Product of Composition Operators

Dr. S. K. Latha, SriGuru Institute of Technology, Coimbatore District, -Tamilnadu-641 110, INDIA

Abstract

In this paper it is proved that the product of two composition operators C_1 and C_2 with $h_2h_1 = 1$ and $h_1 = h_1 \circ T_2$ is quasi isometry and 2-isometry. Also it I s proved that this condition is not necessary for C_1 and C_2 with an example.

Key words: Isometric operators, Composition Operators

I. INTRODUCTION

Let (X, Σ, λ) be a sigma finite measure space and let $T: X \to X$ be a non singular measurable transformation. The equation $Cf = f \circ T$, $f \in L^2(\lambda)$ defines a composition transformation on $L^2(\lambda)$.

When the measure $\lambda \circ T^{-1}$ is absolutely continuous with respect to λ and the Radon Nikodym derivative $\frac{d \lambda T^{-1}}{d \lambda} = f_0 = h$ is essentially bounded, T induces a composition operator C on $L^2(\lambda)$.

The Radon Nikodym derivative of $\lambda (T \circ T)^{-1}$ with respect to λ is denoted by $f_0^{(2)}$ (ie) $\frac{d\lambda (T \circ T)^{-1}}{d\lambda} = f_0^{(2)}$ and the Radon Nikodym derivative of $\lambda (T \circ T)^{-1}$ with respect to λT^{-1} is denoted by g_0 (ie) $\frac{d\lambda (T \circ T)^{-1}}{d\lambda T^{-1}} = g_0$.

Every essentially bounded complex-valued measurable function f_0 induces the bounded operator M_{f_0} on $L^2(\lambda)$ which is defined by $M_{f_0} f = f_0 f$ for every $f \in L^2(\lambda)$.

Further from [6], we have $C^*C = f_0$ and in [5] it is proved that $C^{*2}C^2 = f_0^{(2)}$. Also we have $C^{*k}C^k = f_0^{(k)}$ from [2].

II. ISOMETRIC COMPOSITION OPERATORS

In [4], S. M. Patel has introduced quasi-isometric operator and studied some of its properties.

Definition: [4]: A bounded linear operator T is called a quasi-isometry if $T^{*2}T^{2} = T^{*}T$.

Theorem : [10]: A composition operator C on $L^2(\lambda)$ is quasi-isometry iff $f_0^{(2)} = f_0$ a.e.

Corollary :[10]: If C is an quasi-isometric operator then $g_0 = 1$ a.e.

Definition. [1]: A bounded linear operator T is m-isometry if $\sum_{k=0}^{m} (-1)^{k} m C_{k} T^{*^{m-k}} T^{m-k} = 0$.

Definition. [3]: A bounded linear operator T is called 2-isometry if $T^{*^2}T^2 - 2T^*T + I = 0$

Lemma : Let C, $M_{\theta} \in B(L^{2}(\lambda))$. Then $C M_{\theta} = M_{\theta}C$ iff $\theta = \theta \circ T$ a.e where M_{θ} is the multiplication operator induced by θ [7]

III. PRODUCT OF COMPOSITION OPERATORS

Theorem 1: Let C_1 and C_2 be two composition operators with $h_2h_1 = 1$ and $h_1 = h_1 \circ T_2$. Then the product C_1C_2 is quasi isometry.

Proof:

Consider
$$(C_1C_2)^{*2}(C_1C_2)^2$$

= $(C_2^*C_1^*)^2(C_1C_2)^2$
= $C_2^*C_1^*C_2^*C_1^*C_1C_2C_1C_2$
= $C_2^*C_1^*C_2^*M_{h_1}C_2C_1C_2$
= $C_2^*C_1^*C_2^*C_2M_{h_1}C_1C_2$
= $C_2^*C_1^*M_{h_2}M_{h_1}C_1C_2$
= $C_2^*C_1^*C_1C_2$
= $(C_1C_2)^*(C_1C_2)$.
 $\Rightarrow C_1C_2$ is quasi-isometry.

Theorem 2: Let C_1 and C_2 be two composition operators with $h_2h_1 = 1$ and $h_1 = h_1 \circ T_2$. Then the product C_1C_2 is 2- isometry.

