Computation of Status Indices of Graphs

V.R.Kulli
Department of Mathematics. Gulbarga University, Gulbarga 585106, India

Abstract

In this paper, we introduce the vertex status index, total status index, modified vertex status index, status inverse degree, status zeroth order index, F-status index, general vertex status index of a graph. Also we propose the total status polynomial vertex status polynomial, F-status polynomial of a graph. We compute exact formulas for certain standard graphs and friendship graphs.

Keywords: vertex status index, F-status index, status polynomial, graph.
Mathematics Subject Classification: 05C05, 05C07, 05C12, 05C35.

I. Introduction

Let $G=\left(V(G), E(G)\right.$ be a simple, finite, connected graph. The degree $d_{G}(v)$ of vertex v is the number of vertices adjacent to v. The distance $d(u, v)$ between any two vertices u and v is the length of shortest path containing u and v The status $\sigma(u)$ of a vertex u in a graph G is the sum of distances of all other vertices from u in G. For undefined term and notation, we refer [1].

A graph index or topological index is a numerical parameter mathematically derived from graph structure. In Mathematical Chemistry, graph indices have found some applications in chemical documentation, isomer discrimination $Q S A R / Q S P R$ study [2, 3, 4]. Some different graph indices may be found in $[5,6,7,8,9,10,11,12,13,14,15,16,17]$.

In [18], Ramane et al. introduced the first and second status connectivity indices of a graph G defined as

$$
S_{1}(G)=\sum_{u v \in E(G)}[\sigma(u)+\sigma(v)], \quad S_{2}(G)=\sum_{u v \in E(G)} \sigma(u) \sigma(v) .
$$

We introduce the vertex status index of a graph G defined as

$$
S_{v}(G)=\sum_{u \in V(G)} \sigma(u)^{2}
$$

We now propose the following status indices:
The total status index of a graph G is defined as

$$
T_{s}(G)=\sum_{u \in V(G)} \sigma(u)
$$

The modified vertex status index of a graph G is defined as
${ }^{m} S_{v}(G)=\sum_{u \in V(G)} \frac{1}{\sigma(u)^{2}}$.
The status inverse degree of a graph G is defined as
$S I(G)=\sum_{u \in V(G)} \frac{1}{\sigma(u)}$.
The status zeroth order index of a graph G is defined as
$S Z(G)=\sum_{u \in V(G)} \frac{1}{\sqrt{\sigma(u)}}$.
The F-status index of a graph G is defined as
$F S(G)=\sum_{u \in V(G)} \sigma(u)^{3}$.
We continue this generalization and propose the general vertex status index of G, defined as $S_{v}^{a}(G)=\sum_{u \in V(G)} \sigma(u)^{a}$.
where a is a real number.
Recently, some variants of status indices were studied in [19,20,21,22,23].

We also introduce the total status polynomial, vertex status polynomial and F-status polynomial of a graph G, defined as

$$
\begin{aligned}
& T_{s}(G, x)=\sum_{u \in V(G)} x^{\sigma(u)} \\
& S_{v}(G, x)=\sum_{u \in V(G)} x^{\sigma(u)^{2}} \\
& F S(G, x)=\sum_{u \in V(G)} x^{\sigma(u)^{3}} .
\end{aligned}
$$

Recently, some different polynomials were studied in [24,25,26,27,28,29,30,31,32,33,34].
In this paper, the vertex status index, total status index, modified vertex status index, F-status index, the general vertex status index of some standard graphs, wheel graphs, friendship graphs are determined. Also the total status polynomial, vertex status polynomial, F-status polynomial of some standard graphs are obtained.

