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Abstract 

          Relying on the fact that fractions are of a long time for researchers a challenging cognitive area for 

research, as students of all levels of education face particular difficulties on their understanding, this paper 

presents a review of contemporary literature on the subject of the representations of fractions. In particular, the 

international literature was investigated in order to study and record the results of researches which have been 

published in this time on the representations of fractions. In other words, this paper aiming to answers to what 

representations have been emerged by this research as the most appropriate or inappropriate for understanding 

the concept of fractions from the students. In this way, this study is expected to give to teachers of mathematics 

education and researchers who are examining the area of fractions a useful guide. 
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I. INTRODUCTION 
 

        The concept of rational number is one of the most important concepts of mathematics and taught from the 

beginning of primary school both in the Greek educational system and in the educational systems of other 

countries. However, it is clear that it is a topic which many teachers find difficult to understand and teach [22, 

32, and 4] and many students find difficult to learn [50, 51, 52, 43, and 2]. So, these difficulties tend to maintain 

within the cognitive patterns of pupils for so long, and can reach adulthood. Thus, misconceptions which make 

manufactured prevent not only educational process, but also the students during the evolutionary trend school. 

One of these difficulties are faced by students with fractions is the symbolism of the rational numbers that 

often helps create misunderstandings. Specifically, many students find it difficult to understand the fraction a/b 

as number. Thus, they tend to be treated as two different integers [27]. A typical example of the above treatment 

is the process of adding fractions. Many students when they want to add fractions such as 
3

2

6

5
      adding the 

numerators and denominators leading to the result
9

7 . Consider, say, the numerator and the denominator as 

independent and not as associated entities and so when they add fractions, they add the numerators and 

denominators [31].  

Another example that is associated with the symbolism of the rational numbers and address them as two 

different integers is when pupils have to compare fractions with numerator alike, for example 
3

1  and 
5

1 . In this 

case, many pupils choose as larger fraction
5

1 , because 5 are larger than the 3. 

In Addition, due to the sequence of natural numbers, whereby the students know that between two successive 

natural numbers there is not a third they adopt this sequence on rational numbers, and they assume that between 

two fractions there is not someone else. Thus, it is unable of the students to understand the existence of infinite 

numbers between two fractional numbers [46, 2, and 53]. 

Furthermore, students face difficulties in the ability to place fractions from smallest to largest, and vice versa. 

Also, the students find hard to divide a whole into equal portions even when teaching fractions in elementary 

school [18, 49, and 3]. Finally, considerable difficulty seems to be faced by students with equivalence and 

division of fractions and with the ability to translate from one system of representing fractions in another [2]. 

This ability is particularly important for the solving a mathematical problem and more generally for the learning 

of mathematics concepts [16, 54].  

 All these difficulties have been attributed by several researchers in a variety of factors. According to Janvier 

[16] most textbooks today include a variety of representations in order to promote understanding. However, Lo 

[21] in his research, evaluates the difficulties in understanding of fractions and ratios possible in inappropriate 

method of teaching in the classroom. Streefland [43] supports the same view, adding that the failure in teaching 

the concept of the fraction is due to the complexity of the concept and the traditional approach to fractions, 
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which is typical and mechanics [39]. In addition, according to international literature, important factors are also 

the way of teaching fractions [7, 55, and 56], the use of representations of mathematical concepts [57, 55, 58, 

and 59] and students‘ and prospective teachers‘ attitudes and beliefs towards mathematics [20, 60, 61, 53, 62, 63, 

73 and 64].  

Thus, there is a common conception that the teaching approach is important factor which affects the 

understanding the concept of the fractions in the perceptions of the students. Hence, the present study was 

undertaken in order to record all teaching approaches and researches about fractions which have been published 

from 2006 until today in international journals providing useful information about the appropriate and 

inappropriate teaching and representations in fractions to the teachers and researchers. 

II. LITERATURE REVIEW: REPRESENTATIONS IN MATHEMATICS  
 

    In education at least in some instances no understanding can be achieved without the aid of representation. 

Such a case is the notion of fractions. In mathematics education, the concept of representation is used as 

equivalent to a sign that shows and makes present a mathematical concept - a symbol or mark to think about the 

concept. Representations are those schemes or mental images with which the subjects work on mathematical 

ideas [65]. Particularly, it is usual to consider the duality, external and internal representations. To think about 

and to communicate mathematical ideas we need to represent them in some way. Communication requires that 

the representations be external, taking the variety of forms, including pictures (e.g., Drawing, charts, graphs), 

written symbols (e.g., numbers, equations, words), manipulative models, oral language (e.g., talk between pairs 

of students and whole class discussion), and real-world situations [35]. The multiple representations are the use 

variety of these external representations during teaching a mathematics concept. 

According to some researches [66, 67, 68, 50] representing mathematical objects in multiple ways plays an 

important role in mathematical understanding and brings value to teaching processes. In addition, recent trends 

in curriculum standards, including standards developed by the National Council of Teachers of Mathematics 

[69], have highlighted the productive role that drawn models and other external representations can play in 

teaching and learning mathematics [70]. Although the representations add complexity, using a range of 

representations is necessary for developing children‘s fractions understanding because each provide links to the 

underlying fractions concepts and children require support to make active connections within and between the 

various representations [71]. 

