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Abstract – In this paper a Newton-type algorithm is used to generate non-singular symmetric matrices of rank
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I. INTRODUCTION

Inverse eigenvalue problems are usually concerned with the reconstruction of a physical system from prescribed
spectral data. The main objective of an inverse eigenvalue problem thus reduces to the construction of a
physical system that maintains a certain specific structure as well as that of the given spectral property. Inverse
eigenvalue problems arise in a remarkable variety of applications in both engineering and science [1]. Several
authors [2]–[5] have used different methods including analytic, algebraic and numerical ones to solve inverse
eigenvalue problems, particularly of various types of non-singular symmetric matrices. In [6] the construction
of a 2× 2 non-singular symmetric matrix was considered.

The following notations will be employed in the research: the set of real invertible n× n matrices forms a
group under multiplication, denoted by GL(n,R). The subset of GL(n,R) consisting of those matrices having
determinant +1 is a subgroup of GL(n,R), denoted by SL(n,R). The set of real n× n orthogonal matrices
form a group under multiplication, denoted by O(n). The subset of O(n) consisting of those matrices having
determinant +1 is a subgroup of O(n) denoted by SO(n).

Definition 1.1: The group GL(n,R) is called the general linear group, and its subgroup SL(n,R) is called
the special linear group. The group O(n) of orthogonal matrices is called the orthogonal group, and its subgroup
SO(n) is called the special orthogonal group(or group of rotations). The vector space of real n × n matrices
with null trace is denoted by sl(n,R), and the vector space of real n× n skew symmetric matrices is defined
by so(n) [7].

The focus of this paper is to construct certain non-singular symmetric matrices of order three and four using
an arbitrary set of eigenvalues. The iteration will be based on newton type numerical technique, initialized by
a singular symmetric matrix for solving the inverse eigenvalue problem on a fibre bundle with structure group
SO(n).

II. PRELIMINARIES

In order to present the main results of this research in a concise way, it is useful to give some preliminary
results by [6] which play a fundamental role throughout the rest of the research.

Early work on inverse eigenvalue problem using the idea close to the notation of tangent bundles have tended
to be somehow theoretical in nature. In particular, the initial matrix for the iteration is not given and therefore
the special orthogonal matrix Q could not be directly determined and consequently the skew-symmetric matrix
K. The algorithm described here is more practical in that respect and uses information for an initial singular
symmetric matrix to generate a non-singular symmetric matrices.
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Given an initial singular symmetric matrix, we obtain the matrices Q and K, which are used as initial guessed
values for the iteration process. Following from these process, the singular symmetric matrix converges to a
non-singular symmetric matrix of the same dimension. The chosen fibre bundle is an affine space consisting
of a base manifold comprising the set of n × n symmetric matrices with each fibre called isospectral surface
[4]. This is made up of a class of symmetric matrices with the same eigenvalues. The fibre is acted on by
the structural group SO(n,R). The family of normal subgroups being dealt with are SO(3) and SO(4) with
corresponding Lie algebras as so(3) and so(4) respectively. These algebras are n×n skew-symmetric matrices
with null trace and act on the fibres of the associated tangent bundle. We denote the isospectral surface by
M(Λ). A tangent vector to a point in the fibre X ∈M(Λ) is of the form T (X) = XK −KX . This is the Lie
bracket of the Lie algebra so(n) [4]. We let M(Λ) = {QΛQt|Q ∈ SO(n)}, where Λ contains the set of distinct
eigenvalues. The equation to be solved is given by X = QΛQt and the tangent vector arising is XK −KX .
A Newton-type method employed is as follows. At the isospectral surface, M(Λ), we have

Q(Ai)ΛQ
t(Ai) = Xi+1, i = 1, 2, ..