II. Results for complete Graphs

Let K_{n} be a complete graph with n vertices.
Theorem 1. The general vertex status index of a complete graph K_{n} is

$$
\begin{equation*}
S_{v}^{a}\left(K_{n}\right)=n(n-1)^{a} \tag{1}
\end{equation*}
$$

Proof: If K_{n} is a complete graph with n vertices, then $d_{K_{n}}(u)=n-1$ and $\sigma(u)=n-1$ for any vertex u in K_{n}. Thus

$$
S_{v}^{a}\left(K_{n}\right)=\sum_{u \in V\left(K_{n}\right)} \sigma(u)^{a}=n(n-1)^{a}
$$

We establish the following results by using Theorem 1.
Corollary 1.1. Let K_{n} be a complete graph with n vertices. Then
(i) $\quad S_{v}\left(K_{n}\right)=n(n-1)^{2}$.

$$
\begin{array}{ll}
\text { (ii) } & T_{s}\left(K_{n}\right)=n(n-1) \tag{ii}\\
\text { (iv) } & S I\left(K_{n}\right)=\frac{n}{n-1}
\end{array}
$$

(iii) ${ }^{m} S_{v}\left(K_{n}\right)=\frac{n}{(n-1)^{2}}$.
(v) $\quad S Z\left(K_{n}\right)=\frac{n}{\sqrt{n-1}}$.
(vi) $\quad F S\left(K_{n}\right)=n(n-1)^{3}$.

Proof: Put $a=2,1,-2,-1,-1 / 2,3$ in equation (1), we get the desired results.
Theorem 2. The total status polynomial, vertex status polynomial and F-status polynomial of a complete graph K_{n} are given by
(i) $\quad T_{s}\left(K_{n}, x\right)=n x^{n-1}$.
(ii) $\quad S_{v}\left(K_{n}, x\right)=n x^{(n-1)^{2}}$.
(iii) $\quad F S\left(K_{n}, x\right)=n x^{(n-1)^{3}}$.

Proof: Let K_{n} be a complete graph with n vertices. Then $\sigma(u)=n-1$ for any vertex u in K_{n}.
(i) $\quad T_{s}\left(K_{n}, x\right)=\sum_{u \in V\left(K_{n}\right)} x^{\sigma(u)}=n x^{n-1}$.
(ii) $\quad S_{v}\left(K_{n}, x\right)=\sum_{u \in V\left(K_{n}\right)} x^{\sigma(u)^{2}}=n x^{(n-1)^{2}}$.
(iii) $\quad F S\left(K_{n}, x\right)=\sum_{u \in V\left(K_{n}\right)} x^{\sigma(u)^{3}}=n x^{(n-1)^{3}}$.

III. Results for Cycles

Theorem 3. If C_{n} is a cycle with n vertices, then the general vertex status index of C_{n} is

$$
\begin{align*}
S_{v}^{a}\left(C_{n}\right) & =n\left(\frac{n^{2}}{4}\right)^{a}, \quad \text { if } n \text { is even } \tag{2}\\
& =n\left(\frac{n^{2}-1}{4}\right)^{a}, \quad \text { if } n \text { is odd. } \tag{3}
\end{align*}
$$

Proof: Case 1. Suppose n is even. If C_{n} is a cycle with n vertices then $\sigma(u)=\frac{n^{2}}{4}$ for every vertex u of C_{n}. Thus

$$
S_{v}^{a}\left(C_{n}\right)=\sum_{u \in V\left(C_{n}\right)} \sigma(u)^{a}=n\left(\frac{n^{2}}{4}\right)^{a}
$$

Case 2. Suppose n is odd. If C_{n} is a cycle with n vertices, then $\sigma(u)=\frac{n^{2}-1}{4}$ for every vertex u of C_{n}. Thus

$$
S_{v}^{a}\left(C_{n}\right)=\sum_{u \in V\left(C_{n}\right)} \sigma(u)^{a}=n\left(\frac{n^{2}-1}{4}\right)^{a}
$$

We obtain the following results by using Theorem 3.
Corollary 3.1. Let C_{n} be a cycle with n vertices. Then
(i) $\quad S_{v}\left(C_{n}\right)=\frac{n^{5}}{16}, \quad$ if n is even,

$$
=\frac{n\left(n^{2}-1\right)^{2}}{16}, \quad \text { if } n \text { is odd }
$$