However, Duval [72] called attention to a cognitive paradox hidden within in various representations. 

Handling these representations choosing he distinguishing features of the concept we must treat and convert, is 

not learnt automatically. This learning results from  a  process  of  explicit  teaching  in  which  the  teacher  

must  render  the student co-responsible. Teachers often underestimate this aspect and passing from one register 

to another, believing that the student follows. The teacher  is  able  to  jump  from  one  register  to  another  

without  problems, because he has already conceptualized: while in fact the student does not so, the  student  

follows  at  the  level  of  semiotic  representatives,  but  not  of meanings [26]. 

III. ΤHE RESEARCH   
 

    Many researchers have studied the issue of representation of fractions and the role they play in understanding 

the concept of fractions. This paper presents these studies of the contemporary international literature that show 

convergent and divergent elements of the findings. This study aims to present researches as a guide and not to 

analyze in depth which could have a large area and is beyond the aims of this survey. 

A. Teaching Errors on Representation of Fractions  

Your Muzheve and Capraro [25] talked about idiosyncratic representations in teaching of converting among 

fractions, decimals, and percent which often help make abstract mathematical concepts more approachable to 

students. Counters, pictures, imagery, drawings, cutouts, micro-worlds and beans are examples of idiosyncratic 

representations, unlike the mathematical representations which are characterized by The National Council of 

Teachers of Mathematics as formal, standard and internationally understood representations used to 

communicate mathematically. Examples include diagrams, graphical displays and symbolic expressions [69]. 

 

 

Fig. 1 Use of double equal signs Fig. 2 Two examples where equals signs 

were not used 
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Among idiosyncratic representations was used by teacher, negatively affected the students had the use of two 

equal signs and it appeared the numerator and denominator of a fraction as two separate entities (figure 1).  In 

addition, some teachers were not explicitly expressing relationships among fractions, decimals and percent using 

the equal sign (figure 2). 

 

 
 

Researches [30, 44, and 2] on the other hand have shown that a common misconception among students is the 

thinking that there are no relationships among fractions, decimals and percent. Moreover, the use of equations in 

which numbers are written above and below the equal sign and equations in which numbers are written as 

superscripts or subscripts (figure 3) had no bearing on the correctness of solutions on the number test of students, 

the concern then becomes how using such representations can affect related on future learning. For instance, 

writing 
2

2

4

3   when one really means 
2*4

2*3  (figure 3) can lead to confusion when students are learning about 

exponents where 32 are supposed to be interpreted as 3×3. Therefore, there is a link between the teacher‘s 

idiosyncratic representation and student‘s expressed misconceptions. 

Furthermore, the research [25] leads to admit that the hundreds grid was used by teachers to represent 

fractions and in discussions about converting fractions into percent for easier comparisons did not help as well 

half of the students were not able to represent 3/5 on a hundreds grid as required for one question on the number 

test. When teachers used the hundreds grid in the classroom, they emphasized finding a fraction with 

denominator hundred first and then representing the resulting fraction on the hundreds grid. Taking this 

approach fails to utilize the part-of-group meaning of fractions that would allow students to shade 3 out of every 

5 squares to arrive at 60 out of the 100 squares which shows 3/5=60%, that is, use of the hundreds grid to 

facilitate converting fractions to percent by teaches in this study relies on the understanding of a fraction as part 

of a whole, and not as part of a group.  

 

 

 
 

The other research [9], which survey of students fourth and fifth grades, also indicated that pattern blocks 

(figure 4), fraction chart, dot model (figure 5) and chip model (figure 6) were not effective on students‘ 

understanding of the part-whole construct for fractions. 

 

 

 
 

Fig.3 Writing numbers as superscripts 

Fig. 4 Pattern blocks 

 

Fig. 5 Dot model 

Fig. 6 Chip model 

Fig. 7 Illustration for sharing eight 

pizzas among 10 people 
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In addition, the wrong drawing of representation can lead to misunderstandings as the study Olive and 

Vomvoridi [29] shows. In particular, for solving on a problem that involved sharing 8 pizzas among 10 people 

and determining how much pizza each person would get, it were used  circles to represent fractions without 

partitioning of circle into ten equal parts to be equal in size (figure 7). This representation leads to lack of 

necessity for parts to be equal. 

B. Representation of Fractions on Number Line 

      Brousseau et al. [5] carried out the experiment in the fourth grade classrooms, with the aim of leading the 

students day by day to invent, understand and become fluent with all the aspects of rationals and decimals. The 

lessons were reproduced in two parallel classes by different teachers over a period of more than 15 years, which 

means that more than 750 students took part in them. 

 

 

 
 

 
Here paper we will present the Module 5, Lesson 3 which referred  representation on the rational number line. 

The teaching approach concluded following game: The teacher chooses a fraction (145/100, for example), and 

writes it in a hidden place. The children work in groups of 2 or 3 and write the first intervals in their notebooks. 

