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Abstract. Here we study weak convergence of sequence of Pettis integrable

multifunctions on 2X .

1. Introduction

This paper may be considered as the continuation of our paper[5] where we

studied some properties of Pettis Integrable Multifunctions. Here we discuss weak

convergence of a sequence of Pettis integrable multifunctions and then we use this

to characterize sequential weakly compact subset of P1(µ,X).

The organization of the paper is as follows. In section 2, we give necessary notations,

definitions and preliminaries. In section 3, we discuss our main results.

In [16] , Papageorgiou studied weak convergence of a sequence of integrably

bounded multifunctions on 2X . Here we study weak convergence of a sequence of

Pettis integrable multifunctions on 2X . We actually generalise [16, Theorem 4.1,

p.250] to P1(µ,X), the set of all Pettis integrable multifunctions.

2. Notations, Definitions and Preliminaries

Throughout this paper, unless otherwise stated, (Ω,Σ, µ) is a complete finite

positive measure space and X is a separable Banach space with WRNP [13]. we

shall also assume that the dual X∗ of X is norm separable.The closed unit ball of

X (respectively X∗) is denoted by BX (resp. BX∗).CL(X), C(X) and CWK(X)

denote the non-empty closed, closed convex and weakly compact convex subsets of

X respectively. The symbol Lp(µ,X), 1 ≤ p < ∞, denotes the Banach space of

all equivalence classes of p-th power Bochner integrable functions f : Ω→ X with

respect to the measure µ equipped with the norm

‖f‖p =

(∫
Ω

‖f‖pdµ
)1/p
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2 CHOUDHURY

A measurable function f : Ω → X is said to be scalarly (or weakly) integrable

if for each x∗ ∈ X∗, 〈x∗, f〉 is a member of L1(µ), the set of all of µ-integrable real

valued functions. A scalarly integrable function is also called Dunford integrable.

It is well known that given a scalarly integrable function f and a member A ∈ Σ,

there exists x∗∗A ∈ X∗∗, the bidual of X, such that 〈x∗, x∗∗A 〉 =
∫
A
〈x∗, f〉dµ, for all

x∗ ∈ X∗. x∗∗A is called the Dunford integral of f for all A ∈ Σ and is denoted

by D −
∫
A
fdµ. The scalarly integrable function f is said to be Pettis integrable

if for every A ∈ Σ, there exists xA ∈ X such that 〈x∗, xA〉 =
∫
A
〈x∗, f〉dµ, for all

x∗ ∈ X∗.xA is called the Pettis integral of f over A and is denoted by P −
∫
A
fdµ

(or simply by
∫
A
fdµ, if no confusion arises).

We denote by P1(µ,X), the space of all scalarly equivalence classes of X-valued

Pettis integrable functions f : Ω→ X, equipped with the semivariation norm

‖f‖P = sup

{∫
Ω

|〈x∗, f〉|dµ;x∗ ∈ BX∗

}
It is well known that P1(µ,X) is a normed linear space which, in general, is not a

Banach space.

We can define another topology on P1(µ,X) induced by the duality

(P1(µ,X), L∞(µ)⊗X∗), since the operation 〈v⊗ x∗, f〉 =
∫

Ω
v(ω)〈x∗, f(ω)〉dµ, v ∈

L∞(µ), x∗ ∈ X∗ is a bilinear form. This topology is known as weak topology of

P1(µ,X) [11, p. 3].

For every C ∈ CL(X), the support function of C is denoted by σ(., C) and

defined on X∗ by

σ(x∗, C) = sup{〈x∗, x〉;x ∈ C}, for all x∗ ∈ X∗.

A multifunction F : Ω → CL(X) is said to have a measurable graph if the set

GF = {(ω, x) ∈ Ω × X, x ∈ F (ω)} belongs to Σ ⊗ β(X), where β(X) denotes

the Borel σ-algebra on X and ⊗ denotes product σ-algebra. The multifunction

F : Ω → CL(X) is said to be weakly measurable (or simply measurable) if for

every open subset V of X, the set {ω ∈ Ω;F (ω) ∩ V 6= ∅} belongs to Σ.

The reader is referred to Theorem 1.0 of [3] and [12] for different notions of

measurability of a multifunction and their equivalences. A function f : Ω → X is

said to be a selector of F : Ω → CL(X) if f(ω) ∈ F (ω), µ-a.e. The collection of

all measurable selectors of F is denoted by SF . S1
F (respectively SPF ) denotes the

family of all Bochner (resp. Pettis) integrable selectors of the multifunction F .