(ii) $\quad T_{s}\left(C_{n}\right)=\frac{n^{3}}{4}, \quad$ if n is even,

$$
=\frac{n\left(n^{2}-1\right)}{4}, \quad \text { if } n \text { is odd }
$$

(iii) ${ }^{m} S_{v}\left(C_{n}\right)=\frac{16}{n^{3}}, \quad n$ is even,

$$
=\frac{16 n}{\left(n^{2}-1\right)^{2}}, \quad n \text { is odd }
$$

(iv) $\quad S I\left(C_{n}\right)=\frac{16}{n}, \quad n$ is even,
$=\frac{16 n}{n^{2}-1}, \quad n$ is odd.
(v) $\quad S Z\left(C_{n}\right)=2$
if n is even,
$=\frac{2 n}{\sqrt{n^{2}-1}}, \quad \quad$ if n is odd.
(vi) $\quad F S\left(C_{n}\right)=\frac{n^{7}}{64}, \quad$ if n is even,
$=\frac{n\left(n^{2}-1\right)^{2}}{16}, \quad$ if n is odd.
Proof: Put $a=2,1,-2,-1,-1 / 2,3$ in equations (2), (3), we get the desired results.

Theorem 4. The total status polynomial, vertex status polynomial and F-status polynomial of a cycle C_{n} are given by
(i) $\quad T_{s}\left(C_{n}, x\right)=n x^{\frac{n^{2}}{4}}, \quad$ if n is even,

$$
=n x^{\frac{n^{2}-1}{4}}, \quad \text { if } n \text { is odd }
$$

(ii) $\quad S_{v}\left(C_{n}, x\right)=n x^{\frac{n^{4}}{16}}, \quad$ if n is even,

$$
=n x^{\frac{\left(n^{2}-1\right)^{2}}{16}}, \quad \text { if } n \text { is odd }
$$

(iii) $\quad F S\left(C_{n}, x\right)=n x^{\frac{n^{6}}{64}}, \quad$ if n is even

$$
=n x^{\frac{\left(n^{2}-1\right)^{3}}{64}},
$$

if n is odd.
Proof: Let C_{n} be a cycle with n vertices.
Case 1. Suppose n is even. Then $\sigma(u)=\frac{n^{2}}{4}$ for every vertex u in C_{n}. Thus
(i) $\quad T_{s}\left(C_{n}, x\right)=\sum_{u \in V\left(C_{n}\right)} x^{\sigma(u)}=n x^{\frac{n^{2}}{4}}$.
(ii) $\quad S_{v}\left(C_{n}, x\right)=\sum_{u \in V\left(C_{n}\right)} x^{\sigma(u)^{2}}=n x^{\frac{n^{4}}{16}}$.
(iii) $\quad F S\left(C_{n}, x\right)=\sum_{u \in V\left(C_{n}\right)} x^{\sigma(u)^{3}}=n x^{\frac{n^{6}}{64}}$.

Case 2. Suppose n is odd. Then $\sigma(u)=\frac{n^{2}-1}{4}$ for every vertex u in C_{n}. Thus
(i) $\quad T_{s}\left(C_{n}, x\right)=\sum_{u \in V\left(C_{n}\right)} x^{\sigma(u)}=n x^{\frac{n^{2}-1}{4}} . \quad$ (ii) $\quad S_{v}\left(C_{n}, x\right)=\sum_{u \in V\left(C_{n}\right)} x^{\sigma(u)^{2}}=n x^{\frac{\left(n^{2}-1\right)^{2}}{16}}$.
(iii) $\quad F S\left(C_{n}, x\right)=\sum_{u \in V\left(C_{n}\right)} x^{\sigma(u)^{3}}=n x^{\frac{\left(n^{2}-1\right)^{3}}{64}}$.

