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Abstract 

           Let G be simple graph. The first Zagreb index is the sum of squares of degree of vertices and second 

Zagreb index is the sum of the products of the degrees of pairs of adjacent vertices. In this paper, we compute 

the first and second Zagreb index of degree splitting of standard graphs. 
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I. INTRODUCTION 

The first and second Zagreb indices first appeared in a topological formula for the total -energy of 

conjugated molecules, were introduced by Gutman and Trinajstić in 1972. Since then these indices have been 

used as branching indices. The Zagreb indices are found to have applications in QSPR and QSAR studies.  

Let G be a simple connected graphs, i.e.) connected graphs without loops and multiple edges. For a graph 

𝐺, 𝑉(𝐺) and 𝐸(𝐺) denote the set of all vertices and edges respectively. For a graph 𝐺, the degree of a vertex 𝑣 is 

the number of edges incident to 𝑣 and denoted by 𝑑𝑒𝑔 𝑣 . The first Zagreb index M1 (G) is equal to the sum of 

squares of the degrees of the vertices, and the second Zagreb index M2 (G) is equal to the sum of the product of 

the degrees of pairs of adjacent vertices of the underlying molecular graph G. 

They are defined as: 

𝑀1 𝐺 =  𝑑(𝑣)2

𝑣𝜖𝑉 (𝐺)

 

𝑀2 𝐺 =  𝑑 𝑢 𝑑 𝑣 

𝑢𝑣∈𝐸(𝐺)

 

 Let G = (V, E) be a graph with V = S1∪S2∪⋅⋅⋅ ∪St∪T where each Si is a set of vertices having at least 

two vertices and having the same degree and T = V − ∪Si. The degree splitting graph of G is denoted by DS(G) 

is obtained from G by adding vertices w1, w2, ⋅⋅⋅ , wt and joining wi to each vertex of Si(1 ≤ i ≤ t) .  

My research is to find the first and second Zagreb index of degree splitting of graphs like Paths, Cycle, 

Wheel, Complete Graph, Star,Complete Bi-partite Graphs, Path Corona and Cycle corona. 

 

Theorem 1: For a Path𝑃𝑛 ,𝑛 ≥ 3, 𝑀1  𝐷𝑆(𝑃𝑛) =  𝑛2 + 5𝑛 − 6, 𝑀2  𝐷𝑆(𝑃𝑛) = 3𝑛2 − 3𝑛 + 5. 
Proof: 

Let v1, v2, …,vn be the vertices of Pn. Let w1 and w2 be the degree splitting vertices in which w1 is 

adjacent to the end vertices and w2 is adjacent to the remaining vertices. 

Then, 𝑑 𝑣𝑖 =  
2           𝑖 = 1, 𝑛 
3      𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

 , 𝑑 𝑤1 = 2, 𝑑 𝑤2 = 𝑛 − 2. 

𝑀1  𝐷𝑆(𝑃𝑛)  =  𝑑(𝑣𝑖)
2 +

𝑛

𝑖=1

 𝑑(𝑤𝑖)
2

2

𝑖=1

 

                          = 𝑑(𝑣1)2 +  𝑑(𝑣𝑖)
2 +

𝑛−2

𝑖=2

𝑑(𝑣𝑛)2 + 𝑑(𝑤1)2 + 𝑑(𝑤2)2 

                          = 22 +  32 + 22 + 22 +  𝑛 − 2 2

𝑛−2

𝑖=2

 

                          =  𝑛2 + 5𝑛 − 6. 
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𝑀2  𝐷𝑆(𝑃𝑛)  =  𝑑 𝑢 𝑑 𝑣 

𝑢𝑣∈𝐸

 

                          =  𝑑(𝑣1) 𝑑(𝑣2) + 𝑑(𝑣𝑛−1)𝑑(𝑣𝑛) +  𝑑(𝑣𝑖)𝑑(𝑣𝑖+1)

𝑛−1

𝑖=1

+  𝑑(𝑣𝑖)𝑑(𝑤2)

𝑖≠1,𝑛

 

                          = 2 2 + 2 2 + 2 3 +  𝑛 − 3 3 3 + 2 3 +  𝑛 − 2 3(𝑛 − 2) 

                          = 3𝑛2 − 3𝑛 + 5. 

Note:For n = 2, there is only one degree splitting vertex. Therefore, 𝑀1  𝐷𝑆(𝑃2) = 𝑀2  𝐷𝑆(𝑃2) = 12 . 

