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Abstract: In this paper, classes of symmetric and skew-symmetric operators on a Hilbert Space are 

characterised. It is demonstrated that skew-symmetric operators admit skew-symmetric matrix representation 

with respect to some orthonormal basis. It will also be shown that the characteristic polynomial of a self adjoint 

operator on an n-dimensional Hilbert Space, H has n real zeros (counted with multiplicity).Further, a specific 

example of a normal form of a skew-adjoint operator shall be given and then be shown that the rank of a skew-

symmetric operator is always even. By considering a forward shift operator on a Hilbert space, it is 

demonstrated that not every skew-symmetric operator is biquasitriangular.Finally, the relationship between 

complex symmetric and skew-symmetric operators is established. 
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I. INTRODUCTION 

In this paper, Hilbert spaces or subspaces will be denoted by capital letters,  etc 

and , , , denote bounded linear operators where an operator means a bounded linear transformation. 

  will denote the bounded linear operators on a complex separable Hilbert space   .    denotes the 

set of bounded linear transformations from  to  , which is equipped with the (induced uniform) norm. 
The following definitions are of essence: 

 

Definition 1.1: Let    be a linear (vector) space over a field   Suppose we have the 

function  such that  

1.  if and only if  

2.    ∀   and  

3.   for all scalars  and vectors . 

We call   a normed linear space.  The second property in the above definition is called the triangle 
inequality and the third is the homogeneity property. 

The Euclidean space   , defined by   with 

  is a normed linear space. The Euclidean space   is defined similarly 

where we restrict the set    to real values. 
 

Definition 1.2: Let    be a linear (vector) space over a field   

 An inner product  is a bilinear function  with the following properties: 

1.  ∀   and  , that is, linearity to the first 

argument is satisfied; 

2.  ∀    and ,  that is, semi-linearity to the second 

argument is satisfied; 

3.  ∀   . This property is called the complex conjugation; 

4.  ∀     and  if and only if . This is the non-negative (or positive 

definite) property. 

A linear space equipped with an inner product is called an inner product space. This will be denoted by the set 

 A Hilbert space  is a complete inner product space. The norm  of a vector    is defined 

as the positive square-root      . 
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We note that the restriction of the bilinear function  to a subspace   satisfies the properties of an 
inner product and by this fact, every subspace of an inner product space is itself an inner product space. 

 

Definition 1.3: A function   which maps   into   is called a linear operator if for all  and  a 

complex number, then the following two properties hold:   and   . If   

 and   are normed linear spaces, we say that the linear transformation is a bounded linear operator from    

to    if there exists a finite constant   such that  . 

 

Definition 1.4: If   then its adjoint  is the unique operator in   such that    

∀  . 
 

Definition 1.5: An operator    which is self adjoint is said to be positive if    ∀   . 
 

Definition 1.6: An operator    is said to be invertible if there exists an operator    

such that    for every    and     for every . The operator    is called the 

inverse of   . 
We also need the following terminologies in this research:  

An operator     is said to be: 

 or   if  or equivalently, if    ∀  , 

  if , 

a    if , that is    is a self-adjoint unitary, 

 if     (equivalently, if   ), 

 if     , 

If  and  are Hilbert spaces, then their (orthogonal) direct sum will be denoted by ⊕ , which itself is a 

Hilbert space.By a subspace of a Hilbert space  we mean a closed linear manifold of  , which is also a 

Hilbert space.  If   and  are orthogonal (denoted by  ) subspaces of a Hilbert space  , then their 

(orthogonal) direct sum ⊕  is a given subspace of  .  For any set   ⊆  ,   will denote the orthogonal 

complement of   in  which is a subspace of   . If   is a subspace of  , then  can be decomposed as  

H=M⊕  . 

A set    in is invariant for    if .   is an invariant subspace for    if it is a subspace of 

which, as a subset of , is invariant for  .  A subspace   of is invariant for   if and only if    is 

invariant for . 

A subspace  reduces    (or is a reducing subspace for ) if both  M  and   are invariant under  

(equivalently, if   is invariant for both   and  ). 