Where Ai is a singular symmetric matrix, Q with columns which are the normalized eigenvectors of the matrix
Ai and Λ a diagonal matrix which is similar to the matrix Xi+1 and therefore have the same eigenvalues.
Linearising iteratively at the tangent space of the Lie group which is the Lie algebra, we obtain the following
equation,

Xi+1 +Xi+1K −KXi+1 = Ai+1, i = 1, 2, ..

where K is a skew symmetric matrix which is given by

K =
1

2
(Q−Qt)

Theorem 2.1: The exponential map
exp : so(n)→ SO(n)

is well-defined.

Proof
First we need to prove that if A is skew symmetric matrix, then eA is a rotation matrix. For this, first check
that

(eA)T = eA
T

.

Then, since AT = −A, we get
(eA)T = eA

T

= e−A,

and so

(eA)T eA = e−AeA = e−A+A = e0n = In,

and similarly,

eA(eA)T = In,

showing that eA is orthogonal. Also,

det(eA) = etr(A),

and since A is real skew symmetric, tr(A) = 0, and so det(eA) = +1 [7].

Lemma 2.2: The exponential map
exp : so(3)→ SO(3)

is given by

eA = cos θI3 +
sin θ

θ
A+

(1− cos θ)

θ2
B,

or equivalently, by

eA = I3 +
sin θ

θ
A+

(1− cos θ)

θ2
A2

if θ 6= 0, with eθ3 = I3.
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Proof
First, prove that

A2 = −θ2 +B,

AB = BA = 0.

From the above, it can be deduced that
A3 = −θ2A,

and for any k ≥ 0, we obtain the following recurrence relation

A4k+1 = θ4kA,

A4k+2 = θ4kA2,

A4k+3 = −θ4k+2A,

A4k+4 = −θ4k+2A2.

Finally, we prove the desired result by writing the powers for eA and regrouping terms so that the power series
for cosine and sine show up.

We state the next lemma without proof. The lemma makes a single proposition that every symmetric matrix
A is of the form eB [7].

Lemma 2.3: For every symmetric matrix B, the matrix eB is symmetric positive definite. For every symmetric
positive definite matrix A, there is a unique symmetric matrix B such that A = eB .

Lemma 2.4: A non-singular symmetric matrix can be generated using a singular symmetric matrix as initial
matrix in the following algorithm [4]:

Xi = Qi(Ai)ΛQ
t
i(Ai) i = 1, 2, · · ·

and
Ai = Xi +XiKi −KiXi

The authors in [6] started with an initial 2 × 2 singular symmetric matrix of the form: A =

1 2

2 4


with the eigenvalues as λ1 = 5, λ2 = 0. The normalized eigenvectors are the column vectors of the matrix

Q1 =

0.4472 −0.8944

0.8944 0.4472

. Let Λ =

3 0

0 −1

.

Step 1: The iterate X1 is obtained as:

X1 = Q1ΛQt1 =

−0.200 1.5999

1.5999 2.1999


Step 2: The skew-symmetric matrix K = 1

2 (Q1 −Qt1) =

 0 −0.8944

0.8944 0


This implies that

A1 = X1 +X1K −KX1 =

2.6619 3.7463

3.7463 −0.6620



The normalized eigenvectors of the matrix A1 are the column space vectors of

Q2 =

0.8383 −0.5452

0.5452 0.8383


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This is used for the next iteration X2.

Step 3: Now X2 =

1.8110 1.8282

1.8282 0.1890

 with eigenvalues 3 and -1.

The authors in [6] concluded that the non-singular symmetric matrix X2 has the same eigenvalues as the
diagonal matrix Λ.

Here, we extend the dimension of this non-singular matrix to 3 ≤ n ≤ 4, n ∈ I . We show that, any
singular symmetric matrix has a corresponding non-singular symmetric matrix having the same eigenvalues as
an assumed diagonal matrix of the same dimension.

III. MAIN RESULT

In this section we construct 3×3 and 4×4 non-singular symmetric matrices using an initial singular symmetric
matrices of the same dimension by direct iterative approach.