IV. Results for Complete Bipartite Graphs

Let $K_{p, q}$ be a complete bipartite graph with $p+q$ vertices and $p q$ edges. In $K_{p, q}$, there are two types of status vertices as given in Table 1.

$$
\sigma(u) \backslash u \in V\left(K_{p, q}\right)
$$

$$
p+2(q-1)
$$

$$
q+2(p-1)
$$

Number of vertices q
p
Table 1. Status vertex of $K_{p, q}$
Theorem 5. The general vertex status index of $K_{p, q}$ is

$$
\begin{equation*}
S_{v}^{a}\left(K_{p, q}\right)=q[p+2(q-1)]^{a}+p[q+2(p-1)]^{a} \tag{4}
\end{equation*}
$$

Proof: Let $K_{p, q}$ be a complete bipartite graph. By definition, we have

$$
S_{v}^{a}\left(K_{p, q}\right)=\sum_{u \in V\left(K_{p, q}\right)} \sigma(u)^{a}
$$

By using Table 1, we deduce

$$
S_{v}^{a}\left(K_{p, q}\right)=q[p+2(q-1)]^{a}+p[q+2(p-1)]^{a}
$$

We obtain the following results by using Theorem 5.
Corollary 5.1. If $K_{p, q}$ is a complete bipartite graph, then
(i)

$$
S_{v}\left(K_{p, q}\right)=q[p+2(q-1)]^{2}+p[q+2(p-1)]^{2}
$$

(ii) $\quad T_{s}\left(K_{p, q}\right)=2 p q+2\left(p^{2}+q^{2}\right)-2(p+q)$.
(iii) ${ }^{m} S_{v}\left(K_{p, q}\right)=\frac{q}{(p+2 q-2)^{2}}+\frac{p}{(q+2 p-2)^{2}}$.
(iv) $\quad S I\left(K_{p, q}\right)=\frac{q}{p+2 q-2}+\frac{p}{q+2 p-2}$.
(v) $\quad S Z\left(K_{p, q}\right)=\frac{q}{\sqrt{p+2 q-2}}+\frac{p}{\sqrt{q+2 p-2}}$.
(vi) $\quad \operatorname{SI}\left(K_{p, q}\right)=q(p+2 q-2)^{3}+p(q+2 p-2)^{3}$.

Proof: Put $a=2,1,-2,-1,-1 / 2,3$ in equation (4), we get the desired results.
Theorem 6. The total status polynomial, vertex status polynomial and F-status polynomial of $K_{p, q}$ are given by

$$
\begin{aligned}
& T_{s}\left(K_{p, q}, x\right)=q x^{p+2 q-2}+p x^{q+2 p-2} \\
& S_{v}\left(K_{p, q}, x\right)=q x^{(p+2 q-2)^{2}}+p x^{(q+2 p-2)^{2}} \\
& F S\left(K_{p, q}, x\right)=q x^{(p+2 q-2)^{3}}+p x^{(q+2 p-2)^{3}}
\end{aligned}
$$

Proof: Let $K_{p, q}$ be a complete bipartite graph with $p+q$ vertices. Then by using Table 1 , we deduce

$$
\begin{equation*}
T_{s}\left(K_{p, q}, x\right)=\sum_{u \in V\left(K_{p, q}\right)} x^{\sigma(x)}=q x^{p+2 q-2}+p x^{q+2 p-2} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
S_{v}\left(K_{p, q}, x\right)=\sum_{u \in V\left(K_{p, q}\right)} x^{\sigma(u)^{2}}=q x^{(p+2 q-2)^{2}}+p x^{(q+2 p-2)^{2}} \tag{ii}
\end{equation*}
$$

(iii) $\quad F S\left(K_{p, q}, x\right)=\sum_{u \in V\left(K_{p, q}\right)} x^{\sigma(u)^{3}}=q x^{(p+2 q-2)^{3}}+p x^{(q+2 p-2)^{3}}$.

V. Results for Wheel Graphs

A wheel graph W_{n} is a join of K_{1} and C_{n}. Clearly W_{n} has $n+1$ vertices and $2 n$ edges. A graph W_{4} is shown in figure 1 .

Figure 1. Wheel graph W_{4}

In W_{n}, there are two types of status vertices as given in Table 2.