Once the teacher is sure that all the groups have chosen an interval, he asks them one at a time. The children ask: 

―Is it between 0 and 5? It is between 0 and 3? And so on until they have found an interval of length 1 (in this 

case, [1, 2)). Teacher draws this interval [1, 2) in color (figure 8). Then Teacher asks the children to find shorter 

intervals. They start with intervals in tenths. Each time the children propose a new subdivision, the teacher has 

them come to the board and write the division points as fractions (figure 9). Then, they propose an enlargement 

of the interval which they will cut into 10 equal pieces. At that point a student will come up and mark both the 

end points and the intermediate points in hundredths (figure 10). The game continues until the interval [145/100, 

146/100) is proposed, at which point the teachers says ―Trapped!‖ 

 

 

 
 

 

 

Fig. 8 Interval [1, 2)  

Fig. 9 14/10 and 15/10 on number line 

 
Fig. 10 Number line points in hundredths 

Fig. 11 Number line final form 
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In the second phase, a student comes up and colors the interval [0, 1) in red, then proposes to divide the 

interval [1, 2) in ten. He extends the red line to 14/10. The teacher asks what has to be cut in ten. The student 

shows to the interval [14/10, 15/10) and marks the fraction 145/100. He finishes by marking in red the interval 

[140/100, 145/100) (figure 11). The teacher then asks to measure this ribbon, how many units we do need, how 

many tenths beyond the 1 and how many hundredths. And teacher writes on the board: number of units 1, 

number of 1/10 4 (so 4/10), number of 1/100 5 (so 5/100). So, it must measure 1 + 4/10 + 5/100. In the end, asks 

a student to come to the board and carry out the addition. 

In the end of Module, 5 lesson 3 the students have learned how to put decimal fractions on a number line. 

Many know how to place them quickly and surely. Some still have difficulties. They are aware that some 

fractions can‘t be put on a line subdivided in powers of 10. 

In addition, Widjaja et al. [45] used the number line as representation for putting negative fractions and 

decimals (figure 12). Because of the large percentage of wrong answers in this case, researchers stressed in their 

study the most important implication for education at school is that the teaching of negative numbers and of the 

number line must not be confined to integers, as is frequently the case, but must also include negative fractions 

and decimals.  

 

 
At this point they mention how important is familiarity with number line on development of conceptual 

understanding of fractions and placement them on number line as research of Hodgen et al. [14] suggested. The 

same conclusion, the correlation between success of students in a representation to familiarize students with it, 

and research of Jiang and Chua [17] suggested.  

In their article Vamvakoussi and Vosniadou [47] focused on the density property of rational numbers. They 

present two experiments they explored the instructional value of a cross-domain mapping between ―number‖ 

and ―line‖ in secondary school students‘ understanding of density. 

 In the first experiment, the participants were 229 seventh to eleventh graders; they designed a multiple-

choice questionnaire, consisting of three item-blocks of five items each. The items of the first block (hereafter, 

Numbers-block) asked how many numbers there are between two rational numbers, varying the interval 

endpoints (e.g., integers, decimals, fractions). The items of the second block (hereafter, Number Line-block) 

were similar with the items of the Numbers-block, but the two numbers were presented on the number line. The 

items of the third block (hereafter, Points-block) asked the number of points on a straight line segment, varying 

the length and the direction of the segment. 

In the second experiment they drew on the findings of the first to design a short text-based instructional 

intervention with the purpose of testing whether the use of the rubber line bridging analogy and explicit use of 

the numbers-to-points correspondence could help students grasp not only the ―infinity many intermediates‖ but 

also the ―no successor‖ aspect of density. The participants were 149 eighth and tenth graders. All three texts 

used in the intervention had a common part T1 (Basic Text) referring to the number of numbers in the interval 

defined by 0 and 1, which provided the correct answer and reminded students of the numbers-to-points 

correspondence. T1 continued by evoking the notion of space between 0 and 1 on the number line and presented 

several examples of decimals lying in the interval. This last paragraph was varied in T2 (Figure Text) (figure 13), 

with the insertion of two figures illustrating the interval and the given examples of intermediate numbers. These 

figures were similar to the ones that are typically presented in our participants‘ textbooks, when presenting 

numbers on the number line. Finally, T3 (Rubber-line Text) begun with the common part of the text and 

continued with a paragraph introducing the ―rubber line‖ anchor.  

 

Fig. 12 Locate the following decimals and fractions on the number line 
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The text intervention improved student performance in tasks regarding the infinity of numbers in an interval; 

the ―rubber line‖ bridging analogy further improved performance successfully conveying the idea that these 

numbers can never be found one immediately next to the other. 

The results of their studies show that the number and the ordering of points on a line segment were indeed 

challenging for the students. They indicated, however, that the infinity of points on a segment is more accessible 

for students than the infinity of numbers in an interval. In their intervention study they attempted to support 

students to build the idea of density in a geometrical context, by making explicit the numbers-to point‘s 

correspondence and by helping students re-represent the line segment as a dense array of points with the ―rubber 

line‖ analogy. This bridging analogy proved successful in bringing within the grasp of students the ―no 

successor‖ aspect of density, which is the most difficult aspect of this notion.  

Rather, the merit of this study is that it demonstrates the added instructional value of a specific tool, which 

can be a valuable component of an efficient learning environment.  