A. 3× 3 matrices illustration

We begin with an initial 3 × 3 singular symmetric matrix of the form A =


1 −1 −2

−1 1 2

−2 2 4

 whose

eigenvalues are λ1 = 6, λ2 = 0, λ3 = 0. The normalized eigenvectors of A are the column vectors of the matrix

Q1 =


−0.5774 0.7071 −0.4082

0.5774 0.7071 0.4082

−0.5774 0 0.8165



Illustration 1 :

Let Λ1 =


4 0 0

0 −1 0

0 0 1

 be a matrix whose diagonal entries are in the neighbourhood of the eigenvalues of

matrix A.

The matrix X1 is obtained as follows

X1 = Q1Λ1Q
t
1 =


1 −2 1

−2 1 −1

1 −1 2



with eigenvalues -1, 1, and 4. For the skew-symmetric matrix we have

K1 =
1

2
(Q1 −Qt1) =


0 0.0649 0.0846

−0.0649 0 0.2041

−0.0846 −0.2041 0



Now the iteration A1 is obtained as follows
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A1 = X1 +X1K1 −K1X1 =


1.0904 −2.1196 0.5721

−2.1196 1.1487 −1.3083

0.5721 −1.3083 1.7609



The normalized eigenvectors of the matrix A1 are the column vectors of

Q2 =


0.6519 −0.5064 0.5645

0.7306 0.2198 −0.6465

0.2033 0.338 0.5132



This is used for the next iteration. Thus, we solve for X2 as:

X2 = Q2Λ1Q
t
2 =


1.7620 1.6514 1.2420

1.6514 2.5045 0.0790

1.2420 0.0790 −0.2666



with eigenvalues -1, 1, and 4.

As final step we obtain

K2 =
1

2
(Q2 −Qt2) =


0 −0.0185 0.1806

0.6185 0 −0.7402

−0.1805 0.7402 0



A2 = X2 +X2K2 −K2X2 =


3.3560 0.30156 0.4349

3.0156 0.5788 −2.4420

0.4349 −2.4420 0.0652


Therefore

Q3 =


0.3721 −0.7870 0.4921

−0.7076 −0.5836 −0.3984

−0.6007 0.1999 0.7740

 and X3 = Q3Λ1Q
t
3 =


0.1766 −1.7085 −0.3559

−1.7085 1.8207 1.5086

−0.3559 1.5086 2.0027


with eigenvalues -1, 1, and 4.
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Illustration 2:

Let Λ2 =


5 0 0

0 1 0

0 0 1

 be a matrix whose diagonal entries are in the neighbourhood of the eigenvalues of

matrix A. Then the matrix X1 is obtained as follows

X1 = Q1Λ2Q
t
1 =


2.3336 −1.3336 1.3337

−1.3336 2.3336 −1.3337

1.3337 −1.3337 2.3336


with eigenvalues 0.9999, 1.0000, 5.0009.
The skew-symmetric matrix K1 is computed as

K1 =
1

2
(Q1 −Qt1) =


0 0.0648 0.0846

−0.0648 0 0.2041

−0.0846 −0.2041 0



Now the iteration A1 is obtained as follows

A1 = X1 +X1K1 −K1X1 =


2.2809 −1.4930 1.1480

−1.4930 2.7050 −1.3600

1.1480 −1.3600 2.0149



The normalized eigenvectors of the matrix A1 are the column vectors of

Q2 =


−0.1664 −0.8096 0.5630

−0.6897 −0.3125 −0.6532

−0.7047 0.4970 0.5063



This is used for the next iteration. Here, we solve for X2 as: X2 = Q2Λ2Q
t
2 =


1.1108 0.4591 0.4691

0.4591 2.9026 1.9442

0.4691 1.9442 2.9867


with eigenvalues 5, 1, and 1.

As a final step we have

K2 =
1

2
(Q2 −Qt2) =


0 −0.0599 0.6338

0.0599 0 −0.5751

−0.6338 0.5751 0


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A2 = X2 +X2K2 −K2X2 =


0.5711 −0.3960 −0.8674

−0.3960 5.0837 2.2554

−0.8674 2.2554 1.3452


Therefore

Q3 =


−0.1287 0.7530 0.6454

0.8917 0.3726 −0.2569

0.4339 −0.5424 0.7194

 and X3 = Q3Λ2Q
t
3 =


1.0663 −0.4591 −0.2234

−0.4591 4.1808 1.5476

−0.2234 1.5476 1.7529



with eigenvalues 1, 5, and 1.

