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Abstract — In this paper, we introduce normal hyperideal and bi-hyperideal in normal hypersemigroups. We 

study (normal)hypersemigroup and normal regular hypersemigroup based on bi-hyperideal proving some 

equivalent conditions. In particular, we prove, among the other results, that if  are any two normal 

hyperideals of a hypersemigroup , then their product  and  are also normal hyperideals of  

and . We also prove that the minimal normal hyperideal of a hypersemigroup  is a 

hypergroup. 
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I. INTRODUCTION AND PRELIMINARIES 

Ideals play an important role in higher studies and applications of algebraic structures. Generalization 
of ideals in various algebraic structures is necessary for further development of algebraic structures. Lots of 

mathematicians obtained significanly large number of results and characterizations of algebraic structures by 

applying this notion and the properties of generalization of ideals in different algebraic structures as is clear 

from the vast literature available on the subject matter [2], [3], [16], [17], [18], [19], [20], [21]. It is a well 

known fact that the concept of one sided ideal of any algebraic structure is a generalization of concept of an 

ideal. The quasi ideals are generalization of left ideal and right ideal whereas the bi-ideals are generalization of 

quasi ideals. The notion of bi-ideals was introduced by Good and Hughes [27] for semigroups. The concept of 

bi-ideals in rings and semigroups were introduced by Lajos and Szasz [31], [33]. Lajos introduced bi-ideals in 

semigroups [29], [30]. 

The applications of hyperstructures in various disciplines, for example in informatics, is the prime 

motivation and purpose that the mathematicians and algebraists of all over the world are active in the study and 
continuous enrichment of the theory. In other algebraic structures, the composition of two elements is an 

element, while in an algebraic hyperstructure, the composition of two elements is a set. Recently, a book by 

eminent algebraist Davvaz [9] titled "Semihypergroup Theory" is the first book devoted to the semihypergroup 

theory that didcusses fundamental results related to semigroup theory and algebraic hyperstructures highlighting 

the most general algebraic context in which reality can be modeled. Lots of books and research articles have 

been written on different branches of hyperstructure [11], [12], [14], [15], [22], [23], [25], [26], [28], [34]. 

Bonansinga and Corsini [24], Davvaz [11], Hila et al. [15], Salvo et al. [22] and other algebraists deeply studied 

the theory of hyperstructures. Recently, Basar et al. investigated some results in hyperstrcutures [1], [4], [5], [6], 

[7], [8]. 

Let  be a nonempty set, then the mapping  is called hyperoperation or join operation on 

, where  is the set of all nonempty subsets of . Let  and  be two nonempty sets. Then, 

a hypergroupoid  is called a semihypergroups if for every   

  

For subsets  of semihypergroup , the product set  of the pair  relative to  is defined as 

 and for , the product set  relative to  is defined as 

. Note that  is an identity operator. That is, . Also, 

. 

If there is no ambiguity, we identify hypersemigroup  by . A sub-hypersemigroup  of a 

hypersemigroup  is called normal if  for all . A hypersemigroup  is called left (right) 

regular if for every element , there exists an element  such that . A 

hypersemigroup  is called intra-regular if for any , there exist elements  such that 

. A hypersemigroup  is called completely regular if for any element , there exists an 

element  such that  and . We denote and define the principal left hyperideal, right 
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hyperideal and bi-hyperideal of  generated by  as follows: , , 

. An element  of  is called a zero element of  if  for .  
 

 Notation 1. We denote by  the set of all bi-hyperideals of  and  the set of nonempty subsets of the 

hypersemigroup .  
 

Definition 1.1 A hypersemigroup  is called normal if  for all .  
  

Definition 1.2 A hyperideal  of a hypersemigroup  is called normal if  for all . H.. 
 

II. HYPERIDEALS OF NORMAL HYPERSEMIGROUPS 

We study this part by investigating some fundamental results based on (normal) hypersemigroups and 

thereafter, characterizing the (normal) hypersemigroups through (normal) hyperideals and bi-hyperideals.  

PROPOSITION 2.1  Suppose I is any hyperideal of a hypersemigroup H. Then, we have the following: 

(i).  for all , 

(ii).   for all .  

 PROOF. Suppose Hh . Then, we have the following:  

  

   

  

  

 and  

  

  

  

  

 SO,  for all . 

In a similar way, we can prove that  

  for all .  