Theorem 2: For Cycle, 𝐶𝑛 ,𝑛 ≥ 3, 𝑀1  𝐷𝑆(𝐶𝑛) = 𝑛2 + 9𝑛, 𝑀2  𝐷𝑆(𝐶𝑛) = 9𝑛 + 3𝑛2. 

Proof: 

Let v1, v2, …,vn be the vertices of Cn. Let w1 be the degree splitting vertex. 

Then 𝑑(𝑣𝑖) = 3 for all i, 𝑑 𝑤1 = 𝑛. 

𝑀1  𝐷𝑆(𝐶𝑛)  =  𝑑(𝑣𝑖)
2 +

𝑛

𝑖=1

𝑑 𝑤1 
2 

                         =  32 +

𝑛

𝑖=1

𝑛2 

                         = 32 𝑛 + 𝑛2 

                         = 𝑛2 + 9𝑛. 

𝑀2  𝐷𝑆(𝐶𝑛)  =  𝑑 𝑢 𝑑 𝑣 

𝑢𝑣∈𝐸

 

                          =  3 3 +  3 𝑛 

𝑛

𝑖=1

𝑛

𝑖=1

 

                          = 9𝑛 + 3𝑛2. 

Theorem 3: For Wheel 𝑊𝑛 ,𝑛 ≥ 4, 𝑀1  𝐷𝑆(𝑊𝑛) = 2𝑛2 + 18𝑛 + 2, 𝑀2  𝐷𝑆(𝑊𝑛) = 8𝑛2 + 21𝑛 + 1. 

Proof: 

Let v1, v2, …,vnand u be the vertices of Wn. Let w1and w2be the degree splitting vertices. 

Then 𝑑(𝑣𝑖) = 4 for all i 𝑑 𝑢 = 𝑛 + 1, 𝑑 𝑤1 = 𝑛, 𝑑 𝑤2 = 𝑛.. 

𝑀1  𝐷𝑆(𝑊𝑛)  =  𝑑(𝑣𝑖)
2 + 𝑑 𝑢 2

𝑛

𝑖=1

+ 𝑑 𝑤1 
2 + 𝑑 𝑤2 

2 

                         =  42 +

𝑛

𝑖=1

(𝑛 + 1)2 + 𝑛2 + 12 

                         = 42 𝑛 + 2𝑛2 + 2𝑛 + 2 

                         = 2𝑛2 + 18𝑛 + 2. 
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𝑀2  𝐷𝑆(𝑊𝑛)  =  𝑑 𝑢 𝑑 𝑣 

𝑢𝑣∈𝐸

 

                          =  4 4 +  4 𝑛 + 1 

𝑛

𝑖=1

𝑛

𝑖=1

+  4 𝑛 + (𝑛 + 1)

𝑛

𝑖=1

 

                          = 16𝑛 + 4𝑛 𝑛 + 1 + 4𝑛2 + 𝑛 + 1 

                          = 8𝑛2 + 21𝑛 + 1. 

Note:For n =3, there is only one degree splitting vertex, 𝑀1  𝐷𝑆(𝑊3) = 80,𝑀2  𝐷𝑆(𝑊𝑛) = 160. 

Theorem 4: For the Complete graph𝐾𝑛 , 𝑛 ≥ 3, 𝑀1  𝐷𝑆(𝐾𝑛) = 𝑛2(𝑛 + 1),𝑀2  𝐷𝑆(𝐾𝑛) = 𝑛3  
𝑛+1

2
 . 

Proof: 

Let v1, v2, …,vn be the vertices of Kn. Let w1 be the degree splitting vertex. 

Then 𝑑(𝑣𝑖) = 𝑛 for all i 𝑑 𝑤1 = 𝑛. 

𝑀1  𝐷𝑆(𝐾𝑛)  =  𝑑(𝑣𝑖)
2 +

𝑛

𝑖=1

𝑑 𝑤1 
2 

                         =  𝑛2 +

𝑛

𝑖=1

𝑛2 

                         = 𝑛2 𝑛 + 𝑛2 

                         = 𝑛2(𝑛 + 1). 

𝑀2  𝐷𝑆(𝐾𝑛)  =  𝑑 𝑢 𝑑 𝑣 

𝑢𝑣∈𝐸

 

                          =  𝑛 𝑛 +  𝑛 𝑛 

𝑛

𝑖=1

𝑛𝐶2

𝑖=1

 

                          = 𝑛2.
𝑛(𝑛 − 1)

2
+ 𝑛3 

                           = 𝑛3  
𝑛+1

2
 . 