C. Representation of the Levels of Units 

       Conceptual units of various types have played a central role in research on children‘s understandings of 

whole and rational numbers. The most important point in the following discussion is the distinction between two 

and three levels of units, which are explained first in the context of whole numbers. According to Steffe [41, 42], 

a child who can form two levels of units can understand a whole number such as five simultaneously as five 

separate units (one level of unit) and as one group of five understood to be a single entity (the whole group is a 

second level of unit) (figure 14a). Steffe states that such a child has formed composite units. Through 

interiorization and coordination of composite units, a child can produce three levels of units by nesting 

composite units within composite units. As an example, a child with such an operation can assimilate a display 

of 20 blocks as a single group (the whole group is one level) composed of five units (a second level), where 

each of the five units is also a composite unit composed of four separate units (a third level) (figure 14b). 

Reasoning with three levels of units requires attending to all three levels simultaneously. 

 

 
 

Fig. 14 (a) The number 5 understood with two levels of units (b) The number 20 understood with three levels of units 

 

 

 
Hence, in their research Hackenberg and Tillema [13] addressed levels of units on fraction multiplication. For 

this aim used for representation of fraction multiplication two Microworlds, TIMA: Sticks and Java Bars were 

a)  b)  

Fig. 15 a) JavaBars: Making 1/7of 1/3 b) Sticks 

Fig. 13 Figure Text 
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developed to allow students to enact key mental actions such as partitioning, iterating, and disembedding, in 

establishing fraction Microworlds. A central difference between the two programs is that in Sticks students work 

only on line segments (sticks), whereas in Java Bars students can draw rectangles of varying dimensions (figure 

15). In this activity, two pairs of sixth grade students participated in an 8-month teaching experiment that 

investigated the students‘ construction of fraction composition schemes in particular, fraction multiplication. 

The results showed that the interiorization of two levels of units, a particular multiplicative concept, was found 

to be necessary for the construction of a unit fraction composition scheme, while the interiorization of three 

levels of units was necessary for the construction of a general fraction composition scheme.  In addition, this 

software facilitated students to consolidate the use of two and three levels of the unit and therefore the concept 

of multiplication of fractions.  

 

 
 

 
Other researchers have found similar evidence for connections between students‘ whole number 

multiplicative concepts and students‘ fraction knowledge are Izsák [15], Hackenberg [12] and Empson et al. 

[10]. In study of Izsák for teaching of fraction multiplication were used the materials that use drawings to 

represent fractions as length or area quantities (figure 16 and 17). This study builds on the distinction made in 

past research between reasoning with two and with three levels of quantitative units (figure 14 and 16) and 

demonstrates that reasoning with three levels of units is necessary but insufficient if teachers are to use students‘ 

reasoning with units as the basis for constructing generalized numeric methods for fraction arithmetic. Generally, 

with using of multiple representations and strategies is providing alternatives from which each student can 

understand the three levels of the unit and the concept of multiplication of fractions. 

Furthermore, Hackenberg approached improper fractions as interiorized three levels of units by using the 

same above Microworlds, JavaBars. Hackenberg indicates that the construction of improper fractions requires 

having interiorized three levels of units (figure 18). 

 

Fig. 16 Determining 1/4 of 1/3 (a ) Constructing part of a part (b) Using iteration and two levels 

of units (c) Using recursive partitioning and three levels of units 

Fig. 17 Four ways to draw 2/3 of 3/4 
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Students can construct the splitting operation without also interiorizing the coordination of three levels of 

units and this interiorized coordination appears to be necessary for constructing improper fractions and therefore 

an iterative fractional scheme. 

 

 
Fig. 19 a) Part–whole fraction scheme b) Splitting operation c) Partitive unit fraction scheme 

 

 

Results of other research [28] support Hackenberg‘s hypothesis. In their research, two year professional 

development study, which took place from 2005 to 2007 involved one fifth-grade classroom and one sixth-grade 

classroom for each of the two years, with no students involved in both years; a total of 84 students completed 

tests. The study using representations of figure 19, affirms distinctions between part–whole and partitive 

reasoning with fractions by measuring significant differences between students‘ performance on unit and non-

unit partitive items and by indicating no significant difference between students‘ performance on unit and non-

unit part–whole items and it suggest that students‘ construction of a partitive fraction scheme facilitates the 

development of splitting. In addition, researchers stressed that student who had constructed splitting without 

even a partitive unit fraction scheme that the partitive fraction scheme and the splitting operation could be 

constructed independently. 

D. Representation of Fractions and Cultural Influence 

        Interest are researches that compare the representations used by teachers of different countries hence, 

they have an impact on students' perceptions of the concept of the fraction. Such research is the study Moseley 

et al. [23] which investigated US and Japanese fourth-grade teachers‘ domain knowledge of key fraction 

representations in individual interviews. The results indicated that US and Japanese teachers possess very 

different facilities for working with an array of rational number perspectives and their representations. That is, 

Japanese teachers interpreted all rational number representations as conveying primarily mathematical 

information, whereas US teachers interpreted only some representations as conveying primarily mathematical 

information. The US teachers also focused more intently on part-whole relations than Japanese in their 

interpretations and Japanese teachers more easily linked rational number representations to more advanced 

upcoming content in the curriculum. These differents there are because US textbooks tend to foster limited 

Fig. 18 Representation of 6/5 

b) The bar shown below is tree time as long as another 

bar. Draw the other bar. 

a) Shade in 3/5 of the bar. 

c) If the longer bar is a whole bar, what fraction is the 

shorter bar? 
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understanding about mathematical representation with more space devoted to irrelevant pictures and the US 

teachers apparently received training to teach a narrower range of grades in their pre-service preparation and 

were more likely to stay at particular grade levels for a longer period of time than their Japanese counterparts 

who in their pre-service training are required to familiarize themselves with the mathematics curriculum in 

Grades 1 through 6.  