If  is an invariant subspace for   then, relative to the decomposition  M⊕ , the operator  can be 
written as   

=      for operators :   and  , 

where   is the restriction of   on   

An operator    is said to be a   operator if    where  ,..)  and   

 , also called the   or  operator  with weights 

1 The kernel (or null space) of ,   is the set      The range of  

is the set   = {  for some }.   is a subspace of  

i.e, it is a linear manifold that is closed in  for every     and   is a linear manifold that is 

not necessarily closed in  .  An operator    is finite-dimensional if   is finite-dimensional.  
             

A scalar    is an   of an operator    if there exists a nonzero vector   such 

that ; equivalently, if     .     

Let    be a Hilbert space and    .  The set   of all complex number   for which   is 

invertible is called the   .  Equivalently,                                                                                                    

    and                                                  

The complement of the resolvent set    denoted by    is called the   i.e,   

          which is the set of all    such that  

  fails to be invertible (i.e. fails to have a bounded inverse on   On the basis of this 
failure, the spectrum can be split into many disjoint parts.  A classical disjoint partition comprises of three parts: 

the set of those    such that   has no inverse, denoted by   is called the point spectrum of, 

i.e,       } , which is exactly the set of all eigenvalues of .The set of all 

http://www.ijmttjournal.org/


International Journal of Mathematics Trends and Technology (IJMTT) – Volume 65 Issue 12 - Dec 2019 
 

ISSN: 2231-5373                              http://www.ijmttjournal.org                                 Page 173 

those     for which   has a densely defined but unbounded inverse on its range, denoted by   

  is called the continuous spectrum of , i.e, 

    and . 

If      has an inverse that is not densely defined, then   belongs to the residual spectrum of   , denoted   

  . That is,      }. 

The parts     ,     are pairwise disjoint an      

In the study of Hilbert space theory, self-adjoint, skew- adjoint and normal operators find a wide range of 

applications especially in quantum mechanics. Such classes of operators have been extensively studied in [11], 

[12] and [13].Garcia and Putinar ([2], [3]) and Garcia and Wogen [4] also analyzed an important class of 

operators on a Hilbert space, namely the class of complex symmetric operators. Under this, a conjugation 

mapping was considered such that , where   for a given bounded linear operator  .The 
same authors demonstrated also that normal operators, binormal operators, Hankel operators and Volterra 

integration operators are complex symmetric. 
Closely related to complex symmetric operators is the class of skew symmetric operators, which have been 

studied by Li and Zhu [10] and also Zhu S [16]. This class was also defined in terms of a conjugation map such 

that , where  , i.e.  an operator   is considered skew symmetric  if it is represented as a 

skew symmetric matrix relative to some orthonormal basis  of a  Hilbert space . 
Li and Zhu [10] further characterized normal operators that were skew symmetric and gave two structure results 

for skew symmetric normal operators. In their paper, they showed that for a given bounded linear operator   on 

a Hilbert space  , it can be decomposed as a sum of a complex symmetric operator   and a skew symmetric 

operator  such that  This was achieved by arbitrarily  making a choice of a conjugation   on   

and setting    and  . In a certain sense, this reflected some universality 

of complex symmetric and skew symmetric operators. 

A generalized result of constructing a skew symmetric operator for a given complex symmetric operator was 

proved, (see [10], Proposition 1.9).Examples of skew symmetric operators on finite dimensional spaces and in 

particular the Jordan blocks with even ranks were also outlined. Zhu [16] further gave an analysis of skew 

symmetric operators with non-zero eigenvalues by providing an upper triangular operator matrix representation. 

In addition, a description of triangular operators based on the geometric relationship between eigenvalues was 
also given. 

II. SYMMETRIC OPERATORS 

 
Remark 2.1: We demonstrate that a self-adjoint unitary (or a symmetric) operator of a finite dimensional 

Hilbert space (of dimension, say ) has  eigenvectors which are an orthogonal basis. This is described in 

what we call the  In other terms, we aim to show that the characteristic polynomial of 

a self-adjoint operator has   zeros if every zero is counted with multiplicity (see more results on the eigenvalue 
problem which have extensively been discussed in Greub [5]). 

Now consider a system of  -orthogonal vectors can be found once an eigenvector of an operator    has been 

constructed. The system of these   -eigenvectors     is such that   

 .                  

