$\tau_1 \tau_2 - rg^{**}$ closed Sets in Bigeneralized Topological Spaces

R. Glory Deva Gnanam

Department of mathematics, C.S.I Jayaraj Annapackiam college, Nallur.

Abstract

In this paper we define regular generalized star star closed sets and regular generalized star star open sets in Bigeneralized topological spaces. Also we study the properties of these sets.

Key words - rg * *closed sets, rg* *open sets.

I. INTRODUCTION

In 1963, J.C.Kelly [3] defined the study of Bitopological spaces. K.Chandrasekhara Rao and N.Palaniappan[2] introduced the concepts of regular generalized star closed sets and regular generalized star open sets in a topological space. K.Chandrasekhara Rao and K.Kannan extended the above concept to Bitopological spaces. Chandrasekhara Rao and Palaniappan introduced the concept of regular generalized star star closed sets and regular generalized star star open sets in topological spaces and studied their properties. In this paper, we introduce the concepts of $\tau_1 \tau_2$ – regular generalized star star closed sets ($\tau_1 \tau_2 - rg^{**}$ closed sets) and $\tau_1 \tau_2$ – regular generalized star star open sets ($\tau_1 \tau_2 - rg^{**}$ open sets) and study their properties in Bigeneralized topological spaces.

II. PRELIMINARIES

Throughout this paper, (X, τ_1, τ_2) or simply X denote a Bigeneralized topological space. The intersection (resp.union) of all τ_i - closed sets containing A (resp. τ_i -open sets contained in A) is called the τ_i - closure (resp. τ_i - interior) of A, denoted by τ_i -cl(A) (resp. τ_i -int(A)). For any subset $A \subseteq X$, τ_i -rint(A) and τ_i -rcl(A) denote the regular interior and regular closure of a set A with respect to the topology τ_i - respectively. The set of all τ_2 - regular closed sets in X is denoted by τ_2 - R.C(X, τ_1, τ_2). The set of all $\tau_1 \tau_2$ - regular open sets in X is denoted the complement of A in X. We shall require the following known definitions and results.

Definition: 2.1

Let X be a non-empty set. A subset τ of P(X) is said to be generalized topology on X if $\phi \in \tau$ and arbitrary union of elements of τ belongs to τ .

Definition: 2.2

Let X be a non empty set and let τ_1 and τ_2 be generalized topologies on X. Then the triple (X, τ_1, τ_2) is said to be bigeneralized topological space .

Definition: 2.3

A subset A of a Bigeneralized topological space (X, τ_1, τ_2) is called

- (a) $\tau_1\tau_2$ -regular closed if τ_1 -c1 $[\tau_2$ -int(A)] = A.
- (b) $\tau_1\tau_2$ regular open if τ_1 int $[\tau_2$ -cl(A)] = A.
- (c) $\tau_1\tau_2$ regular generalized closed ($\tau_1 \tau_2$ rg closed) in X if τ_2 cl (A) \subseteq U whenever A \subseteq U and U is $\tau_1 \tau_2$ regular open in X.

- (d) $\tau_1\tau_2$ –regular generalized open ($\tau_1\tau_2$ -rg open) in X if $F \subseteq \tau_2$ int(A) whenever $F \subseteq A$ and F is $\tau_1\tau_2$ regular closed in X.
- (e) $\tau_1 \tau_2$ -regular generalized star closed ($\tau_1 \tau_2 rg^*$ closed) in X if $\tau_2 rcl(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_1 \tau_2$ -regular open in X.
- (f) $\tau_1 \tau_2$ regular generalized star open ($\tau_1 \tau_2$ rg* open) in X if its complement is $\tau_1 \tau_2$ regular generalized star closed ($\tau_1 \tau_2$ rg* closed) in X.

III. REGULAR GENERALIZED STAR STAR CLOSED SETS

Definition: 3.1

A subset A of a bigeneralized topological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ – regular generalized star star closed $(\tau_1 \tau_2 - rg^{**} \text{ closed})$ in X if τ_2 -cl[τ_1 -int(A)] \subseteq U whenever A \subseteq U and U is $\tau_1 \tau_2$ -regular open in X.

Example 3.2: Let X = { a,b,c,d } τ_1 = { ϕ , X, {a,b}, {b,d} , {a,b,d} } τ_2 = { ϕ , X, {a}, {d}, {b,d}, {a,d}, {a,b,d} }. Take U = {b, d}. Then U is $\tau_1 \tau_2$ regular open in X. {b} and {d} $\tau_1 \tau_2$ -rg** closed.