A measurable multifunction F : Ω → CL(X) is said to be scalarly integrable if

the scalar function σ(x∗, F (·)) is integrable with respect to µ, for each x∗ ∈ X∗.
A measurable multifunction F : Ω → CL(X) is said to be Aumann-Pettis inte-

grable (respectively Aumann integrable or simply integrable) if SPF (resp. S1
F ) is

non-empty. In this case we denote the Aumann-Pettis integral of F over A ∈ Σ
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WEAK CONVERGENCE 3

by IA(F ) and is defined by IA(F ) =
{∫
A
fdµ; f ∈ SPF

}
.IΩ(F ) is simply denoted by

I(F ) [1, p. 341].

A measurable multifunction F : Ω→ C(X) is said to be Pettis integrable if F is

scalarly integrable and for each A ∈ Σ, there exists CA(F ) ∈ C(X) such that

σ(x∗, CA(F )) =

∫
A

σ(x∗, F )dµ, for each x∗ ∈ X∗.

CA(F ) is called the Pettis integral of F over A ∈ Σ and is denoted by
∫
A
Fdµ.

If F : Ω→ CWK(X) is a scalarly integrable multifunction then it follows from

[1, Theorem 5.4, p. 352] or [17, Theorem 3.2, p. 126] or [18, Theorem 1, p.

228] that F is Aumann-Pettis integrable iff it is Pettis integrable and in this case

IA(F ) = CA(F ) ∈ CWK(X), for each A ∈ Σ.

The set of all Pettis integrable multifunctions is denoted by P1(µ,X).

A sequence of Pettis integrable multifunctions Fn : Ω → CWK(X) is said to con-

verge weakly to a Pettis integrable multifunction F : Ω→ CWK(X) if for x∗ ∈ X∗ ,

lim
n→∞

σ(x∗,

∫
A

Fn(ω)dµ) = σ(x∗,

∫
A

F (ω)dµ), for all A ∈ Σ.

A multifunction F : Ω → CL(X) is said to be integrably bounded if the real

valued function

ω → ‖F (ω)‖ = sup{|σ(y∗, F (ω))|; y∗ ∈ BX∗} is integrable.

A multimeasure is a map M : Σ → 2X \ {∅} such that M(∅) = {0} and for

{An} ⊆ Σ pair-wise disjoint, we have

M

(
∪
n≥1

An

)
=
∑
n≥1

M(An).

Depending on how we interpret the sum in the right hand side, we have different

types of multimeasures. Here we present the two basic ones that we will use in this

work.

a) M(·) is a multimeasure (or strong multimeasure) if and only if∑
n≥1

M(An) = {x : x =
∑

xn (unconditionally convergent), xn ∈M(An)}.

b) If the values of M(·) are closed, we define M(·) a weak multimeasure if and

only if for every x∗ ∈ X∗, A→ σ(x∗,M(A)) is a signed measure.

If M(·) is a multimeasure and A ∈ Σ, we define

|M |(A) = sup
π

n∑
i=1

‖M(Ai)‖, where the supremum is taken over all finite parti-

tions π = {A1, A2, . . . , An} of A.

vts-1
Text Box
International Journal of Mathematics Trends and Technology (IJMTT)  - Volume 65 Issue 12 - Dec 2019


vts-1
Text Box

vts-1
Text Box
ISSN: 2231-5373                               http://www.ijmttjournal.org                                Page 132




4 CHOUDHURY

If |M |(Ω) < ∞ then M(·) is said to be of bounded variation. The multi-

measure M is said to be of σ-finite variation if there exists a countable partition

{A1, A2, . . . , An, . . . , } of Ω such that |M |(An) <∞, for all n = 1, 2, . . ..

It is easy to see that |M |(·) is a positive measure.

Finally, M(·) is said to be µ(·) continuous if µ(A) = 0 implies M(A) = {0}.
Again M(·) is µ(·) continuous if and only if |M |(·) is so.

A vector measure m : Σ → X such that m(A) ∈ M(A) for all A ∈ Σ is said to

be a measure selector of M(·). The set of all measure selectors of M is denoted by

SM .

3. Main Results

3.1. Weak Convergence of Pettis Integrable Multifunction.

Theorem 3.1.1. If Fn : Ω → CWK(X) are Pettis integrable multifunctions and

Fn(ω) ⊂ F (ω), µ a.e. for all n ≥ 1, where F : Ω→ CWK(X) is a Pettis integrable

multifuonction, then there exists a subsequence {Fnk
} = {Fk} of Fn and a Pettis

integrable multifunction G : Ω→ CWK(X) such that {Fk} converges to G weakly.