An orthonormal basis of the eigenvectors   takes the form  

                    

where    denotes the eigenvalues of  . These equations show that the matrix of a self adjoint operator has 
diagonal form if the eigenvectors are used as a basis. The following definition follows immediately as a 
consequence of these results: 

 

Definition 2.2: If    is an eigenvalue of   , the corresponding eigen-space  is the set of all vectors  

satisfying the equation   .  It is also clear that two eigen-spaces    and   ) corresponding to 

different values are orthogonal, that is if   and   are eigenvalues, then 

  and   .  It follows then that   

                               

and                                              

Subtracting these two equations we obtain  (   in which case  

 if   . 

If we denote by   the different values of    then every two eigenspaces    and    

 are orthogonal. Since every     can be written as a linear combination of eigenvectors it follows that 

the different sum      is   and is obtained as  
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 .                          .  

Letting    be the transformation induced by    in  ,  we have 

   . 

This implies that the characteristic polynomial of   is given by  

                                                       

where   is the dimension of   .  Thus by  and , the characteristic polynomial of    is equal to the 
product 

             …                           

that is  clearly shows that the characteristic polynomial of a self-adjoint operator has  real zeros, if every 
zero is counted with multiplicity. 

 

Remark 2.3: In view of the illustration of an adjoint, we see that a self-adjoint operator (in this case an   

matrix)   )  has   real eigenvalues. For instance we can consider the transformation given by  

   where     is an orthonormal basis of  .  Then    is self-

adjoint and hence the characteristic polynomial of   has the form (2.7). It is also known that 

   )                                      

These two equations  and  give us   

)=  … . 

III. SKEW-ADJOINT AND SKEW-SYMMETRIC OPERATORS 
 

To study these classes of operators, we shall consider the following definitions. 

Definition 3.1: If    is a vector such that for some   ,     then  is the 

eigenvector of the operator    associated with the eigenvalue   The   of an 

operator (matrix) is the polynomial .  

It has to be noted that for any   by   matrix, then the matrix  is obtained by multiplying each of the 

rows by  and hence  =   
 

Definition 3.2: Let   be an eigenvalue of an operator    in a Hilbert space  . The   

(or multiplicity) of the eigenvalue   is the multiplicity of    as a root of the characteristic polynomial 

(See details on algebraic multiplicities of the Jordan canonical form of    by  matrices 
(Weintraub, [15])).  

                                     

Definition 3.3: A linear transformation (operator)    in a Hilbert Space    is said to be skew-adjoint if                 

.  Equivalently, we can write this equation as  

=0   for all  ,   in .                                  
From this equation, we see that the matrix of a skew-adjoint relative to an orthonormal basis 

is .  Substituting    for      in  yields   

=0  ,     .                     . 
This equation shows that every vector is orthogonal to its range-vector. 

On the other hand, an operator having this property is skew adjoint.  Replacing    by     in   gives 

=0, that is   .  By 
Nzimbi et al [12], the spectrum of a skew adjoint operator is contained in the imaginary axis.   
 

Remark 3.4: If    is a bounded linear operator on a finite dimensional Hilbert space, then the equation 

  implies that     and   . Hence from the last equation we see that  

  if the dimension of    is odd. More generally the rank of a skew- adjoint transformation is always 
even. 

It is also well known that every skew operator is normal, and its range is the orthogonal complement of the 

kernel.  As a result, the induced transformation    :   is regular and   is the restriction of 

to the  -invariant subspace   Note also that an operator is  in a Hilbert space   regular (or 

non-singular)  exactly when it has a unique inverse mapping   such that  for all  ,   in    implies 

that  . Since   is again skew adjoint mapping, it follows that the dimension of     must be 
even and so the rank of a skew-symmetric matrix is always even. 

 

Example 3.5: The normal form of a skew-adjoint operator. 

Consider a skew adjoint mapping   having an orthonormal basis    and define as  
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and consider the mapping   .  Then   .   Thus there exists an orthonormal basis   

in which  has the form    .  All the eigenvalues     are negative or zero. That is   

 = = .Since the rank of     is even, and     has the same 

rank as     the rank of   must be even. As a result, the number of negative eigenvalues is even and we can 

enumerate the vectors   such that     and  where   

. Define the orthonormal basis   by      

, , ,    and    .  In this 

basis, the matrix of   has the form ). 

To describe   operators on a complex Hilbert space  , we consider an operator    which 
can be represented, with respect to some orthonormal basis as skew symmetric matrix. The following basic 

definitions are required for this description. 