$\sigma(u) \backslash u \in V\left(W_{n}\right)$	n	$2 n-3$
Number of edges	1	n

Table 2. Status vertex partition of W_{n}
Theorem 7. The general vertex status index of a wheel graph W_{n} is

$$
\begin{equation*}
S_{v}^{a}\left(W_{n}\right)=n^{a}+n(2 p-3)^{a} . \tag{5}
\end{equation*}
$$

Proof: Let W_{n} be a wheel graph with $n+1$ vertices and $2 n$ edges. By definition and by using Table 2 , we derive

$$
S_{v}^{a}\left(W_{n}\right)=\sum_{u \in V\left(W_{n}\right)} \sigma(u)^{a}=n^{a}+n(2 p-3)^{a} .
$$

We establish the following results by using Theorem 7.
Corollary 7.1. Let W_{n} be a wheel graph with $n+1$ vertices and $2 n$ edges. Then
(i) $\quad S_{v}\left(W_{n}\right)=4 n^{3}+11 n^{2}+9 n$.
(ii) $T_{s}\left(W_{n}\right)=2 n^{2}-2 n$.
(iii) ${ }^{m} S_{v}\left(W_{n}\right)=\frac{1}{n^{2}}+\frac{n}{(2 n-3)^{2}}$.
(iv) $\quad S I\left(W_{n}\right)=\frac{1}{n}+\frac{n}{2 n-3}$.
(v) $\quad S Z\left(W_{n}\right)=\frac{1}{\sqrt{n}}+\frac{n}{\sqrt{2 n-3}}$.
(vi) $\quad F S\left(W_{n}\right)=8 n^{4}-35 n^{3}+54 n^{2}-27 n$.

Proof: Put $a=2,1,-2,-1,-1 / 2,3$ in equation (5), we obtain the desired results.
Theorem 8. Let W_{n} be a wheel graph with $n+1$ vertices and $2 n$ edges. Then
(i) $\quad T_{s}\left(W_{n}, x\right)=x^{n}+n x^{2 n-3}$.
(ii) $\quad S_{v}\left(W_{n}, x\right)=x^{n^{2}}+n x^{(2 n-3)^{2}}$.
(iii) $\quad F S\left(W_{n}, x\right)=x^{n^{3}}+n x^{(2 n-3)^{3}}$.

Proof: By using equations and Table 2, we derive
(i) $\quad T_{s}\left(W_{n}, x\right)=\sum_{u \in V\left(W_{n}\right)} x^{\sigma(u)}=x^{n}+n x^{2 n-3}$.
(ii) $\quad S_{v}\left(W_{n}, x\right)=\sum_{u \in V\left(W_{n}\right)} x^{\sigma(u)^{2}}=x^{n^{2}}+n x^{(2 n-3)^{2}}$.
(iii) $\quad F S\left(W_{n}, x\right)=\sum x^{\sigma(u)^{3}}=x^{n^{3}}+n x^{(2 n-3)^{3}}$.

VI. Results for Friendship Graphs

A friendship graph F_{n} is the graph obtained by taking $n \geq 2$ copies of C_{3} with vertex in common. The graph of F_{4} is shown in Figure 2.

Figure 2. Friendship graph F_{4}
In F_{n}, there are two types of status vertices as follows:

$$
\begin{array}{ll}
V_{1}=\left\{u \in V\left(F_{n}\right) \mid \sigma(u)=2 n\right\}, & \left|V_{1}\right|=1 . \\
V_{2}=\left\{u \in V\left(F_{n}\right) \mid \sigma(u)=4 n-2\right\}, & \left|V_{2}\right|=2 n .
\end{array}
$$

Theorem 9. The general vertex status index of a friendship graph F_{n} is

$$
\begin{equation*}
S_{v}^{a}\left(F_{n}\right)=(2 n)^{a}+2 n(2 n-2)^{a} \tag{6}
\end{equation*}
$$

Proof: Let F_{n} be a friendship graph with $2 n+1$ vertices and $3 n$ edges. Then

$$
\begin{aligned}
S_{v}^{a}\left(F_{n}\right) & =\sum_{u \in V\left(F_{n}\right)} \sigma(u)^{a}=\left|V_{1}\right|(2 n)^{a}+\left|V_{2}\right|(4 n-2)^{a} \\
& =(2 n)^{a}+2 n(2 n-2)^{a} .
\end{aligned}
$$