These findings are consistent with Cai and Wang [6] who examined U.S. and Chinese teachers‘ conceptions 

and construction of representations to teach the concept of ratio and proportion. The analyses of the data 

collected showed that none of the U.S. plans has kind of in-depth mathematical analysis. Instead, most U.S. 

plans require students to directly enter into problem solving after initial introduction of the concept. By devoting 

the entire lesson to one concept, the Chinese lessons were designed in a more coherent way than were the U.S. 

lessons. Hence, research Cai and Wang confirms that these identified differences reflect their different cultural 

beliefs about the teaching and learning of mathematics in general and different cultural values about 

representations in specific. 

The above findings imply that strong cultural differences may help explain established cross-national 

differences in student reasoning and for responding, for example, why there is the tendency for Chinese students 

to choose abstract strategies and symbolic representations and for U.S. students to choose concrete strategies 

and drawing representations in their solving mathematical problems. In particular, the results of research of 

Moseley and Okamoto [24] indicated that top-performing US students scored significantly higher in problem 

solving and showed more effectively linked rational number representations than the other groups. The results 

imply that successful rational number problem solving is intertwined with representational knowledge for a 

wide range of rational numbers and that the bulk of US students do not possess effective skills for working with 

rational number representations. This means that the type of cultural influence such as, curricula, pressures and 

support that are provided to both teachers and students, as the results of Yang et al. [48] also indicated who 

examined the presentation of fractions in textbooks used by fifth and sixth graders in Singapore, Taiwan, and the 

United States. 

E. Representation of Fraction Operations 

      Interest As far as the four operations of fraction are concerned, Chen and Li [7] case study examined the 

features of instructional coherence in one Chinese teacher classroom both within individual lessons and across a 

sequence of four lessons on fraction division. There were over 50 students in the class. Each lesson lasted about 

40 min. He taught at the sixth grade level and teaching was familiar with the textbook. 

 
 

 
 

 

 

Fig. 21 Unit-changing interpretation 

a 

Fig. 20 Pictorial representation to review the 

relationship between fraction multiplication and 

fraction division 

b 
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Through teachings, the teacher and students provided multiple representations for understanding, mainly used 

line segment and the lesson content was developed within and across activity segments (figure 20). In particular, 

this pictorial representation of figure 20 used to review the relationship between fraction multiplication and 

fraction division. Teacher drew a pictorial representation to show 2/3 (figure 20a). Teacher continued the 

drawing (figure 20b) to finding how much is 1/2 of 2/3 and he confirmed that these two expressions (e.g. 2/3x 

1/2=2/3÷2) have the same answer. In this way, a connection was made among the fraction multiplication and 

even division.  

Hence, results suggest that coherent curriculum and the teacher's perception of the knowledge coherence 

facilitated the teacher's construction of coherent classroom instruction. In addition, the use of the pictorial 

representation helped students understand the real-world problem. For example, for problem ―a car runs 18 km 

in 3/10 h, what is the speed of this car?‖ the teacher designs a line segment was divided into ten equal parts, 

three parts were used to represent that the car runs 18 km in 3/10 h. So, in the third and fourth lessons, the 

majority of students were able to use at least one way to present and justify the algorithm of fraction division. 

Lee and Sztajn [19] also involved division of fractions. In particular, in their study addresses the redefinition 

of the measurement and partitive interpretations of division from whole number to fractional contexts. That is, 

they suggest that focusing on the idea of unit can be considered as unit-changing (figure 21) and unit-keeping 

(figure 22). The unit-keeping and unit-changing interpretations allow for a discussion of why one inverts and 

multiplies. To understand division in fractional contexts, attention to the unit indicates that, in the process of 

―transforming‖ division into multiplication we are searching for the unit of the divisor or the unit of the dividend. 

 In measurement problems, the dividend and the quotient do not have the same unit; therefore, we call it the 

unit-changing interpretation of division. Figure 21 shows three problems and representations for the unit 

changing interpretation of division. In each case, we are counting the divisor and the dividend using the same 

unit. The quotient, however, is based on a new counting unit that is two, one half, or two-fifths of the dividend's 

unit and the results of the measuring are four, 16, and 20, respectively. One way to think about measurement 

problems is that we want to count the dividend using the new counting unit defined by the divisor. 

