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I. Introduction 

Let G = (V(G), E(G) be a simple, finite, connected graph. The degree dG(v) of vertex v is the number 

of vertices adjacent to v. The distance d(u, v) between any two vertices u and v is the length of 

shortest path containing u and v The status (u) of a vertex u in a graph G is the sum of distances of 
all other vertices from u in G. For undefined term and notation, we refer [1]. 

 A graph index or topological index is a numerical parameter mathematically derived from 

graph structure. In Mathematical Chemistry, graph indices have found some applications in chemical 

documentation, isomer discrimination QSAR/QSPR study [2, 3, 4]. Some different graph indices may 
be found in [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. 

 In [18], Ramane et al. introduced the first and second status connectivity indices of a graph G 

defined as 

       
 

1 ,
uv E G

S G u v 


 
  

     
 

2 .
uv E G

S G u v 


   

 We introduce the vertex status index of a graph G defined as 

    
 

2
.v

u V G

S G u


   

 We now propose the following status indices: 

             The total status index of a graph G is defined as  

    
 

.s

u V G

T G u


   

 The modified vertex status index of a graph G is defined as  

  
  

2

1
.m

v

u V G

S G
u

   

 The status inverse degree of a graph G is defined as  

  
  

1
.

u V G

SI G
u

   

 The status zeroth order index of a graph G is defined as  

  
  

1
.

u V G

SZ G
u

   

 The F-status index of a graph G is defined as  

    
 

3
.

u V G

FS G u


   

 We continue this generalization and propose the general vertex status index of G, defined as  

    
 

.
aa

v

u V G

S G u


   

 where a is a real number. 

 Recently, some variants of status indices were studied in [19,20,21,22,23]. 
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 We also introduce the total status polynomial, vertex status polynomial and F-status 

polynomial of a graph G, defined as 
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 Recently, some different polynomials were studied in [24,25,26,27,28,29,30,31,32,33,34]. 

 In this paper, the vertex status index, total status index, modified vertex status index, F-status 

index, the general vertex status index of some standard graphs, wheel graphs, friendship graphs are 
determined. Also the total status polynomial, vertex status polynomial,  F-status polynomial of some 

standard graphs are obtained. 

 

II. Results for complete Graphs 

 

 Let Kn be a complete graph with n vertices. 

Theorem 1. The general vertex status index of a complete graph Kn is  

    1 .
aa

v nS K n n         (1) 

Proof: If Kn is a complete graph with n vertices, then   1
nKd u n   and   1u n    for any vertex 

u in Kn. Thus 
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 We establish the following results by using Theorem 1. 

Corollary 1.1. Let Kn be a complete graph with n vertices. Then  

 (i)    
2

1 .v nS K n n     (ii)    1 .s nT K n n   

 (iii)  
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   (vi)    

3
1 .nFS K n n   

Proof: Put a = 2, 1, –2, –1, –½, 3 in equation (1), we get the desired results. 

 
Theorem 2. The total status polynomial, vertex status polynomial and F-status polynomial of a 

complete graph Kn are given by  

(i)   1, .n
s nT K x nx      (ii)  

 2
1, .n

v nS K x nx   

(iii)  
 31, .n

nFS K x nx   

Proof: Let Kn be a complete graph with n vertices. Then (u) = n – 1 for any vertex u in Kn. 

(i)  
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III. Results for Cycles 

 
Theorem 3. If Cn is a cycle with n vertices, then the general vertex status index of Cn is 

 a
v nS C  
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 if n is even,    (2) 
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Proof: Case 1. Suppose n is even. If Cn is a cycle with n vertices then  
2

4

n
u   for every vertex u 

of Cn. Thus  
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Case 2. Suppose n is odd. If Cn is a cycle with n vertices, then  
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u


  for every vertex u of Cn. 

Thus  
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We obtain the following results by using Theorem 3. 
Corollary 3.1. Let Cn be a cycle with n vertices. Then 
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n
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2
2 1

,
16

n n 
    if n is odd. 

Proof: Put a = 2, 1, –2, –1, –½, 3 in equations (2), (3), we get the desired results. 
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Theorem 4. The total status polynomial, vertex status polynomial and F-status polynomial of a cycle 

Cn are given by 

(i)  Ts(Cn, x) 
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Proof: Let Cn be a cycle with n vertices. 