Proof:

Consider $(C_1C_2)^{*2}(C_1C_2)^2 + I$ = $(C_2^*C_1^*)^2(C_1C_2)^2 + I$ = $C_2^*C_1^*C_2^*C_1^*C_1C_2C_1C_2 + I$ = $C_2^*C_1^*C_2^*M_{h_1}C_2C_1C_2 + I$ = $C_2^*C_1^*C_2^*C_2M_{h_1}C_1C_2 + I$ = $C_2^*C_1^*C_1C_2 + I$ = $C_2^*C_1^*C_1C_2 + I$ = $C_2^*C_1^*C_1C_2 + I$ = $(C_1C_2)^*(C_1C_2) + C_2^*C_2M_{h_1}$ = $(C_1C_2)^*(C_1C_2) + C_2^*M_{h_1}C_2$ = $(C_1C_2)^*(C_1C_2) + C_2^*C_1^*C_1C_2$ = $(C_1C_2)^*(C_1C_2) + (C_2^*C_1^*C_1C_2)$ $= 2(C_1C_2)^*(C_1C_2).$ $\Rightarrow C_1C_2 \text{ is 2-isometry.}$

Corollary: The following example shows that the conditions of Theorem 2 are not necessary for the composition operators C_1 and C_2 .

Example: Let X = N, the set of all natural numbers and λ be the counting measure on it.

Define
$$T_1: N \to N$$
 by $T_1(n) = \begin{cases} 1, & n = 1, 2\\ n-1, & n \ge 3 \end{cases}$ and $n \in N$.
Define $T_1: N \to N$ by $T_1(n) = \begin{cases} 1, & n = 1, 2, 3\\ n-1, & n \ge 3 \end{cases}$ and $n \in N$.

Define $T_2: N \to N$ by $T_2(n) = \begin{cases} n & \text{and} & n \in N \\ n-2, & n \ge 4 \end{cases}$ and $n \in N$.

Now $T_1 \circ T_2 : N \to N$ is defined as $(T_1 \circ T_2)(n) = \begin{cases} 1, & n = 1, 2, 3, 4 \\ n - 3, & n \ge 5 \end{cases}$.

This operator induces a composition operator C_1C_2 which is 2-isometry since $f_0^{(2)} - 2f_0 + 1 = 0$, $\forall n \in N$. But $h_2h_1(1) \neq 1$.

Lemma: Let $C \in B(L^2(\lambda))$ be quasinormal. Then $M_h^n C = C M_h^n$, $n \in N$. [8]

Lemma: Let C_1 and C_2 are quasinormal with $h_i \circ T_j = h_i$ a.e. and $h_j \circ T_i = h_j$ a.e. for i, j = 1, 2. Then $M_{h_i}^{m} C_j^{n} = C_j^{n} M_{h_i}^{m}, i, j = 1, 2.$ [8]

Theorem 7: Let C_1 and C_2 are quasinormal with $h_2^n h_1^m = 1$ and $h_1 = h_1 \circ T_2$. Then the product of the powers of C_1 and C_2 (i.e.) $C_1^m C_2^n$ is 2- isometry for all $m, n \in N$. **Proof:**

Consider
$$(C_1^{m} C_2^{n})^{*^2} (C_1^{m} C_2^{n})^2 + I$$

$$= C_2^{n^*} C_1^{m^*} C_2^{n^*} C_1^{n^*} C_1^{m} C_2^{n} C_1^{m} C_2^{n} + I$$

$$= C_2^{n^*} C_1^{m^*} C_2^{n^*} M_{h_1}^{m} C_2^{n} C_1^{m} C_2^{n} + I$$

$$= C_2^{n^*} C_1^{m^*} C_2^{n^*} C_2^{n} M_{h_1}^{m} C_1^{m} C_2^{n} + I$$

$$= C_2^{n^*} C_1^{m^*} M_{h_2}^{n} M_{h_1}^{m} C_1^{m} C_2^{n} + I$$

$$= C_2^{n^*} C_1^{m^*} C_1^{m} C_2^{n} + I$$

$$= (C_1^{m} C_2^{n})^* (C_1^{m} C_2^{n}) + I$$

$$= (C_1^{m} C_2^{n})^* (C_1^{m} C_2^{n}) + C_2^{n^*} C_2^{n} M_{h_1}^{m}$$

$$= (C_1^{m} C_2^{n})^* (C_1^{m} C_2^{n}) + C_2^{n^*} C_2^{n} M_{h_1}^{m}$$

$$= (C_1^{m} C_2^{n})^* (C_1^{m} C_2^{n}) + C_2^{n^*} C_1^{m} C_2^{n}$$

$$= (C_1^{m} C_2^{n})^* (C_1^{m} C_2^{n}) + C_2^{n^*} C_1^{m^*} C_1^{m} C_2^{n}$$