Theorem: 3.3

Let A be a subset of a bigeneralized topological space (X, τ_1 , τ_2). If A is $\tau_1\tau_2$ -rg** closed then τ_2 -cl[(τ_1 -int (A)]–A does not contain non empty $\tau_1\tau_2$ -regular closed set.

Proof :

Suppose that A is $\tau_1\tau_2$ -rg** closed. Let F be a $\tau_1\tau_2$ -regular closed set such that $F \subseteq \tau_2$ -cl[τ_1 -int(A)]-A. Then $F \subseteq \tau_2$ -cl[τ_1 -int(A)] $\cap A^C$. Since $F \subseteq A^C$, we have $A \subseteq F^C$. Since F is $\tau_1\tau_2$ -regular closed set, F^C is $\tau_1\tau_2$ -regular open. Since A is $\tau_1\tau_2$ -rg ** closed, we have τ_2 -cl[(τ_1 -int(A)] $\subseteq F^C$. Therefore, $F \subseteq [\tau_2$ -cl[τ_1 -int(A)]]^C. Also $F \subseteq \tau_2$ -cl[τ_1 -int(A)]. Hence $F \subseteq \phi$. Therefore $F = \phi$.

Theorem: 3.4

If A is $\tau_1\tau_2$ -rg**closed and B is $\tau_1\tau_2$ -rg closed, then $A \cup B$ is $\tau_1 \tau_2$ -rg** closed.

Proof :

Let $A \cup B \subseteq U$ and U is $\tau_1 \tau_2$ – regular open in X. Since $A \subseteq U$ and A is $\tau_1 \tau_2$ -rg** closed, we have τ_2 -cl[τ_1 -int (A)] $\subseteq U$. Since $B \subseteq U$ and B is $\tau_1 \tau_2$ -rg closed, we have τ_2 -cl(B) $\subseteq U$. Now τ_2 -cl[τ_1 -int(A \cup B)] $\subseteq \tau_2$ -cl[τ_1 -int[A \cup τ_2 -cl(B)]] $\subseteq \tau_2$ cl[τ_1 -int[A \cup T_2-rg** closed.

Theorem: 3.5

If a subset A is $\tau_1\tau_2$ -rg closed then A is $\tau_1\tau_2$ -rg^{**} closed.

Proof :

Let $A \subseteq U$ and U is $\tau_1\tau_2$ -regular open. Since A is $\tau_1\tau_2$ -rg closed, we have τ_2 -cl(A) $\subseteq U$. Hence τ_2 -cl $[\tau_1$ -int(A)] $\subseteq U$. Therefore A is $\tau_1\tau_2$ -rg^{**} closed.

Theorem: 3.6

Let A and B be subsets of such that $A \subseteq B \subseteq \tau_2$ -cl[τ_1 -int(A)]. If A is $\tau_1 \tau_2$ -rg** closed, then B is $\tau_1 \tau_2$ -rg** closed.

Proof :

Let $B \subseteq U$ and U is $\tau_1 \tau_2$ -regular open in X. Since $A \subseteq B$, we have $A \subseteq U$, Since A is $\tau_1 \tau_2$ -rg** closed, we have

 τ_2 -cl[τ_1 -int(A)] \subseteq U. Since B \subseteq τ_2 -cl[τ_1 -int(A)], we have τ_2 -cl[τ_1 -int(B)] \subseteq τ_2 -cl(B) \subseteq τ_2 -cl[τ_1 -int(A)] \subseteq U. Therefore, B is $\tau_1 \tau_2$ -rg** closed.

Theorem: 3.7

Suppose that $\tau_1\tau_2$ -R.O(X, τ_1,τ_2) $\subseteq \tau_2$ -C(X, τ_1,τ_2). Then every subset of X is $\tau_1\tau_2$ -rg**closed.

Proof :

Let A be a subset of X. Let $A \subseteq U$ and U is $\tau_1\tau_2$ -regular open in X. Since $\tau_1\tau_2 - R.O(X, \tau_1, \tau_2) \subseteq \tau_2C(X, \tau_1, \tau_2)$. we have U is τ_2 -closed in X. Since $A \subseteq U$, we have τ_2 -cl(A) $\subseteq \tau_2$ -cl(U) = U. Therefore, τ_2 -cl[τ_1 -int(A)] $\subseteq \tau_2$ -cl[A] $\subseteq U$. Hence A is $\tau_1\tau_2$ -rg** closed.