In partitive problems, the dividend and the quotient have the same unit leading to what we call the 

unitkeeping interpretation. Figure 22 also shows the unit-keeping interpretation for the three problems being 

examined. In these cases, the divisor indicates the relation of the dividend with respect to what we want to find 

and our goal is to find a new counting unit for the divisor and count (or measure) it in terms of the unit of 

dividend. So, in the examples we have that eight is two, one half or two-fifths of what we want to find. To solve 

each of the unit-keeping problems, we construct a counting unit for the divisor and then we count (or measure) 

the new unit using the unit of the dividend. The task in a partitive problem is to use the counting unit of the 

dividend to compose and count what is in a counting unit for the divisor.  

Hence, Lee and Sztajn [19] contend that the unit-keeping and unit-changing interpretations of division of 

fractions support development of conceptual understanding of fractions and division.  

Fig. 22 Unit-keeping interpretation 
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The other research [35] examined the role of visual representations in the learning of mathematics. The study 

emphasizes the role of multiple representations in creating and recreating new understandings. In the case of 

fraction, it presents example for multiplication equations (figure 23). In particular, a fraction equation is used to 

explore the concept of equality and to emphasize that even though the mouse goes through a series of 

transformations, the new animal is ‗‗still a mouse.‘‘ In this representation the mouse is assigned an initial value 

of 1 and each transformation is assigned a fraction expression that is equal to one. Thus the students‘ 

mathematical model express both equality (all animals are assigned fraction values equal to one) and inequality 

(by the use of different colors). So, mathematical models via multiple representations help students learn a key 

process used by mathematicians and provide an opportunity to explore how assumptions impact problem 

solving. 

F. Digital Representation of Fractions   

          The study [36] a six-month ethnographic study of young people‘s game play that was conducted as part 

of a broader effort to understand how people think and learn across settings such as school, work, and home,  

indicated the positive implications on concept of fractions from use of  Video Games‘ representations. More 

specifically, during the game, the player comes into contact with important mathematical topics like rate of 

change and proportion are the basis of how many games function (figure 24).  

 

 
 

In doing so, they use the represented quantities to make predictions about future states of the game and to 

determine their actions. In other words, in this particular context young people are not just learning to use 

quantitative representations but using quantitative representations to learn. Furthermore, games are open-ended 

and allow for multiple ways of achieving success. What‘s more, open-ended games often come with well-

defined tasks and explicit markers of achievement. This balance allows for the emergence of many different 

kinds of goal-directed quantitative practices. 

Lin [20] indicated also the positive effects of use of web-based in learning fractions (figure 25). In particular, 

he compares the effectiveness of web-based instruction (WBI) with the traditional lecture in mathematics 

content and methods for the elementary school course. The results of this study suggest that the use of WBI is 

significantly more effective as method in providing students with the opportunity to promote their procedural 

and conceptual knowledge on fractions. Likewise, the interactive websites used for web-based instruction 

provide a dynamic and animated tool for improving students‘ visual and conceptual abilities in learning 

fractions. These findings are consistent with Fuchs et al., [11] and Schorr and Goldin [37]. 

Fig. 24 Quantitative representations 

across video games 

Fig. 25 Example of the interactive websites 

Fig. 23 Mathematical model representations: 

Fraction equation model 
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Another study [40] investigated the possibilities of using a micro world, a web-based colour calculator; both 

enriched pre-service teachers‘ experiences with rational numbers and challenged their understandings of several 

properties related to fractions and their decimal representations. The Colour Calculator is an internet-based 

calculator that provides numerical results, but that also offers its results in a colour-coded table. Conventional 

operations are provided, as shown in Figure 26. Each digit of the result corresponds to one of 10 distinctly 

colored swatches – reflected in a legend – in the table. The calculator operates at a maximum precision of 100 

decimals digits, and thus each result is simultaneously represented by a (long) decimal string and a table, or grid 

of colour swatches. It is possible to change the dimension, or the width, of colour table to values between 1 and 

30. Figure 27 shows the result of typing 1/7 into the calculator with the grid width set at 10, thus generating the 

associated colored table. 

 
 

The findings showed that pre-service teachers‘ interactions with a web-based colour calculator both enriched 

their experiences with rational numbers and challenged their understandings of several properties related to 

fractions and their decimal representations. The novelty and aesthetic appeal of the Colour Calculator – in 

synchronization with the tasks we chose – helped the participants overcome their reluctance to reengage with 

properties and relationships associated with these concepts. Through colour, speed, and size of display, 

previously opaque qualities such as repetition and length of the period became transparent, and thus available 

for exploration and problem solving. More importantly perhaps, this research participants had the opportunity to 

engage with representations of fractions in decimal form as objects, rather than as final steps in a procedure, and 

to construct vivid, memorable, and positive images of important mathematical ideas. 

 

Fig. 26 The Colour Calculator 

Fig. 27 The Colour Calculator showing 1/7 



International Journal of Mathematics Trends and Technology ( IJMTT ) - Volume 65 Issue 2 - February 2019 

ISSN: 2231 – 5373                               http://www.ijmttjournal.org  Page 66 

 
Likewise, Sedig and Sumner [38] talked about the importance of visual mathematical representations (VMRs) 

by characterization of computer-based interactions by which learners can explore and investigate this VMRs. 

Interacting with VMRs means allowing learners to act upon VMRs and receive some form of reactive feedback. 