 

Definition 3.6: An operator   is said to be    if there exists a conjugation   on  

  such that .  Hankel operators, Voltera integration operators and Toeplitz operators as discussed in 
Garcia and Putinar([2], [3]) and Garcia and Wogen, [4] are examples of complex symmetric operators. 

 

Definition 3.7: An operator   of bounded linear transformations on a complex separable Hilbert space 

is called    if   has an upper triangular matrix representation with respect to some orthonormal 

basis   of   with the property that    for each  .   

 is   if both   and    are triangular, with respect to different orthonormal bases. 
 

Remark 3.8: In view definitions 3.6 and 3.7, we have that   is skew symmetric exactly when there 

exists an orthonormal basis   such that     .  In other words,   admits a 

skew-symmetric matrix representation with respect to   . These operators can be visualized as infinite 
dimensional skew-symmetric matrices. 

In the sequel, we give some known results on skew-symmetric operators and related examples. 

 

Lemma 3.9 (Li and Zhu [10], Lemma 1.4 pp. 2756): Let   be a conjugation on a complex Hilbert space   .  

Denote .  Then 

a) If  ,    then  . 

b) If ,  then     for all    

c) The class    is norm-closed and forms a Lie algebra under the commutator bracket  

d) If   , then  . 

Example 3.10: Consider an operator     given by the matrix representation 

   with respect to a basis    basis of   . 

Since the trace of a skew symmetric matrix is zero and the trace is invariant under unitary transformation, it is 

evident that     is not a skew symmetric operator. 
 

Remark 3.11: From Example 3.10, we see that the spectral condition   as provided for in part  

(d) of Lemma 3.9 above is not a sufficient condition for a normal operator    to be skew -symmetric.  

If     and    is a conjugation on    satisfying     , then    and   

  for  . We then have that  . This shows 
that multiplicity is an essential invariant in the structure of skew symmetric operators.                          

On a finite dimensional setting, we provide an example of skew symmetric operators by corresponding Jordan 

blocks with even ranks. 
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Example 3.12: Let an operator     be represented in a matrix form as  

    

 with respect to an orthonormal basis    basis of   . Then    is skew symmetric matrix. To see this, 

re-write    as a linear combination       and define . 

Then    in matrix representation is given by  

 
 

      

and is a conjugation on    . A quick computation shows that  .   Hence,   is skew symmetric. 

Now set    .   Then  is unitary, i.e.    and  

 . 

 

Definition 3.13: An operator   is called quasidiagonal (quasitriangular), denoted by    if there 

exists an increasing sequence   of finite rank (orthogonal) projections such that   (strongly  

)  and    ( , respectively ) as   (see Herrero[7] ). We can 
illustrate as follows. 

An operator   is a quasitriangular (Hessenberg) matrix if    whenever . That is,   is a 

Hessenberg matrix if all the entries below the sub-diagonal are zero (see Jonson, et al[13], pp.433). For example, 

by computation, it is seen that the sum    is a quasidiagonal operator   ,  where   is the unilateral 

shift of finite multiplicity. The class of  biquasitriangular operators, denoted by  is defined as                              

 ={  :  and  its adjoint    are quasitriangular}. 
  

Remark 3.14: Recall that an operator    is said to be a    if both   and    

are finite dimensional and the range of   is closed. If    is Fredholm, then its   is denoted by   

and is defined as   (see Lee [18] for a detailed discussion on 

Fredholm operators).  It has been shown in Garcia[2] that every complex symmetric operator is bitriangular in 

nature. We can study the structure of skew symmetric operators analogously from the symmetric operators. 

However, not every skew- symmetric operator is biquasitriangular as illustrated in the following example. 

 

Example 3.15: Consider a forward shift operator defined on a Hilbert Space by  for     

where    is an orthonormal basis of .  Set       on    where    is an identity 

operator. Then    is skew- symmetric. To see this, we define a conjugation   on   by    

  for    and set   on    . Then    is a conjugation on    

and by computation, .  In addition,    is a Fredholm operator whose index is given by the 
equation  

 ( .   It follows that  is skew-symmetric but not biquasitriangular. 

 

Remark 3.16: By Lemma 3.9 (b), we can establish the relationship between complex symmetric operators and 

the skew-symmetric operators by writing     as a sum of these classes of operators. If an arbitrary choice of a 

conjugation    on   and set  , ,  then    and    are the respective 

symmetric and skew-symmetric operators. A quick computation also shows that  .  In view of this 
remark, we have this example in mind. 