 $= 2(C_1^m C_2^n)^* (C_1^m C_2^n).$ $\Rightarrow C_1^m C_2^n \text{ is 2- isometry for all } m, n \in N.$

Theorem 8: Let C_1 and C_2 are quasinormal with $h_2^n h_1^m = 1$ and $h_1 = h_1 \circ T_2$. Then the product of the powers of C_1 and C_2 (i.e) $C_1^m C_2^n$ is quasi-isometry for all $m, n \in N$. **Proof:**

Consider
$$(C_1^{m} C_2^{n})^{*^2} (C_1^{m} C_2^{n})^2$$

$$= (C_2^{n^*} C_1^{m^*})^2 (C_1^{m} C_2^{n})^2$$

$$= C_2^{n^*} C_1^{m^*} C_2^{n^*} C_1^{m^*} C_1^{n} C_2^{n} C_1^{m^*} C_2^{n^*}$$

$$= C_2^{n^*} C_1^{m^*} C_2^{n^*} M_{h_1}^{m^*} C_2^{n} C_1^{m^*} C_2^{n^*}$$

$$= C_2^{n^*} C_1^{m^*} M_{h_2}^{n^*} M_{h_1}^{m^*} C_1^{m^*} C_2^{n^*}$$

$$= C_2^{n^*} C_1^{m^*} C_1^{m^*} C_2^{n^*}$$

$$= C_1^{n^*} C_2^{n^*} (C_1^{m^*} C_2^{n^*}).$$

$$\Rightarrow C_1^{m^*} C_2^{n^*} \text{ is quasi-isometry.}$$

Corollary: Normaloid does not imply 2-isometry and quasi-isometry.

Example: Let X = N, λ be the counting measure on it and $L^2 = l^2$. Define $T: N \to N$ by $T(n) = n + 1, n \in N$. It is already proved in [9], that $\left\| f_0^{(k)} \right\| = 1, \forall k \in N$.

 \Rightarrow C is normaloid.

But since $f_0^{(2)} - 2 f_0 + 1 \neq 0$ for n = 1, C is not 2- isometry.

Also since $f_0^{(2)} \neq f_0$ for n = 2, C is not quasi-isometry.

Hence normaloid does not imply 2-isometry and quasi-isometry.

REFERENCES

- [1] Agler. J and Stankus. M, m-isometries transformations of Hilbert space, I. Integral Equations and Operator theory, 21(1995), 383-427
- [2] S. Panayappan, Non–Hyponormal Composition Operators, Indian Journal of Math. 35(1993), 293-98

[3] Patel S. M., 2- Isometric Operators, Glasnik Matematicki, Vol 37 (57) (2002) 143-147

- [4] Patel S. M., A note on Quasi-isometries, Glasnik Matematicki, Vol 35 (55) (2000) 307-312
- [5] Pushpa, R. Suri and Singh.N., M-quasihyponormal Composition operators, Inter. J. Math and Math. Sci., 10(3), (1987), 621-623.
- [6] Singh. R. K., Compact and quasinormal composition operators, Proc. Amer. Math. Soc. 45 (1974), 80-82.
- [7] Singh R.K. and David Chandrakumar, R, Some results on Composition operators, Indian Journ. Pure Appl. Math., 14(10) (1983), 1233-1237.
- [8] K. Thirugnanasambandam, Class Q composition operators on L^2 spaces, Thesis, May 2009, Bharathiar University, India.
- [9] S. Panayappan, Non-normal Composition operators on L^2 spaces, Thesis, 1993-Bharathiar University, India.
- [10] S. Panayappan, S. K. Latha, Some Isometric Composition Operators, Int. J. Contemp. math. Sciences, Vol.5, 2010, no 13, 615-621