Interaction mediates also between the VMR and the thinking, reasoning and intentions of the learner and is often 

intended to support the cognitive tasks that the learner may want to perform on or with the representation. In 

case of the fractions, it is presented two micro-level interaction techniques that can be used to support VMR-

based mathematical asks. 

The first is the zoom on the number line (figure 28). Conceptual zooming increases or decreases the level of 

detail shown regarding an abstract concept the learner is studying. While discovering the concepts of rational 

numbers, children benefit from exploring the number line which represents a conceptually deep structure. As 

children select a region into which to zoom, concepts such as the division of numbers into equal parts can be 

divided are demonstrated. This can be most effectively shown when the flow of zooming is continuous, 

allowing learners to see the transition into the number space. 

 

 
 

The second interaction technique is fragmenting (figure 29). Fragmenting, whose variants are dissecting, 

decomposing, partitioning, segmenting, splitting, and unitizing, refers to interacting with a VMR to break it into 

its component or elemental parts. Fragmenting can allow the learner to see component parts of a VMR and to 

further interact and reason with those parts. What‘s more, fragmenting can be used to help learners in 

understanding concepts such as fractions. For example, a child may apply fragmenting to a set of equal line 

segments to explore the idea of equivalent fractions. 

Another study [34] examined the students‘ normalizing activity, as they use this kind of dynamic 

manipulation to modify ‗buggy‘ geometrical figures while developing meanings for ratio and proportion. In 

particular, students worked in groups of two using ‗Turtle worlds‘, a piece of geometrical construction software 

which combines symbolic notation, through a programming language (Logo), with dynamic manipulation of 

geometrical objects by dragging on sliders representing variable values (figure 30). The study was carried out in 

a Greek secondary school with two 7th grade mixed ability classes with 26 13-year-old students in each class.  

The results indicate that most of the groups of students had a multiplicity of ways by which they developed part 

or all of these schemes and accessed different layers of complexity at different times of their engagement with 

the task. In other words, Logo environments offer possibilities for students to relate the symbolization to 

algebraic objects and procedures, hence, the integrated use of programming and dragging seemed to play a 

critical role in enhancing students‘ shift from visual to mathematical practices to determine proportional 

relations. 

Fig. 28 Several levels of conceptual zooming of a real 

number line 

Fig. 29 Fragmenting line segments to discover 

equivalent fractions 
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Finally, other study [1] addresses the analysis of the complexity of ratio problems at Grades 6 and 7 and 

reports a two-year experiment related to the teaching and learning of rational numbers and proportionality in 

these grades using precise guidelines and a specific computer environment. Two classes were followed and 

observed. Part of the teaching material was common to classes, mainly the objectives and the corpus of ratio 

problems in a physical context. But in one class, here called ―Partial-experiment‖ (PEx), the learning 

environment was exclusively a paper-pencil one and the teacher followed his usual method in designing and 

conducting teaching sequences. In the other class, here called ―Full-experiment‖ (FEx), the teaching was based 

on a framework involving precise guidelines and a specific computer environment. Therefore coal, they 

designed and developed the software series ORATIO and NewOra. ORATIO is designed for introducing 

rational numbers. It is composed of twenty computer-programmes in two sets and a database (figure 31), while 

NewOra (figure 32) is about quotients and proportionality in the linear scale register. It is presented after 

ORATIO, when pupils have been trained to ―treatment‖ and ―conversion‖ tasks. 

 

 
 

This comparative pupil-oriented study indicates more complete improvement in the FEx class, i.e., a better 

acquisition of fractions and their use for solving usual proportionality problems. In other words, the learning in 

FEx appears to be more efficient than in PEx. FEx-pupils also give most obvious signs of recognizing 

proportionality as a mathematical structure underlying the different ratio problems in context. This leads to 

admit that above software and, generally, systematically working the separations and the articulations between 

and within the physical and the mathematical domains involved in ratios helps pupils to discern invariants and 

access the proportionality model. 

 

 

 
 

Hansen et al. [33] report their article the iTalk2Learn. ITalk2Learn is a Fraction Lab with the aim of 

developing an open-source intelligent tutoring platform that supports math‘s learning for students aged 5 to 11. 

Fig. 30 Example of Turtleworlds 

Fig. 31 One interpretation of the mixture-problem according to Gradu4 in 

ORATIO 

Fig. 32 Using the single scale in NewOra 
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It allows students to learn from a system in a more natural way than ever before. This empowers educators to 

deliver the right lesson at the right time for every child, enabling personalized learning at scale. In addition, this 

Fractions Lab utilized a variety of fractions representations including continuous and discrete fractions and 

fractions in one, two and three dimensions (number line, area/region, and liquid measures, respectively), 

developing, in this way, children‘s conceptual understanding with a virtual manipulative (see Fig. 33). 

 

 
Fig. 33 Fractions Lab showing three representations for 1/4 

 

Other research [3] used the application of Fraction Battles Software which was created by the research team 

(Fig. 34). This software was about the concepts of the equal parts of a unit, of improper fractions and of the 

classification of rational numbers on the geometric model of the number line. The software‘s target was to 

familiarize students with rational numbers and help them reduce difficulties they face with fractions with the 

assistance of multiple representations on which the added value of the software through a variety of activities of 

a dynamic multimedia environment.  