Case 1. Suppose n is even. Then  
2
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u   for every vertex u in Cn. Thus  
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Case 2. Suppose n is odd. Then  
2 1

4

n
u


  for every vertex u in Cn. Thus  
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IV. Results for Complete Bipartite Graphs 

 

 Let Kp,q be a complete bipartite graph with p+q vertices and pq edges. In Kp,q , there are two 

types of status vertices as given in Table 1. 

   ,\ p qu u V K   p + 2(q – 1) q + 2 (p – 1) 

Number of vertices q p 

Table 1. Status vertex of Kp, q 

 

Theorem 5. The general vertex status index of Kp,q is  

      , 2 1 2 1 .
a aa

v p qS K q p q p q p                (4) 

Proof: Let Kp,q be a complete bipartite graph. By definition, we have  

    

 ,

, .

p q

aa
v p q

u V K

S K u


   

By using Table 1, we deduce  

      , 2 1 2 1 .
a aa

v p qS K q p q p q p             
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 We obtain the following results by using Theorem 5. 

Corollary 5.1. If Kp,q is a complete bipartite graph, then  

(i)      
2 2
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, 2 2 2 .s p qT K pq p q p q      
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(vi)      
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, 2 2 2 2 .p qSI K q p q p q p       

Proof: Put a = 2, 1, –2, –1, –½, 3 in equation (4), we get the desired results. 

 

Theorem 6. The total status polynomial, vertex status polynomial and F-status polynomial of Kp, q are 
given by  
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Proof: Let Kp,q be a complete bipartite graph with p+q vertices. Then by using Table 1, we deduce 
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V. Results for Wheel Graphs 
 A wheel graph Wn is a join of K1 and Cn. Clearly Wn has n+1 vertices and 2n edges. A graph 

W4 is shown in figure 1. 

 
 

Figure 1. Wheel graph W4 
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In Wn , there are two types of status vertices as given in Table 2. 

   \ nu u V W   n 2n – 3 

Number of edges 1 n 

Table 2. Status vertex partition of Wn 
Theorem 7. The general vertex status index of a wheel graph Wn is  

    2 3 .
aa a

v nS W n n p          (5) 

Proof: Let Wn be a wheel graph with n+1 vertices and 2n edges. By definition and by using Table 2, 

we derive  
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We establish the following results by using Theorem 7. 
Corollary 7.1. Let Wn be a wheel graph with n+1 vertices and 2n edges. Then  

 (i)   3 24 11 9 .v nS W n n n     (ii)   22 2 .s nT W n n   
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  (vi)   4 3 28 35 54 27 .nFS W n n n n     

Proof: Put a = 2, 1, –2, –1, –½, 3 in equation (5), we obtain the desired results. 

 
Theorem 8. Let Wn be a wheel graph with n+1 vertices and 2n edges. Then  

(i)   2 3, .n n
s nT W x x nx    

(ii)  
 22 2 3, .n n

v nS W x x nx    

(iii)  
 33 2 3, .n n

nFS W x x nx    

Proof: By using equations and Table 2, we derive  
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(ii)  
 

 

 2 22 2 3, .

n

u n n
v n

u V W

S W x x x nx 



    

(iii)  
   3 33 2 3, .u n n
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VI. Results for Friendship Graphs 
 

 A friendship graph Fn is the graph obtained by taking n 2 copies of C3 with vertex in 
common. The graph of F4 is shown in Figure 2. 

 
Figure 2. Friendship graph F4 

 
 In Fn, there are two types of status vertices as follows:  
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 V1 = {u V(Fn) | (u) = 2n},  |V1| = 1. 

 V2 = {u V(Fn) | (u) = 4n – 2}, |V2| = 2n. 
 

Theorem 9. The general vertex status index of a friendship graph Fn is 

      2 2 2 2 .
a aa

v nS F n n n           (6) 

Proof: Let Fn be a friendship graph with 2n+1 vertices and 3n edges. Then  
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We obtain the following results by using theorem 9. 

Corollary 9.1. Let Fn be a friendship graph with 2n+1 vertices and 3n edges. Then 

(i)   3 232 28 8 .v nS F n n n     (ii)   28 2 .s nT F n n   

(iii)  
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  (vi)   4 3 2128 184 96 16 .nFS F n n n n     

Proof: Put a = 2, 1, –2, –1, –½, 3 in equation (6), we get the desired results. 

 

Theorem 10. Let Fn be a friendship graph with 2n+1 vertices and 3n edges. Then  

(i)   2 4 2, 2 .n n
s nT F x x nx    

(ii)  
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(iii)  
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Proof: By using equations, we deduce 
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(iii)  
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