It is observed that the iterates X1, X2, X3 in all the cases are non-singular symmetric matrices whose
eigenvalues are respectively the same as their assumed diagonal matrices Λ1 andΛ2.

B. 4× 4 matrices illustration

Finally we construct a 4 × 4 non-singular symmetric matrix with an initial singular symmetric matrix and
with a different diagonal matrices which are in the neighbourhood of the eigenvalues of the A below

A =



1 2 −1 −2

2 4 −2 −4

−1 −2 1 2

−2 −4 2 4


whose eigenvalues are λ1 = 10, λ2 = 0, λ3 = 0, λ4 = 0.

The normalized eigenvectors of A forms the column vectors of the matrix

Q1 =



0.1108 0.8944 −0.2962 −0.3162

0.2217 −0.4472 −0.5923 −0.6325

0.9485 0 0.0173 0.3162

−0.1972 0 −0.7491 0.6325



Illustration 3:

Assume the diagonal matrix Λ1 =



8 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


The first iteration X1 is obtained as follows
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X1 = Q1Λ1Q
t
1 =



0.8860 −0.2280 0.9359 0.2470

−0.2280 0.5439 1.8717 0.4940

0.9359 1.8717 7.0979 −1.7093

0.2470 0.4940 −1.7093 0.4722



with eigenvalues -1, 1, 1, and 8.

The skew-symmetric matrix K is

K1 =
1

2
(Q1 −Qt1) =



0 0.3364 −0.6223 −0.0595

−0.3364 0 −0.2962 −0.3162

0.6223 0.2962 0 0.5327

0.0595 0.3162 −0.5327 0


The matrix A1 is obtained below

A1 = X1 +X1K1 −K1X1 =



2.2337 1.4366 4.0065 −0.4370

1.4366 1.8117 3.4659 1.0588

4.0065 3.4659 6.6452 0.8723

−0.4370 1.0588 0.8723 −1.6906


Whose normalized eigenvectors forms the column vector of the matrix

Q2 =



0.4443 0.6582 −0.5396 0.2797

0.3948 −0.6570 −0.5979 −0.2344

0.8007 −0.0069 0.5856 −0.1257

0.0747 −0.3675 0.0915 −0.9225


Which is used for the next step iteration

We obtain X2 below

X2 = Q2Λ1Q
t
2 =



2.2250 1.3589 2.5605 −0.2838

1.3589 1.9811 2.1540 0.6389

2.5605 2.1540 5.4567 0.6505

−0.2838 0.6389 0.6505 −0.6629


with eigenvalues -1, 1, 1, and 8.
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Finally

K2 =
1

2
(Q2 −Qt2) =



0 0.1317 −0.6702 0.1025

−0.1317 0 −0.2955 0.0665

0.6702 0.2955 0 −0.1086

−0.1025 −0.0665 0.1086 0



A2 = X2 +X2K2 −K2X2 =



5.3573 3.5446 3.9436 0.1765

3.5446 3.5269 2.6335 0.8752

3.9436 2.6335 0.8931 0.3933

0.1765 0.8752 0.3933 −0.7774


Therefore

Q3 =



−0.7133 −0.5489 0.4353 0.0184

−0.5385 0.7725 0.1051 −0.3197

−0.4432 −0.1019 −0.8639 0.2164

−0.6684 0.3027 0.2304 0.9223


;X3 = Q3Λ1Q

t
3 =



4.5613 2.7009 2.2052 0.3076

2.7009 2.8257 1.8092 0.8476

2.2052 1.8092 2.2815 −0.1869

0.3076 0.8476 −0.1869 −0.6685


with eigenvalues -1, 1, 1, and 8.