Proof. Put Mn(A) =
∫
A
Fn(ω)dµ, n ≥ 1, for each A ∈ Σ. It follows from [1,

Theorem 5.4, p.352] that Mn(·) is CWK(X)− valued for all n ≥ 1.

Now σ(x∗,Mn(A)) =
∫
A
σ(x∗, Fn(ω))dµ, for all n ≥ 1, for each x∗ ∈ X∗ and

A ∈ Σ.

Since Fn(·) are scalarly integrable for all n ≥ 1,

for all n ≥ 1, σ(x∗,Mn(·)) are signed measure for each x∗ ∈ X∗.
Therefore,Mn : Σ → CWK(X) are weak multimeasures for all n ≥ 1 and hence

multimeasure by [10, Proposition 3, p.113].

Now by the hypothesis, Fn(ω) ⊂ F (ω), µ a.e., for all n ≥ 1.

So we have,

σ(x∗, Fn(ω)) ≤ σ(x∗, F (ω)), for all n ≥ 1 and x∗ ∈ X∗.
Hence supn

∫
A
|σ(x∗, Fn(ω))| dµ ≤

∫
A
|σ(x∗, F (ω))| dµ, for each x∗ ∈ X∗ and

A ∈ Σ.

As F is Pettis integrable multifunction, {σ(x∗, F (·))} is uniformly integrable for

each x∗ ∈ X∗ [1,Theorem 5.4, p.352].

Hence,

lim
µ(A)→0

sup
n

∫
A

|σ(x∗, Fn(ω))|dµ = 0, for each x∗ ∈ X∗.

Fixed x∗ ∈ X∗.
The set {σ(x∗, Fn(·)), n ≥ 1} is uniformly integrable subset of L1(µ).

Hence By [8,Theorem 15,p.76] ,the set {σ(x∗, Fn(·)), n ≥ 1} is relatively weakly
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WEAK CONVERGENCE 5

compact subset of L1(µ).

So by Eberlien-Smulian Theorem [9,Theorem1,p.430], the set {σ(x∗, Fn(·)), n ≥ 1}
is weakly sequentially compact in L1(µ).

So there exists a subsequence {σ(x∗, Fnk
(·))} = {σ(x∗, Fk(·))} ⊂ {σ(x∗, Fn(·)), n ≥

1} and hx∗ ∈ L1(µ), such that, {σ(x∗, Fk(·))} converges weakly to hx∗ ∈ L1(µ).

So,

(3.1.1) lim
k→∞

∫
A

σ(x∗, Fk(ω))dµ =

∫
A

hx∗dµ, for each A ∈ Σ.

That is,

(3.1.2) lim
k→∞

σ(x∗,Mk(A)) =

∫
A

hx∗dµ, for each A ∈ Σ.

Put

(3.1.3) lim
k→∞

σ(x∗,Mk(A)) = λx∗(A), for eachA ∈ Σ.

Then by Nikodym Convergence Theorem,

A→ λx∗(A) is a signed measure, for x∗ ∈ X∗.
Now Mk(A) =

∫
A
Fk(ω)dµ ⊆

∫
A
F (ω)dµ = IA(F ), for all A ∈ Σ and k ∈ N.

So, |σ(x∗,Mk(A)| ≤ |σ(x∗, IA(F )| , for all A ∈ Σ and k ∈ N .

And hence, |λx∗(A))| ≤ |σ(x∗, IA(F ))| , for all A ∈ Σ and k ∈ N .

Since IA(F ) is CWK(X)-valued [1, Theorem 5.4,p.352] ,σ(x∗, IA(F )) is continuous

for Mackey Topology τ(X∗, X).[1, Proposition 1.5c,p.333]

So by the same Proposition, there exists an M(A) ∈ CWK(X) such that

(3.1.4) λx∗(A) = σ(x∗,M(A)), for each A ∈ Σ.

So the map M : Σ → CWK(X) is a weak multimeasure and hence multimea-

sure.[10, Proposition 3, p.113].

It is easy to prove that M is µ-continuous. Also M is of σ-finite variation by [7,

Proposition 1,p.1516]

Also any measure selection m ∈ SM of M possesses a Pettis integrable density.