 

                          
Fig. 34 Home page of Fraction Battles software        Fig. 35 Digital dashboard of Fraction Battles 

 

In order to win in Fraction Battles, students must arrive at the finish, throwing the dice and following the 

route shown in Figure 35. The route includes 27 points/activities. Each time a student stops at some of these 

points, he is asked to answer the question/activity by clicking on the corresponding position. If he answers 

correctly, he continues, otherwise he waits for his turn again. Each activity is designed to refute some of the 

difficulties students have in rational numbers, as highlighted by previous research. In addition, activities are 

graded by difficulty (see Fig. 36).   

 

 
Fig. 36 Indicative activities of Fraction Battles Software. a) (Left side) activity for translating from one 

representation of the concept of fraction to another. b) (Middle side) activity for improper fractions. c) (Right 

side) activity for the equidivision of a unit into parts 
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G. Musician Representation of Fractions 

Courey and Siker [8] examined the effects of an academic music intervention on conceptual understanding of 

music notation, fraction symbols, fraction size, and equivalency of third graders (ages 8.5–10.11) from a 

multicultural, mixed socio-economic public school setting. Students which were 67 were assigned by class to 

their general education mathematics program or to receive academic music instruction two times/week, 45 

min/session, for 6 weeks.  

 

 
 

Fig. 34 Sample of student moving between the number line, music notes and fraction symbols, and sample of 

student using music notes to add fractions with unlike denominators 

 

 

The first six lessons focused on music notation and the temporal value of music notes in four fourths time. By 

temporal value, we refer to the relative time duration of each note. The last six lessons focused on connecting 

the proportional values of the music notes to other signs or fraction representations and then to formal 

mathematical fraction symbols. The sequence of instruction was as follows: first, students were taught basic 

music notation for measures in four fourths time and how many beats of each note was equal to a whole note, 

the largest quantity that could fill a measure in four fourths time. Second, students were taught to connect the 

fraction symbol with the music note (figure 33). Third, students were taught to add and subtract the fraction 

quantities, often with unequal denominators, represented by different notes to create measures of four fourths 

(figure 34). Fourth, students were introduced to other representations of fractional quantities (i.e., fraction 

circles, fraction tiles, and the number line), taught to compare music notation and fraction symbols, and move 

comfortably between these representations (figure 35). Fifth, students were taught to add and subtract fractional 

Fig. 33 Sample of student moving between fraction bars, music notes, and fraction 

symbols 
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quantities written as a number sentence by using a representation of choice (e.g., music note and number line) as 

a conceptual guide. 

 

 

 
The results show promise for the use of music to teach fraction concepts in the elementary curriculum. We 

have a compelling reason to view music instruction as an integral part of the elementary curriculum, due to its 

utility in teaching beginning fraction concepts and related fraction computation to elementary students. 

Furthermore, this intervention appears to be particularly effective for students who are coming to instruction 

with a lower than average understanding of fractions. Academic music appears to have strengthened their 

conceptual understanding of both the magnitude and equivalency of fractions via a semiotic game. 

IV. CONCLUSIONS 
 

     Our study examined the representation of fractions which have been used by researchers and have been 

published in international journals from 2006 until today in order to compose a useful guide for teachers and 

researchers who are investigating the area of fractions.  

The results of our research indicated that visual fractional representations by computer and software, such as 

programming language, Microworlds, web-based, help the participants overcame many cognitive difficulties on 

fractions reported in the literature. In other words, Computer environment provide a dynamic and animated tool 

for improving students‘ visual and conceptual abilities in learning fractions allowing for multiple ways of 

achieving success.  

In addition, use of idiosyncratic representations such as equations with missing equal signs, equations with 

double equal signs, equations in which numbers are written above and below the equal sign, equations in which 

numbers are written as superscripts or subscripts and  partitioning of a whole into not equal parts can lead 

students to misunderstandings. 

Furthermore, data analyses indicated that representation on the rational number line helps students to learn 

how to put decimal fractions on a number line, but also it is important there is a familiarity with number line 

because in doing so develop the conceptual understanding of fractions and placement fractions on number line. 

Moreover, students must consolidate the use of two and three levels of the unit. This interiorized coordination 

appears to be necessary for understanding of multiplication of fractions, partitive fraction scheme, for 

constructing improper fraction, splitting and an iterative fractional scheme. This is able to achieve with use 

multiple representations and strategies is providing alternatives from which student can understand the above 

notions.  

Likewise, the use of appropriate representation and mainly visual representations such as the unit-keeping 

and unit-changing interpretations (partitive interpretations of division from whole number to fractional contexts), 

pictorial representation to review the relationship between fraction multiplication and fraction division, help 

students understand the fraction‘s operations. 

Last but not least, strong cultural differences and type of cultural influence such as, curricula, pressures and 

support that are provided to both teachers and students, affect the understanding of rational number 

representation, have an impact on students' perceptions of the concept of the fraction and that these differences 

help explain established cross-national differences in student reasoning on fractions. 

Fig. 35 Sample of student moving between circles, music notes, and fraction 

symbols 
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