Illustration 4:

Assume the diagonal matrix Λ2 =



7 0 0 0

0 1.5 0 0

0 0 0.5 0

0 0 0 −1.3


The first iteration X1 is obtained as follows

X1 = Q1Λ2Q
t
1 =



1.1998 −0.6003 0.8633 0.2179

−0.6003 0.2994 1.7266 0.4359

0.8633 1.7266 6.1681 −1.5758

0.2179 0.4359 −1.5758 0.0327



with eigenvalues -1.3, 0.5, 1.5, and 7

The skew-symmetric matrix K1 is
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K1 =
1

2
(Q1 −Qt1) =



0 0.3364 −0.6223 −0.0595

−0.3364 0 −0.2962 −0.3162

0.6223 0.2962 0 0.5327

0.0595 0.3162 −0.5327 0


The matrix A1 is obtained below

A1 = X1 +X1K1 −K1X1 =



2.7042 1.1277 3.3424 −0.3291

1.1277 1.1939 3.3983 0.9136

3.3424 3.3983 5.7494 0.8301

−0.3291 0.9136 0.8301 −1.9475


Whose normalized eigenvectors forms the column vector of the matrix

Q2 =



0.4555 0.8194 −0.3092 0.1598

0.3971 −0.4596 −0.7571 −0.2405

0.7931 −0.2148 0.5665 −0.0634

0.0764 −0.2670 −0.1013 0.9553


Which is used for the next step iteration

We obtain X2 = Q2Λ2Q
t
2 =



2.4743 0.8684 2.1906 −0.2672

0.8684 1.6319 2.1182 0.7336

2.1906 2.1182 4.6272 0.5604

−0.2672 0.7336 0.5604 −1.0334


with eigenvalues -1.3, 0.5, 1.5,

and 7

A skew-symmetric matrix is obtained as follows

K2 =
1

2
(Q2 −Qt2) =



0 0.2111 −0.5511 0.0417

−0.2111 0 −0.2712 0.0132

0.5511 0.2712 0 0.0190

−0.0417 −0.0132 −0.0190 0



A2 = X2 +X2K2 −K2X2 =



4.5444 2.7806 2.6760 0.0860

2.7806 3.1280 2.8930 0.9408

2.6760 2.8930 1.0426 0.7354

0.0860 0.9408 0.7354 −1.0150


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Therefore

Q3 =



0.6693 0.7109 −0.2025 −0.0756

0.5784 −0.6066 −0.0144 −0.5452

0.4565 −0.2141 0.4925 0.7094

0.0957 −0.2843 −0.8463 0.4402



X3 = Q3Λ2Q
t
3 =



3.9066 2.0106 1.9305 0.2740

2.0106 2.5072 2.5423 0.9641

1.9305 2.5423 0.9947 −0.2174

0.2740 0.9641 −0.2174 0.2915


with eigenvalues 7, -1.3, 1.5, and 0.5

Again the iterates X1, X2, X3 obtained using an initial 4× 4 singular symmetric matrix in each of the two
given cases are non-singular symmetric matrices whose eigenvalues are respectively the same as their assumed
diagonal matrices Λ1 andΛ2.

IV. CONCLUSION

Singular symmetric and non-singular symmetric matrices have useful applications in many scientific and
engineering fields. In the paper, a Newton-type numerical iteration method is employed to deriving sequences
of non-singular symmetric matrices from a given singular symmetric matrix. The research was limited to three
and four dimensional singular symmetric matrices. We began by deriving a special orthogonal matrix Q ,
and a skew-symmetric matrix K from some given singular symmetric matrix. Q and K were used as initial
guess matrices for the iterative process. We again assumed a diagonal matrix Λ in the neighbourhood of the
eigenvalues of the singular matrix. The outcome of these iterations are sequences of non-singular symmetric
matrix Xi for i = 1, 2, 3 . It was realized that the eigenvalues of the non-singular symmetric matrices Xi had
the same eigenvalues as the diagonal entries of Λ .
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