Hence by [7, Theorem 3, p. 1517] , M posseses a Pettis integrable density i.e. there

exists a Pettis integrable multifunction G : Σ→ CWK(X) such that

M(A) =

∫
A

G(ω)dµ, for all A ∈ Σ

and so,

(3.1.5) λx∗(A) = σ(x∗,M(A)) =

∫
A

σ(x∗, G(ω))dµ, for all A ∈ Σ.
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6 CHOUDHURY

So by (3.1.1), (3.1.2), (3.1.3,(3.1.6) and (3.1.7) we have,

lim
K→∞

∫
A

σ(x∗, Fk(ω))dµ =

∫
A

hx∗(ω)dµ

Or,

lim
k→∞

∫
A

σ(x∗, Fk(ω))dµ = λx∗(A) = σ(x∗,M(A)) =

∫
A

σ(x∗, G(ω))dµ, for each A ∈ Σ.

As Fn ,for all n ∈ N, and G are Pettis integrable , We have,

lim
k→∞

σ(x∗,

∫
A

Fk(ω))dµ = σ(x∗,

∫
A

G(ω))dµ, for each A ∈ Σ.

Let {x∗m} be a sequence in X∗ which is dense in strong topology of X∗ i.e. the

topology of uniform convergence on bounded subset of X.

Now using a diagonal process , a subsequence {Fnk
} = {Fk} of {Fn} exists such that

lim
k→∞

σ(x∗m,

∫
A

Fk(ω))dµ = σ(x∗m,M(A)) = σ(x∗m,

∫
A

G(ω))dµ, for each A ∈ Σ and for each m ∈ N.

Now for each x∗ ∈ X∗, there exists a subsequence {x∗mk
} of {x∗m} converging in

norm to x∗ ∈ X∗.
Since each Fn(ω) ⊂ F (ω) ,for all ω ∈ Ω and as F (ω) is CWK− valued, it follows

that

lim
k→∞

σ(x∗,

∫
A

Fk(ω))dµ = σ(x∗,

∫
A

G(ω))dµ, for each A ∈ Σ and for each x∗ ∈ X∗.

Hence {Fk} converges to G weakly. �

Theorem 3.1.2. If Fn : Ω→ CWK(X) are Pettis integrable multifunctions such

that

(a) {σ(x∗, Fn(·)), n ≥ 1} is uniformly integrable subset of L1(µ) for each x∗ ∈
X∗.

(b) For all A ∈ Σ,K(A) = w − cl{∪n≥1

∫
A
Fn(ω)dµ} is weakly compact in X.

(c) For all vector measure m : Σ → X with m(A) ∈ coK(A), for all A ∈ Σ,

there exists g ∈ P1(µ,X) such that

m(A) =

∫
A

g(ω)dµ.
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WEAK CONVERGENCE 7

then there exists a subsequence {(Fnk
} = {Fk} of Fn and a Pettis integrable multi-

function G : Ω→ CWK(X) such that {Fk} converges to G weakly.

Proof. Proceeding as in the proof of the Theorem 3.1.1, we produce a signed mea-

sure λx∗ such that |λx∗(A)| ≤ |σ(x∗, K̂(A))|, where K̂(A) = co[K(A)∪ (−K(A))] ∈
CWK(X) for all A ∈ Σ.

Now as K̂(A) ∈ CWK(X), σ(x∗, K̂(A)) is continuous for Mackey Topol-

ogy τ(X∗, X).[1, Proposition 1.5c,p.333] and so is λx∗(A) for all A ∈
Σ and for each x∗ ∈ X∗.
So by the same Proposition, there exists an M(A) ∈ CWK(X) such that

(3.1.6) λx∗(A) = σ(x∗,M(A)), for each A ∈ Σ.

So the map M : Σ → CWK(X) is a weak multimeasure and hence multimea-

sure.[10, Proposition 3, p.113].

It is easy to prove that M is µ-continuous. Also M is of σ-finite variation by [7,

Proposition 1,p.1516]

Also any measure selection m ∈ SM of M possesses a Pettis integrable density.

Hence by [7, Theorem 3, p. 1517] , M posseses a Pettis integrable density i.e. there

exists a Pettis integrable multifunction G : Σ→ CWK(X) such that

M(A) =

∫
A

G(ω)dµ, for all A ∈ Σ

and so,

(3.1.7) λx∗(A) = σ(x∗,M(A)) =

∫
A

σ(x∗, G(ω))dµ, for all A ∈ Σ.

Now proceeding as the proof of the Theorem 3.1.1, we find a a subsequence

{(Fnk
} = {Fk} of Fn such that

lim
k→∞

σ(x∗,

∫
A

Fk(ω))dµ = σ(x∗,

∫
A

G(ω))dµ, for each A ∈ Σ and for each x∗ ∈ X∗.

Hence

{Fk} converges to G weakly. �
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