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Abstract 

In present paper we have taken certain known summation formulae due to Verma and Jain and by making use of 

Bailey's transformation an attempt has made to establish certain beautiful and interesting transformation 

formulae for q-Hypergeometric series. 
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Introduction 

 In 1947 W.N. Bailey [1] established the following result. 
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 Then under suitable convergence conditions 
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 Where r, r, Ur and Vr are any functions of r only, such that the series r exists.  

 Making use of (3), Bailey developed a technique to obtain various transformation formulae for ordinary 

and q-series which play an important role in the number theory and transformation theory of hypergeometric 

series. Recently Singh (2), has obtained many transformation formulae for q-series by using baileys 

transformation and certain known results due to Verma and Jain (3). In present paper, we have made to establish 

certain transformation formulae for q-hypergeometric series by using Baileys transformation and some known 

summation formulae due to Verma and Jain (3) and also by Verma (5). 

 

II. Notation and Definitions 

 A generalized basic hypergeometric function in defined by L.J. Stater (4); and Exton (6): also by 

Srivastava and Karlson (7) is as under. 
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 Valid for |z|<1 provided no zeroes appears in denominator. Here a1, a2, a3,..........ar and b1, b2...........,bs 

and Z are assumed to be complex numbers. 

 The shifted factorial in defined by 
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 And for real or complex q |q|<1 we have 
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 in the special case when i=0 the first member of (7) will be written simply as  
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 We shall use the following known results to establish our transformations. 
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Slater [4; APP IV IV-2] 
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[Verma and Jain 3; (4.1)] 
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[Verma and Iain 3; (4.3)] 

III. Main Results 

 In this section we shall establish our main results. 

(i) Let us suppose  
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 In Baiely's transformation (1) and (2) respectively, weget  
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  By using (8) 

 Now, putting these value of n,n, n and n in (3), we get the transformation formulae. 
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(ii) Choosing  
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  By using (8) 

 Now putting these values of n, n, n and n in (3), we get the following transformation.  
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