Functions on α * g –Open Set in Topological Spaces

P.Anbarasi Rodrigo¹ & J. Harlin Jebaseeli²

¹ Assistant Professor, Department of Mathematics, St. Mary's college (Autonomous), Thoothukudi, India. ² M. Phil Scholar, Department of Mathematics, St. Mary's College (Autonomous), Thoothukudi, India.

Abstract

The purpose of this paper is to introduce $\alpha *g$ –open maps and $\alpha *g$ –closed mapsin topological spaces and discussits properties. Additionally, we relate and compare these functions with some other functions in topological spaces.

Keywords - $\alpha *g$ –open maps and $\alpha *g$ –closed maps.

I. INTRODUCTION

Generalized closed mappings were introduce and studied by Malghan. In 1983,A.SMashour et al and I.A. Hasanein introduced α -open maps and α -closed maps, recently P. Anbarasi Rodrigo and S.Pious Missier introduced α *-open maps and α *-closed maps in Topology. In this paper, we introduce α *g -open maps and α *g-closed maps also we relate and compare these functions with some other functions in topological spaces.

II. PRELIMINARIES

Throughout this paper (X,τ) , (Y,σ) and (Z,η) or X, Y, Z represent non-empty topological spaceson which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space(X, τ), cl(A) and int(A) denote the closure and the interior of A respectively. The power set of X isdenoted by P(X).

Definition 2.1

A map $f:(X,\tau)\to (Y,\sigma)$ is called a **open map** if image of each open set in X is open in Y.

Definition 2.2

A map $f:(X,\tau)\to (Y,\sigma)$ is called a **closed map** if image of each closed set in X is closed in Y.

Definition 2.3

A map $f:(X,\tau)\to (Y,\sigma)$ is called a α -open map [6] if image of each open set in X is α - open in Y.

Definition 2.4

A subset A of a topological space X is said to be α^* -open[7]if $A \subseteq int^*(cl(int^*(A)))$.

Definition 2.5

A map $f:(X,\tau)\to (Y,\sigma)$ is called a g -open map [6] if image of each open set in X is g - open in Y.

Definition 2.6

A map $f:(X,\tau)\to (Y,\sigma)$ is called a $g\alpha$ —open map [6] if image of each open set in X is $g\alpha$ — open in Y.

Definition 2.7

A map $f:(X,\tau)\to (Y,\sigma)$ is called a αg —open map[6] if image of each open set in X is αg — open in Y.

Definition 2.8

A subset A of a topological space X is said to be **generalized closed**(briefly g-closed) [3] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

Definition 2.9

A subset A of a topological space X is said to be **generalized** α -closedset[5](briefly g α -closed) α cl (A) \subseteq U whenever A \subseteq U and U is α - open in (X, τ).

Definition 2.10

A subset A of a topological space X is said to be α generalized-closed set[4] if α cl (A) \subseteq U whenever A \subseteq U and U is open in (X,τ) .

III.α*g -OPEN MAPSAND α *g-CLOSED MAPS

Definition 3.1:

A map $f:(X,\tau) \to (Y,\sigma)$ is called a $\alpha * g$ —open map if image of each open set in X is $\alpha * g$ —open in Y.

Theorem 3.2:

Every open map is $\alpha * g$ -open map

Proof:

Let $f:(X,\tau) \to (Y,\sigma)$ be an open map. Since f is an open map, the image of each open set in X is open in Y. Since every open set is $\alpha * g$ —open. Hence, f is $\alpha * g$ —open map.

Remark 3.3:

The following example supports that the converse of the above theorem is not true in general.

Example 3.4:

```
Let X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\} and \sigma = \{\phi, \{a\}, \{a, b\}, Y\}, \alpha * g O(X,\tau) = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\} and \alpha * gO(Y, \sigma) = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, Y\}. Let f: (X, \tau) \longrightarrow (Y, \sigma) be a map defined by f(a) = a, f(b) = b, f(c) = c. Clearly, f is \alpha * g —open map. But f(\{a, c\}) = \{a, c\} is not open in Y. Therefore, f is not an open map.
```

Theorem 3.5:

Every α –open map is $\alpha * g$ –open map.

Proof:

Let $f:(X,\tau) \to (Y,\sigma)$ be a α -open map. Since f is a α -open map, the image of each open set in X is α -open in Y. Since every α -open set is $\alpha * g$ -open. Hence, f is $\alpha * g$ -open map.