 

Example 3.17: Consider a complex symmetric operator     and define  .  We claim that   

   is skew-symmetric. For since    is complex symmetric, there exists, by definition a conjugation   on 
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such that  .   Now set     on  .It follows that   is a conjugation on   

and   ( ,   so    is skew-symmetric as earlier claimed. 
In the sequel, we describe skew-symmetric operators in relation to eigenvalues. This is guaranteed by providing 

an upper triangular matrix representation for the skew-symmetric operators with non-zero eigenvalues. We also 

characterize certain skew-symmetric triangular operators based on the geometric relationship between 

eigenvalues. We begin by outlining the fundamental facts about the relationship between skew-symmetric and 

complex symmetric operators the following result. 

 

Lemma 3.18 (Zhu [16], Lemma 1.1 pp. 1272). Let  and  be a conjugation on  . Then 

a) There exists     such that and  . 

b) If ,  then     is complex symmetric  with respect to   for   . 

c) If    is complex symmetric, then     and    are both skew-symmetric. 

Remark 3.19: By Lemma 3.18, it is evident that complex symmetric operators can be used to construct new 

symmetric operators. In view of the description of symmetric normal operators (Li and Zhu [10], Theorem 1.10), 

this provides an alternative approach of describing complex symmetric operators. An example to this is the class 

of Toeplitz operators as illustrated by Guo and Zhu [6]. More specifically, any commutator of two truncated 

Toeplitz operators is skew- symmetric. We also require the following definition to describe the upper triangular 

representation for skew-symmetric operators. 

 

Definition 4.1.20 (Li and Zhu [10], Definition 2.1, pp.1272): Let   An operator    is 

called a    of    if     for some conjugation     on   . Since by definition of skew-

symmetric operator    i.e.     for some conjugation    on   ,  its transpose  is   . It has also to 

be noted, on the other hand that, any two transposes of an operator    are unitarily equivalent. Further, recall 

also that a transformation    on a Hilbert space    is an  operator if   is conjugate linear, 

invertible and   .  This definition clearly shows that a conjugation is an involutory 
antiunitary operator.  

If     and  ,  then denote by     the compression of     to ,  i.e the restriction of     to  .  

Here,  is the orthogonal projection of     onto .  If  is invariant under  ,  then .  
We now state essential results that can describe some properties of skew-symmetric operators, namely, unitary 

equivalence of the restriction of the operator  to a subspace   and the compression of the transpose of    

to a subspace    of   .  These results also provide the description of the eigenvalues of the operator .  First, 
we need the following known results. 

    

Theorem 3.21 (Zhu [16], Theorem 2.2 pp. 1273). Let   and  .  Assume that  

,   ,   where   denotes closed linear span. If    is 

skew symmetric, then     where   denotes unitary equivalence. 

Lemma 4.1.22 (Zhu [38], Lemma 2.3 pp. 1273-4): Let    and    be an orthonormal set of   .   

Assume that    and      for    where   and     for all  

.  If     is a conjugation on    and    , then  

a)   for  all   and  

b)   for all   . 

In view of Theorem 3.21 and Lemma 3.22, it can be remarked that for an operator    and a conjugation   

  on     such that    , if for a given non-zero    , where    ) then it is possible that  

.  As an example, consider an operator   defined by      on     

where     is an invertible normal operator on   . Then by (Li and Zhu [10], Theorem 1.10),   is skew 

symmetric. Assume that    is a conjugation on   satisfying       .  Then   

. Since     is of dimension 1, it follows that   for 

all non-zero   ). 
We also need the following: 

 

Remark 3.23: Let   be a separable Hilbert space .Consider  and     where   is 

a forward shift operator. We define a   , denoted by  on    by a matrix of the form  
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. In more general terms, we refer to an operator of the form   as a Foguel 

operator of order  . 

For an open connected set     and  ,  is a  operator (i.e.   ) if 

each   is an eigenvalue of   of constant multiplicity   , and the eigenvectors span the Hilbert space   

and the operator  is surjective, for every  . (See Cowen and Douglas [1]). By this remark, we can 
demonstrate that every skew symmetric operator with non-zero eigenvalues admits an upper- triangular operator 

matrix representation with respect to some chosen orthonormal basis (see Li and Zhu [10], Theorem 2.5). The 

following is an example. 

