z? + (p,K, + K,)2°Z]
Comparing the cofficients of the above equation with those in (36), we get
0, = 2D(p,K, +K,),9,, = D(p,K, +K,),

_ _ (44)
90 =2D(p,K; +K,), 9, =2D(p,K, + Kj).

In order to determine the value of g,,, we also need to compute the values of W,,(&) and W, (&) ,from
0 €[-R,,0) ,we obtain

H(z,Z,0) =-2Re[q" (0) f,(z,2)q(9)]
z° _ Z°
=_(gzo(9)?+gnzz + 002 7+"')Q(9) (45)
z° 7°
- (gzo (9) ? + g1127 + goz ? +- )(_1((9)
Comparing the coefficients with (39), we gives that

Hzo (9) = _gzoq(e) - gozq(e)1

_ (46)
Hll(e) = —911Q(9) — 01,4 (9)
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When & =0, we have
H(z,z,0)=-2Re[g" (0) f,(z,2)q(0)] + f,(z,Z)

2 2

Z _ z
= _(gzo ?*‘ 01122 + Qg ?*‘ o -)q(O)

2 =2 2 = =2 2=
_ 7 _ Kz +K,zZ + K,7° + K,z2°Z
—(0(0) =+ 0,27 + G, —+--)7(0) + ' ) ? _ 3_2 ) ae |
2 2 Koz® + KsZZ + K, Z° + K z2°Z
Comparing the coefficients with (45), we have

K
Hzo (0) = _gzoq(o) - Gqu(O) + Z{Klj’

K (47)
H,,(0) =-g,,0(0) - §,,(0) + ( Kz J
6
Using (42), (46), we obtain

Wi (6) = =2 g(0)e™ + 22 g(0)e ™ + Ee®,
@, 3w,
. . (48)
W, (6) = -2 g(0)e"” + 1 g(0)e " +E,.
@y @y
Where E, = (E®,E?) e R*and E, = (E{”, EZ) € R”are two two-dimensional vectors.
From the definition of A(Q) and (42) , we have

J. (*)Ro dn(e)WZO (‘9) = 2ia)owzo (0) - Hzo (O)
[ 25, d7(OW,,(6) =—H,, (0)
and

(il [, &*dn(©)a(0) =0

(il = [ e *dn(©))3(0) =0.

Hence, we can get

_ K
(2ic,) ~ [ °, € dn(O))E, = Z(KlJ

0 K,
(], dn(ONE, =—[K j

6

i20,—a,  —ae’f BV _ o K
b 2w, —be % )| EP K, "
NN =g )
b b, )| Ef Ke

http://www.ijmttjournal.org Page 20
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By calculation we can get
(28K, —2a,K,)e " **™ +ida K,

W _ _
5 (ab, —a,b, —i2ab,)e **% — 4w} —i2w,3, (50)
E1(2) B 2b K, —2a K, +ida,K,
(ab, —ab, —i2mb,)e ?*® —4a? —i2m,a,
eo K2k,
ab —ab, ’
And o, —ap, (51)
E® = K —bK,
a2b1 o a1b2

Based on the above analysis, next we determine several important values of the Hopf periodic solution

properties at the critical value R; [19]:

_Re{C,(0)}

m B, =2Re{C,(0)},

i 1
C,(0) :2_0)0(920911 _2|g11|2 _§|902|2)+%7ﬂ2 =

T, - IM{C, (0)}+ 1, (IM{2 (0)})

@,

(52)

Theorem 2.1n the case of system (3), the conclusion holds[20]

a) The direction of the Hopf bifurcation is determined by the parameter g,. If g, >0, the Hopf
bifurcation is supercritical . If £, <O, the Hopf bifurcation is subcritical .

b) /3, determines the stability of the bifurcating periodic solution. If /3, <0, the bifurcating periodic
solutions is stable; if 3, >0, the bifurcating periodic solutions is unstable.

c) The period of the bifurcating periodic solution is decided by the parameter T,. If T, >0(<0), the
period increases(decreases).

IV. NUMERICAL SIMULATION

In this section, we present numerical results to confirm the analytical predictions obtained in the previous
section. For system (3) , We take the parameters:

a=1100; »=0.8; C=50000 packet/s
According to the previous analysis, for the original system (2), we can draw the relation diagram of critical

time delay R, and R (see Figl).When R <0.07236, R <R, shows that the original system is stable, that is
tosay, When R, =0.07236 the Hopf branch is generated. If we choose R = 0.072 , we get that
W, =3600; p, =0.022;a=3.3951b =13.8889;c =154.321;
w, =16.422; R, =0.0718

Because of R =0.072> R, ,the equilibrium point (W,, p,) of the system (2) loses its stability and

ISSN: 2231-5373 http://www.ijmttjournal.org Page 21



http://www.ijmttjournal.org/

International Journal of Mathematics Trends and Technology (IJIMTT) — Volume 65 Issue 12 - Dec 2019

the system is unstable(see Fig 2).Next, verify the control effect and select the above parameters again.By

selecting an appropriate hybrid control factor K = 0.8 ,we can calculate the critical value R, =0.081of Riin
system (3) .When R=0.072 ,we get thatW, =3600; p, =0.022 .Because of R=0.072 <R, ,the
equilibrium point (WO, po) of the system (3) is asymptotically stable which proved by numerical simulations

(see Fig 3.).But as R continues to increase,such asR =0.1> R, .At this point, the FAST TCP network

congestion model with the hybrid controller added still generates Hopf branches.The system loses stability and
produces limit cycles (see Fig 4.).Therefore, the Hopf branch can be delayed by selecting a suitable hybrid
control factor.

01 .
— Ro wf_RU;f the modified modgLH'J

006 0.06 0.07 008 0.00 010
Rls

Figure 1 Relationship curve between RO and R

3400,

0 001 002 003 004 005
Py

3200,

Figure 2 State and Phase plot of W(t) and p(t) with R =0.072.
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Figure 3 State and Phase plot of W(t) and p(t) of the FAST TCP network congestion
modelwith the hybrid controller with R =0.072
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Figure 4  State and Phase plot of W(t) and p(t) of the FAST TCP network

congestion model with the hybrid controller with R =0.1
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V. CONCLUSIONS

Based on the FAST TCP system model, a FAST TCP network congestion model with hybrid controller is
studied in this paper.By applying the control and bifurcation theory, the critical value of communication delay
that keeps the original system stable can be obtained.When the time delay of the system exceeds this critical
value, stability is lost at the equilibrium point and Hopf branch is generated.By choosing the communication
delay as the bifurcation parameter, we can obtain the critical value of the communication delay that keeps the
controlled system stable.When branch still take the above parameters, the controlled control system at the
equilibrium point is stable. When time delay increases to a large, the system still will be blocked, even collapse.
Numerical simulation results verify the validity of the theoretical analysis.So by choosing appropriate control
parameters can effectively delay the Hopf branch production and increase the stability of the wireless network.
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