We obtain the following results by using theorem 9 .
Corollary 9.1. Let F_{n} be a friendship graph with $2 n+1$ vertices and $3 n$ edges. Then
(i) $\quad S_{v}\left(F_{n}\right)=32 n^{3}-28 n^{2}+8 n$.
(ii) $\quad T_{s}\left(F_{n}\right)=8 n^{2}-2 n$.
(iii)

$$
\begin{equation*}
{ }^{m} S_{v}\left(F_{n}\right)=\frac{1}{4 n^{2}}+\frac{2 n}{(4 n-2)^{2}} \tag{iv}
\end{equation*}
$$

$$
\begin{equation*}
S Z\left(F_{n}\right)=\frac{1}{\sqrt{2 n}}+\frac{2 n}{\sqrt{4 n-2}} \tag{vi}
\end{equation*}
$$

$$
\begin{aligned}
& S I\left(F_{n}\right)=\frac{1}{2 n}+\frac{2 n}{4 n-2} \\
& F S\left(F_{n}\right)=128 n^{4}-184 n^{3}+96 n^{2}-16 n
\end{aligned}
$$

Proof: Put $a=2,1,-2,-1,-1 / 2,3$ in equation (6), we get the desired results.

Theorem 10. Let F_{n} be a friendship graph with $2 n+1$ vertices and $3 n$ edges. Then
(i) $\quad T_{s}\left(F_{n}, x\right)=x^{2 n}+2 n x^{4 n-2}$.
(ii) $\quad S_{v}\left(F_{n}, x\right)=x^{4 n^{2}}+2 n x^{(2 n-2)^{2}}$.
(iii)

$$
F S\left(F_{n}, x\right)=x^{8 n^{3}}+2 n x^{(4 n-3)^{3}}
$$

Proof: By using equations, we deduce

$$
\begin{align*}
T_{s}\left(F_{n}, x\right) & =\sum_{u \in V\left(F_{n}\right)} x^{\sigma(u)}=\left|V_{1}\right| x^{2 n}+\left|V_{2}\right| x^{4 n-2} . \tag{i}\\
& =x^{2 n}+2 n x^{4 n-2}
\end{align*}
$$

$$
\begin{equation*}
S_{v}\left(F_{n}, x\right)=\sum_{u \in V\left(F_{n}\right)} x^{\sigma(u)^{2}}=\left|V_{1}\right| x^{(2 n)^{2}}+\left|V_{2}\right| x^{(4 n-2)^{2}} \tag{ii}
\end{equation*}
$$

$$
=x^{4 n^{2}}+2 n x^{(2 n-2)^{2}} .
$$

(iii)

$$
\begin{aligned}
F S\left(F_{n}, x\right) & =\sum_{u \in V\left(F_{n}\right)} x^{\sigma(u)^{3}}=\left|V_{1}\right| x^{(2 n)^{3}}+\left|V_{2}\right| x^{(4 n-2)^{3}} \\
& =x^{8 n^{3}}+2 n x^{(4 n-3)^{3}}
\end{aligned}
$$