IV. REGULAR GENERALIZED STAR STAR OPEN SETS

Definition: 4.1

A subset A of a bigeneralized topological space (X,τ_1,τ_2) is called $\tau_1\tau_2$ -regular generalized star star open $(\tau_1\tau_2 - rg^{**} \text{ open})$ in X if its complement is $\tau_1\tau_2$ -regular generalized star star closed $(\tau_1\tau_2 - rg^{**} \text{ closed})$ in X. *Example 4.2*:

Let $X = \{a,b,c,d\}, \tau_1 = \{\phi,X,\{a,c\},\{c,d\},\{a,c,d\}\} \tau_2 = \{\phi,X,\{a\},\{c\},\{a,c\},\{b,c\},\{a,b,c\}\}$. $\{a,b,c\}$ and $\{a,b,d\}$ are $\tau_1\tau_2rg^{**}$ open sets and $\{a,b\}$ is not $\tau_1\tau_2rg^{**}$ open set is obtained in the next theorem.

Theorem: 4.3

A subset A of a bigeneralized topological space (X, τ_1, τ_2) is $\tau_1 \tau_2$ -rg^{**} open if and only if, $F \subseteq \tau_2$ -int[τ_1 -cl(A)] whenever $F \subseteq A$ and F is $\tau_1 \tau_2$ -regular closed in X.

Proof :

Necessity : Let $F \subseteq A$ and F is $\tau_1 \tau_2$ -regular closed in X. Then $A^C \subseteq F^C$ and F^C is $\tau_1 \tau_2$ -regular open in X. Since A is $\tau_1 \tau_2$ -rg** open, we have A^C is $\tau_1 \tau_2$ -rg** closed. Hence, τ_2 -cl[τ_1 -int(A^C)] $\subseteq F^C$. Consequently, $[\tau_2$ -int[τ_1 -cl(A)]]^C $\subseteq F^C$. Therefore, $F \subseteq \tau_2$ -int[τ_1 -cl(A)].

Sufficiency : Let $A^C \subseteq U$ and U is $\tau_1 \tau_2$ -regular open in X. Then $U^C \subseteq A$ and U^C is $\tau_1 \tau_2$ -regular closed in X. By our assumption, we have $U^C \subseteq \tau_2$ -int $[\tau_1$ -cl(A)]. Hence $[\tau_2$ -int $[\tau_1$ -cl(A)]^C \subseteq U. Therefore,

 $\tau_2\text{-cl}[\tau_1\text{-int}(A^C)] \subseteq U. \text{ Consequently } A^C \text{ is } \tau_1\tau_2\text{-rg}^{**} \text{ closed. Hence } A \text{ is } \tau_1\tau_2\text{-rg}^{**} \text{ open.}$

Theorem: 4.4

Let A and B be subsets such that $\tau_2 - int[\tau_1 - cl(A)] \subseteq B \subseteq A$. If A is $\tau_1 \tau_2 - rg^{**}$ open, then B is $\tau_1 \tau_2 - rg^{**}$ open.

Proof:

Let $F \subseteq B$ and F is $\tau_1\tau_2$ -regular closed in X. Since $B \subseteq A$, we have $F \subseteq A$. Since A is $\tau_1\tau_2$ -rg** open, we have, $F \subseteq \tau_2$ -int[τ_1 -cl(A)] by theorem 4.3. Since τ_2 -int[τ_1 -cl(A)] $\subseteq B$, we have τ_2 -int[τ_1 -cl(A)]] $\subseteq \tau_2$ -int(B) $\subseteq \tau_2$ -int[τ_1 -cl(B)]. Hence $F \subseteq \tau_2$ -int[τ_1 -cl(A)] $\subseteq \tau_2$ -int[τ_1 -cl(B)]. Therefore, B is $\tau_1\tau_2$ -rg** open.

Theorem 4.5 : If a subset A is $\tau_1\tau_2$ -rg^{**} closed, then τ_2 -cl[τ_1 -int(A)] – A is $\tau_1\tau_2$ -rg^{**}open.

Proof :

Let $F \subseteq \tau_2$ -cl[τ_1 -int(A)] – A and F is $\tau_1\tau_2$ -regular closed. Since A is $\tau_1\tau_2$ -rg** closed. We have τ_2 -cl[τ_1 -int(A)] – A does not contain nonempty $\tau_1\tau_2$ -regular closed {by theorem 3.3} Therefore, $F = \phi$, hence τ_2 -cl[τ_1 -int(A)] – A is $\tau_1\tau_2$ -rg** open.

REFERENCES

- [1] K.Chandrasekhara Rao and K.Kannan, Regular generalized star closed sets in bitopological spaces, Thai Journal of mathematics, Vol. 4, (2) (2006), (341 349)
- K.Chandrasekhara Rao and N.Palaniappan, Regular generalized star closed sets Bulletin of pure and Applied sciences, 19(2)(2000), 291-306.
- [3] J.C.Kelly, Bitopological space, Proc. London math. Society.13(1963), 71-89.