 

Theorem 5: For the Star𝐾1,𝑛 , 𝑛 ≥ 2,𝑀1   𝐷𝑆 𝐾1,𝑛  = 2𝑛2 + 6𝑛 + 2, 𝑀2  𝐷𝑆(𝐾1,𝑛) = 4𝑛2 + 3𝑛 + 1. 

Proof: 

Let v and u1, u2, …, un be the vertices of K1,n and w1 and w2 be the degree splitting vertices. 

Then,d v = 𝑛 + 1, 𝑑 𝑢𝑖 = 2 for all i and 𝑑 𝑤1 = 1, 𝑑 𝑤2 = 𝑛 

 

𝑀1  𝐷𝑆(𝐾1,𝑛)  = 𝑑(𝑣)2 +  𝑑(𝑢𝑖)
2 +

𝑛

𝑖=1

𝑑 𝑤1 
2 + 𝑑 𝑤1 

2 

                              = (𝑛 + 1)2 +  22 +

𝑛

𝑖=1

12 + 𝑛2 
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                              = (𝑛 + 1)2 + 𝑛 2 2 + 1 + 𝑛2 

                              = 2𝑛2 + 6𝑛 + 2. 

𝑀2  𝐷𝑆(𝐾1,𝑛)  =  𝑑 𝑢 𝑑 𝑣 

𝑢𝑣∈𝐸

 

                               =  2 𝑛 + 1 +  2 𝑛 +

𝑛

𝑖=1

𝑛

𝑖=1

 𝑛 + 1 1 

                               = 2𝑛 𝑛 + 1 + 2𝑛2 + 𝑛 + 1. 

                            =4𝑛2 + 3𝑛 + 1. 

Theorem 6: For the Complete Bi-partite graph 𝐾𝑚 ,𝑛 , 𝑚, 𝑛 ≥ 2 

𝑀1  𝐷𝑆(𝐾𝑚 ,𝑛)    = 𝑚2 𝑛 + 1 + 𝑛2 𝑚 + 1 + 4𝑚𝑛 + 𝑚 + 𝑛, 

𝑀2  𝐷𝑆(𝐾𝑚 ,𝑛) =   𝑚 + 1  𝑛 + 1  𝑚𝑛 +  𝑛 + 1 𝑚2 + (𝑚 + 1)𝑛2. 

Proof: 

Let v1, v2, …,vmand u1, u2, …, un be the vertices of Km,n and w1 and w2 be the degree splitting vertices. 

Then 𝑑(𝑣𝑖) = 𝑛 + 1, 𝑑 𝑢𝑖 = 𝑚 + 1 for all i and  𝑑 𝑤1 = 𝑚, 𝑑 𝑤2 = 𝑛. 

 

𝑀1  𝐷𝑆(𝐾𝑚 ,𝑛)  =  𝑑(𝑣𝑖)
2 +

𝑚

𝑖=1

 𝑑(𝑢𝑖)
2 +

𝑛

𝑖=1

𝑑 𝑤1 
2 + 𝑑 𝑤1 

2 

                              =  (𝑛 + 1)2 +

𝑚

𝑖=1

 (𝑚 + 1)2 +

𝑛

𝑖=1

𝑚2 + 𝑛2 

                              = 𝑚(𝑛 + 1)2 + 𝑛 𝑚 + 1 2 + 𝑚2 + 𝑛2 

                              = 𝑚2 𝑛 + 1 + 𝑛2 𝑚 + 1 + 4𝑚𝑛 + 𝑚 + 𝑛. 

 

𝑀2  𝐷𝑆(𝐾𝑚 ,𝑛)  =  𝑑 𝑢 𝑑 𝑣 

𝑢𝑣∈𝐸

 

                               =  (𝑚 + 1) 𝑛 + 1 

𝑚𝑛

𝑖=1

+   𝑛 + 1 𝑚 +  (𝑚 + 1)𝑛

𝑛

𝑖=1

𝑚

𝑖=1

 

                               =   𝑚 + 1  𝑛 + 1  𝑚𝑛 +  𝑛 + 1 𝑚2 + (𝑚 + 1)𝑛2. 

Theorem 7: For a Path Corona 𝑃𝑛
+, 𝑛 ≥ 3, 𝑀1  𝐷𝑆(𝑃𝑛

+) =  2𝑛2 + 16𝑛 − 6,𝑀2  𝐷𝑆(𝑃𝑛
+) = 6𝑛2 + 8𝑛. 

Proof: 

Let v1, v2, …, vn and u1, u2, …, unbe the vertices of 𝑃𝑛
+. Let w1, w2 and w3 be the degree splitting 

vertices. 