 

THEOREM 2.1  The following assertions are equivalent for a hyperideal   of :   

 (i).  is normal;  

(ii).  for all ;  

(iii).  for all ;  

(iv).  for all ;  

 (v).  for all ;  
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  (vi).  for all ;  

 (vii).  for all ;  

 (viii).  for all ;  

(ix).  for all ;  

 (x).  for all .  

PROOF. . Let I  be normal. Suppose Y is any nonempty subset of  and for , 

. Then, we obtain that , and therefore, . 

Similarlly, we can observe that  for all . 

. Straightforward. 

  are 

consequences of Proposition 2.1.  

 

THEOREM 2.2  Suppose  are any two normal hyperideals of . Then, their product  and 

 are also normal hyperideals of   and . 

 PROOF. We have  by Theorem 2.1. For , we have 

. 

Hence,  is normal.  

 

THEOREM 2.3  Let  be a hyperideal of a regular hypersemigroup H. Then, the following assertions are 

equivalent:   

(i).  is normal; and for all idempotents ;  

(ii).  ;  

(iii). ;  

(iv). ;  

(v). ;  

 (vi). ;  

 (vii). ;  

  (viii). ;  

(ix).  ;  

(x). .  

PROOF. . It is obvious. Furthermore, the equivalence of (ii) to (x) can be shown similar to the 

equivalence of (i) and (v) to (x) in the proof of Theorem 2.2. 

. SUPPOSE . AS  is regular, there exists  such that  and  is 

idempotent. It follows that 
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. 

Similarly, we can show the reverse inclusion relation . Consequently, we obtain 

 for all .  

PROPOSITION 2.2  Suppose I is any normal hyperideal of . Then, we have that  is a hyperideal of 

 for any . 

PROOF. Suppose I is a normal hyperideal of  and . Then, it follows that 

 and . 

Hence,  is a hyperideal of .  

  

THEOREM 2.4 [32]  The product of a bi-ideal and a nonempty subset of a semigroup  is also a bi-ideal of 

.  

 

THEOREM 2.5 Any minimal hyperideal of a hypersemigroup  is a zero element of  . 

PROOF. Suppose  is a minimal hyperideal of H. Then, it is obvious that . SUppose B is any bi-

hyperideal of . Then, we obtain  . Therefore, by hypersemigroup analogue of 

Theorem 2.4 and the minimality of , we have  . Similarly, we can show that   for all 

.  

 

THEOREM 2.6 Any minimal normal hyperideal of a hypersemigroup  is a hypergroup. 

PROOF. Suppose  is a minimal normal hyperideal of a hypersemigroup  and . Then, we obtain 

. Then, by Proposition 2.2 and the minimality of , we obtain 

. This shows that  for all . Hence,  is a hypergroup.  

THEOREM 2.7 The following propositions based on a hypersemigroup H are equivalent:   

(i).   is normal;  

 (ii).  for all ;  

 (iii).  for all ;  

(iv).  for all ;  

(v).  for all ;  

(vi).  for all ;  

  (vii).  for all ;  

(viii).  for all ;  

(ix).  for all ;  

  (x).  for all ;  

 (xi).  is normal;  

(xii).  for all ;  
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(xiii).  for all ;  

(xiv).  for all ;  

 (XV).  for all ;  

(xvi).  for all ;  

 (xvii).  for all ;  

 (xviii).  for all ;  

 (xix).  for all ;  

(xx).  for all .  

PROOF. As the hypersemigroup  is a hyperideal of itself, we obtain that from (i) to (x) are equivalent by 

Theorem 2.1. 

.  Suppose (i) is true, then we show (xi). Let  and  be any two bi-hyperideals of   and . 

Therefore, we have  and hence, 

. In a similar way, we can prove that the reverse inclusion is correct. Therefore, we 

have that   for all  and also that   is normal. 

. Straightforward. 

. Suppose . Then, for some , WE OBTAIN 

. In a similar way, we can see that the reverse 

inclusion relation is true. Therefore,  is normal. The remaining part of the proof is straightforward.  

 

COROLLARY 2.1 Every one-sided hyperideal of a normal hypersemigroup  is a hyperideal of .  

 

III. CONCLUSIONS 

      In this article, we studied some semigroup-theoretic results in the context of hypersemigroup. Our results 

provided correspondence for normal hyperideals and bi-hyperideals of semigroups in [10] giving the description 

of the characterization of hypersemigroup in terms of normal hyperideals and particularly bi-hyperideals. In fact, 

the class of normal hyperideals in normal hypersemigroups is a generalization of the class of the normal ideals 

in normal semigroups. Our work opens up a new direction of further research work for other researchers in other 

algebraic structures.  
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