 

Example 3.24:  Consider a forward shift operator   defined by  for     where   is 

an orthonormal basis of . Assume that     and   .  Define     on    where  

  .  Then   is a Foguel operator of order  .  Since by definition    is a Cowen-Douglas 

Operator with index   on  

,  we have    . 

Then      and    .    By (Li and Zhu [10], Theorem 2.5) if   is 

skew symmetric, then there exists a conjugation   on    and  where    is a set of all skew 

symmetric operators on   with respect to  , that is  

 , such that   . 

 

Remark 3.25: As earlier noted in definition 3.7, an operator    is said to be triangular if    

.  This also means that    is triangular if and only if it admits an upper triangular 

matrix representation of the form   with respect to some orthonormal basis of  , where each 

omitted entry is zero. The well-known    operators are examples of triangular operators.  In 

some cases, an operator    and its adjoint     can be both triangular (with respect to different orthonormal 
basis). Such operators are said to be bitriangular. Examples include diagonal normal operators, block diagonal 

operators and all algebraic operators. (Recall that an operator    is algebraic if there is a non-zero polynomial   

such that  It is also clear that on a finite dimensional Hilbert space, every operator is bitriangular. 
However, there are some triangular operators that are not bitriangular. An example of such operators is the 

adjoint of the forward shift operator. 

Note also that every skew symmetric operator must be triangular. To see this, consider a skew symmetric 

operator    . Then by definition, there exists a conjugation  on      such that .  It 
follows that 

    and     for all     and      

and    . But by definition of the triangular operator, .  Since  is a conjugation 

it follows that   . Thus,   is triangular 

and    is bitriangular. From this argument, it is seen that    exactly when  . More 

particularly, .    As a consequence of this remark, we have the following 
result: 

 

Lemma 3.26 (Zhu [16], Lemma 3.3, pp. 1279): Let .  Assume     with    and  

, .  Then   
The proof of the Lemma 3.26  can easily be established when we have the computation of the form  

.  Since the eigenvalues are distinct, i.e.  ,  it follows 

that   as required. 

 

Theorem 3.27 (Zhu [16] , Theorem 3.4, pp. 1280): Let   . Suppose that       are distinct 

eigenvalues of  and    is a unit vector for    . If ,  then  is skew 

symmetric if and only if there exists unit vectors    with    for    such that  

,    and     for any  . 

 

Remark 3.28: From the sufficiency of Theorem 3.27, we see that if    are the distinct eigenvalues of 

the operator    and for a given unit vector       for    , if ,    and     is 

skew symmetric, then  . 
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It is also important to note that for a general symmetric operator   ,   does not imply that  

  as demonstrated in the following example: 

 

Example 3.29: Consider an orthonormal basis    of the Hilbert space  and define the forward shift 

operator  on   as  for all    .For  ,  with    define    

where   is a conjugation on  . Then    (i.e.  the right shift operator   is complex symmetric). 

Now set        on     where    is an identity operator and     on    .    

Then    is a conjugation on    and    so     is skew symmetric. It is also noted that 

. 

 

Proposition 3.30 (Nzimbi et al [12]): Every skew-adjont operator    is binormal. 

Example 3.31: We define on the function Hilbert space    a differential operator by     and show 

that it is skew-adjoint. Using integration by parts, we have 

 

             =  

                                 .  

This clearly shows that      is a skew-adjoint operator. 

 

IV. CONCLUSION 
In this paper, we have investigated the classes of skew-adjoint and skew-symmetric operators have also been 

discussed, where we have established that skew-symmetric operators admit skew-symmetric matrix 

representation with respect to some orthonormal basis { }.Further, a summary of the basic results for this class 

of operators has also been outlined.  More importantly, we have illustrated that not every skew-symmetric 
operator is bitriangular. Another example establishing a link between complex symmetric and skew-symmetric 

operators is also shown, by arbitrarily choosing a conjugation  on  and decomposing the operator  as a 

direct sum of a complex symmetric and skew-symmetric operator. We have also characterized skew-symmetric 

operators with non-zero eigenvalues and a description of the same done by providing an upper triangular 
operator matrix representation 
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