Then, 𝑑 𝑣𝑖 =  
3           𝑖 = 1, 𝑛 
4      𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

 , 𝑑 𝑢𝑖 = 2 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑑 𝑤1 = 2, 𝑑 𝑤2 = 𝑛 − 2 and 𝑑 𝑤3 = 𝑛. 

𝑀1  𝐷𝑆(𝑃𝑛
+)  =  𝑑(𝑣𝑖)

2 +

𝑛

𝑖=1

 𝑑(𝑢𝑖)
2+𝑑 𝑤1 

2 + 𝑑 𝑤1 
2 + 𝑑 𝑤3 

2

𝑛

𝑖=1

 

                          = 32 +  42 +

𝑛−2

𝑖=2

32 +  22 +

𝑛

𝑖=1

22 + (𝑛 − 2)2 + 𝑛2 
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                          =  𝑛 − 2 16 + 𝑛 4 + 2𝑛2 − 4𝑛 + 26 

                          =  2𝑛2 + 16𝑛 − 6. 

𝑀2  𝐷𝑆(𝑃𝑛
+)  =  𝑑 𝑢 𝑑 𝑣 

𝑢𝑣∈𝐸

 

                          =  𝑑(𝑣1) 𝑑(𝑣2) +  𝑑(𝑣𝑖)𝑑(𝑣𝑖+1)+𝑑(𝑣𝑛−1)𝑑(𝑣𝑛)

𝑛−1

𝑖=1

+ 𝑑(𝑣1) 𝑑(𝑤1) + 𝑑(𝑣𝑛)𝑑(𝑤1)

+  𝑑(𝑣𝑖)𝑑(𝑤3)  + 𝑑(𝑣1) 𝑑(𝑢1) + 𝑑(𝑣𝑛)𝑑(𝑢𝑛) +  𝑑(𝑣𝑖)𝑑(𝑢𝑖) +  𝑑(𝑢𝑖)𝑑(𝑤2)

𝑛

𝑖=1

𝑛−1

𝑖=2𝑖≠1,𝑛

 

                          = 3 4 +  𝑛 − 3 4 4 + 3 4 + 3 2 + 3 2 +  𝑛 − 2 4 𝑛 − 2 + 3 2 + 3 2 +  𝑛 − 2 4 2 
+ 𝑛2(𝑛) 

                         = 6𝑛2 + 8𝑛. 

Note:For n = 2, there is only one degree splitting vertex. Therefore, 𝑀1  𝐷𝑆(𝑃2
+) = 34, 𝑀2  𝐷𝑆(𝑃2

+) = 41 . 

Theorem 8: For Cycle Corona, 𝐶𝑛
+𝑛 ≥ 3, 𝑀1  𝐷𝑆(𝐶𝑛

+) = 2𝑛2 + 20𝑛, 𝑀2  𝐷𝑆(𝐶𝑛
+) = 6𝑛2 + 24𝑛. 

Proof: 

Let v1, v2, …, vn and u1, u2, …, unbe the vertices of 𝐶𝑛
+. Let w1and w2be the degree splitting vertices. 

Then 𝑑(𝑣𝑖) = 4, 𝑑(𝑢𝑖) = 2for all i 𝑑 𝑤1 = 𝑑 𝑤2 = 𝑛. 

𝑀1  𝐷𝑆(𝐶𝑛
+)  =  𝑑(𝑣𝑖)

2 +

𝑛

𝑖=1

 𝑑(𝑢𝑖)
2 +

𝑛

𝑖=1

𝑑 𝑤1 
2 + 𝑑 𝑤1 

2 

                         =  42 +  22 +

𝑛

𝑖=1

𝑛

𝑖=1

𝑛2 + 𝑛2 

                         = 42 𝑛 + 22 𝑛 + 2𝑛2 

                         = 2𝑛2 + 20𝑛. 

𝑀2  𝐷𝑆(𝐶𝑛
+)  =  𝑑 𝑢 𝑑 𝑣 

𝑢𝑣∈𝐸

 

                          =  4 4 +  4 𝑛 

𝑛

𝑖=1

𝑛

𝑖=1

+  4 2 +  2 𝑛 

𝑛

𝑖=1

𝑛

𝑖=1

 

                          = 16𝑛 + 4𝑛2 + 8𝑛 + 2𝑛2 

                          = 6𝑛2 + 24𝑛. 

II. CONCLUSION 

 In this paper, I have computed the first and second Zagreb indices of some standard graphs. Further 

work is going on some special types of graphs and molecular structures. 
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