References

1] V.R.Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India (2012).
[2] I. Gutman and O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin (1986).
[3] V.R.Kulli, Multiplicative Connectivity Indices of Nanostructures, LAP LEMBERT Academic Publishing (2018).
[4] R. Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim, (2009)
[5] B. Basavanagoud and P. Jakkannavar, Kulli-Basava indices of graphs, Inter. J. Appl. Eng. Research, 14(1) (2018) 325-342.
[6] S. Ediz, Maximal graphs of the first reverse Zagreb beta index, TWMS J. Appl. Eng. Math. 8(2018) 306-310.
[7] V.R.Kulli, The Gourava indices and coindices of graphs, Annals of Pure and Applied Mathematics, 14(1) (2017) 33-38.
[8] V.R.Kulli, On KV indices and their polynomials of two families of dendrimers, Interational Journal of Current Research in Life Sciences,7(9) (2018) 2739-2744.
[9] V.R.Kulli, Dakshayani indices, Annals of Pure and Applied Mathematics, 18(2) (2018) 139-146.
[10] V.R.Kulli, Neighborhood Dakshayani indices, International Journal of Mathematical Archive, 10(7) (2019) 23-31.
[11] V.R.Kulli, Leap Gourava indices of certain windmill graphs, International Journal of Mathematical Archive, 19(11) (2019) 7-14.
[12] V.R.Kulli, Computation of some temperature indices of HC5C7[p,q] nanotubes, Annals of Pure and Applied Mathematics, 20(2) (2019) 69-74.
[13] V.R.Kulli, The (a,b)-KA indices of polycyclic aromatic hydrocarbons and benzenoid systems, International Journal of Mathematics Trends and Technology, 65(11) (2019) 115-120.
[14] V.R.Kulli, Some new topological indices of graphs, International Journal of Mathematical Archive, 10(5) (2019) 62-70.
[15] V.R.Kulli, Some KV indices of certain dendrimers, Earthline Journal of Mathematical Sciences, 2(1) (2019) 69-86.
[16] V.R.Kulli, New connectivity topological indices, Annals of Pure and Applied Mathematics,20(1) (2019) 1-8.
[17] I. Gutman, V.R. Kulli, B. Chaluvaraju and H. S. Boregowda, On Banhatti and Zagreb indices, Journal of the International Mathematical Virtual Institute, 7 (2017) 53-67.
[18] H.S. Ramane and A.S. Yalnaik, Status connectivity indices graphs and its applications to the boiling point of benzenoid hydrocarbons, Journal of Applied Mathematics and Computing, 55 (2017) 607-627.
[19] H.S. Ramane, B. Basavanagoud and A.S. Yalnaik, Harmonic status index of graphs, Bulletin of Mathematical Sciences and Applications, 17(2016) 24-32.
[20] H.S.Ramane, A.S. Yalnaik and R. Sharafdini, Status connectivity indices and coindices of graphs and its computation to some distance balance graphs, AKCE International Journal of Graphs and Combinatorics, (2018) https://doi.org/10.101bj.akeej.2018.09.002.
[21] V.R.Kulli, Some new status indices of graphs, International Journal of Mathematics Trends and Technology, 10(10) (2019) 70-76.
[22] V.R.Kulli, Some new multiplicative status indices of graphs, International Journal of Recent Scientific Research, 10(10) (2019) 35568-35573.
[23] V.R.Kulli, Multiplicative status indices of graphs, submitted.
[24] V.R.Kulli, On augmented Revan index and its polynomial of certain families of benzenoid systems, International Journal of Mathematics and its Applications, 6(4) (2018) 43-50.
[25] V.R.Kulli, Reduced second hyper-Zagreb index and its polynomial of certain silicate networks, Journal of Mathematics and Informatics, 14 (2018) 11-16.
[26] V.R.Kulli, Leap hyper-Zagreb indices and their polynomials of certain graphs, International Journal of Current Research in Life Sciences, 7(10) (2018) 2783-2791.
[27] V.R.Kulli, Square reverse index and its polynomial of certain networks, International Journal of Mathematical Archive, 9(10) (2018) 27-33.
[28] V.R.Kulli, F-Revan index and F-Revan polynomial of some families of benzenoid systems, Journal of Global Research in mathematical Archives, 5(11) (2018) 1-6.
[29] V.R.Kulli, Minus leap and square leap indices and their polynomials of some special graphs, International Research Journal of Pure Algebra, 8(10) (2018) 54-60.
[30] V.R.Kulli, On F-leap indices and F-leap polynomials of some graphs, International Journal of Mathematical Archive, 9(12) (2018) 41-49.
[31] V.R.Kulli, Computing square Revan index and its polynomial of certain benzenoid systems, International Journal of Mathematics and its Applications, 6(4) (2018) 213-219.
[32] V.R.Kulli, On hyper KV and square KV indices and their polynomials of certain families of dendrimers. Journal of Computer and Mathematical Sciences, 10(2) (2019) 279-286.
[33] V.R.Kulli, Minus F and square F-indices and their polynomials of certain dendrimers, Earthline Journal of Mathematical Sciences, 1(2) (2019) 171-185.
[34] V.R.Kulli, On augmented leap index and its polynomial of some wheel type graphs, International Research Journal of Pure Algebra, 9(4) (2019) 1-7.