Remark 3.6:

The converse of above theorem need not be true.

Example 3.7:

```
Let X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\} and \sigma = \{\phi, \{a\}, \{a, b\}, Y\}, \alpha*gO(X, \tau) = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}, \alpha O(X, \tau) = \{\phi, \{a\}, \{b\}, \{a, b\}, X\} and \alpha*gO(Y, \sigma) = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, Y\}, \alpha O(Y, \sigma) = \{\phi, \{a\}, \{a, b\}, \{a, b\},
```

 $\{a,c\}, Y\}$. Let $f: (X, \tau) \longrightarrow (Y, \sigma)$ be an identity map. Clearly, f is $\alpha * g$ –open map. But $f(\{b\}) = \{b\}$ is not α -open in Y. Therefore, f is not α -open map.

Theorem 3.8:

Every g –open map is $\alpha * g$ –open map

Proof:

Let $f:(X,\tau) \to (Y,\sigma)$ be a g –open map. Since f is a g -open map, the image of each open set in X is g –open in Y. Since every g –open set is $\alpha * g$ –open. Hence, f is $\alpha * g$ –open map.

Remark 3.9:

The converse of above theorem need not be true.

Example 3.10:

Let $X = Y = \{a, b, c, d\}$, $\tau = \{\phi, \{a\}, \{b, c, d\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, Y\}$, $\alpha * gO(X,\tau) = \{\phi, \{a\}, \{b, c, d\}, X\}, gO(X,\tau) = P(X)$ and $\alpha * gO(Y, \sigma) = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}, Y\}, gO(Y, \sigma) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}, Y\}$. Let $f: (X, \tau) \to (Y, \sigma)$ be a map defined by f(a) = f(b) = a, f(c) = d, f(d) = b. Clearly, $f: \alpha * g$ —open map. But $f(\{b, c, d\}) = \{a, b, d\}$ is not g-open in Y. Therefore, f: g is not g-open map.

Theorem 3.11:

Every $\alpha *g$ -open map is $g\alpha$ -open map

Proof:

Let $f:(X,\tau) \to (Y,\sigma)$ be a $\alpha *g$ -open map. Since f is $\alpha *g$ -open map, the image of each open set in X is $\alpha *g$ -open in Y. Since every $\alpha *g$ -open set is $g\alpha$ -open. Hence, f is $g\alpha$ -open map.

Remark 3.12:

The converse of above theorem need not be true.

Example 3.13:

```
Let X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\} and \sigma = \{\phi, \{a, b\}, Y\}, \alpha*gO(X, \tau) = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}, g\alpha O(X, \tau) = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}, and \alpha*gO(Y, \sigma) = \{\phi, \{a, b\}, Y\}, g\alpha O(Y, \sigma) = \{\phi, \{a\}, \{b\}, \{a, b\}, Y\}.
Let f: (X, \tau) \longrightarrow (Y, \sigma) be a mapdefined by f(a) = a, f(b) = b, f(c) = c. Clearly, f is g\alpha —open map.Butf(\{a\}) = \{a\} is not \alpha*g—open in Y. Therefore, f is not \alpha*g—open map.
```

Theorem 3.14:

Everyα *g –open map isαg–open map.

Proof:

Let $f:(X,\tau) \to (Y,\sigma)$ be a $\alpha *g$ -open map. Since f is $\alpha *g$ -open map, the image of each open set in X is $\alpha *g$ -open in Y. Since every $\alpha *g$ -open set is $\alpha *g$ -open. Hence, f is $\alpha *g$ -open map.

Remark 3.15:

The converse of above theorem need not be true.

Example 3.16:

```
Let X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, b\}, X\} and \sigma = \{\phi, \{a\}, Y\}, \alpha * gO(X, \tau) = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}, \alpha gO(X, \tau) = \{\phi, \{a\}, \{b\}, \{a, c\}, X\}, and \alpha * gO(Y, \sigma) = \{\phi, \{a\}, \{a, b\}, \{a, c\}, Y\}, \alpha gO(Y, \sigma) = \{\phi, \{a\}, \{b\}, \{a, c\}, Y\}. Let f: (X, \tau) \rightarrow (Y, \sigma) be a mapdefined by f(a) = c, f(b) = a, f(c) = b. Clearly, f is \alpha g –open map. But f(\{a\}) = \{c\} is not \alpha * g-open in Y. Therefore, f is not \alpha * g-open map.
```

Theorem 3.17:

A map $f: (X, \tau) \to (Y, \sigma)$ is $\alpha * g$ -open if and only if $f(int(A)) \subseteq \alpha * g$ int (f(A)) for each set Ain X. *Proof:*

Suppose that f is a α * g-open map. Since int (A) \subset A, then f(int (A)) \subset f(A). By hypothesis,

f(int (A))is a α * g-open and α *g int (f(A)) is the largest α * g-open set contained in f(A).Hence f(int(A)) $\subseteq \alpha$ *g int (f(A)). Conversely, suppose A is an open set in X. Then

 $f(int(A)) \subseteq \alpha * gint (f(A))$. Since int (A) = A, then $f(A) \subseteq \alpha * g$ int (f(A)). Therefore, f(A) is a $\alpha * g$ - open set in (Y, σ) and f is $\alpha * g$ -open map.

Theorem 3.18:

```
Let (X, \tau), (Y, \sigma) and (Z, \eta) be three topologies spaces f: (X, \tau) \to (Y, \sigma) and g: (Y, \sigma) \to (Z, \eta) be two maps. Then
```

1. If $(g \circ f)$ is $\alpha *g$ - open and f is continuous, then g is $\alpha *g$ - open.

2. If (g \circ f) is open and g is α *g-continuous, then f is α *g- open map.

Proof

1. Let A be an open set in Y .Then, $f^{-1}(A)$ is an open set in X. Since $(g \circ f)$ is $\alpha *g$ - open map, then $(g \circ f)$ $(f^{-1}(A)) = g(f) = g(f)$

2. Let A be an open set in X. Then, g(f(A)) is an open set in Z. Therefore, $g^{-1}(g(f(A))) = f(A)$ is a $\alpha *g$ -open set in Y . Hence, f is a $\alpha *g$ -open map.

Remark 3.19:

The concept of α * g-open map and semi -open map are independent as can be seen from the following examples.

Example 3.20:

```
Let X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\} and \sigma = \{\phi, \{a\}, \{a, b\}, Y\}, \alpha * gO(X,\tau) = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}, SO(X,\tau) = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, X\} and \alpha * gO(Y, \sigma) = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, Y\}, SO(Y, \sigma) = \{\{\phi, \{a\}, \{a, b\}, \{a, c\}, Y\}. Let f: (X, \tau) \to (Y, \sigma) be a mapdefined by f(a) = a, f(b) = b, f(c) = c.Clearly, f is \alpha * g-open map.But, f(\{b\}) = \{b\} is not semi-open in Y. Hence, f is not semi-open map.
```

Example 3.21:

```
Let X = Y = \{a, b, c,d\}, \tau = \{\phi, \{a\}, \{b\}, \{a,b\}, \{a,b\}, \{a,b,c\}, X\} and \sigma = \{\phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, Y\}, \alpha * gO(X,\tau) = \{\phi, \{a\}, \{b\}, \{a,b\}, \{b,c\}, \{a,b,c\}, \{a,b,d\}, X\}, SO(X,\tau) = \{\phi, \{a\}, \{b\}, \{a,b\}, \{b,c\}, \{a,d\}, \{b,d\}, \{a,b,c\}, \{a,b,d\}, \{a,b,c\}, \{a,b,d\}, Y\}, SO(Y,\sigma) = \{\{\phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{a,d\}, \{b,c\}, \{a,d\}, \{b,c\}, \{a,b,d\}, \{a,c,d\}, \{a,b,d\}, \{a,b,d\}
```

Remark 3.22:

The concept of $\alpha * g$ -open map and semi* -open map are independent as can be seen from the following examples.

Example 3.23:

```
Let X = Y = \{a, b, c, d\}, \tau = \{\phi, \{a,b\}, X\} and \sigma = \{\phi, \{a\}, \{a,b,c\}, Y\}, \alpha* g O(X,\tau) = \{\phi, \{a,b\}, \{a,b,c\}, \{a,b,d\}, X\}, S*O(X,\tau) = \{\phi, \{a,b\}, X\} \text{ and } \alpha*gO(Y,\sigma) = \{\phi, \{a\}, \{a,b\}, \{a,c\}, \{a,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}, Y\}, S*O(Y,\sigma) = \{\phi, \{a\}, \{a,d\}, \{a,b,c\}, Y\}. Let f: (X,\tau) \longrightarrow (Y,\sigma) be an identity map. Clearly, f: s\alpha* g -open map. But f(\{a,b\}) = \{a,b\} is not semi*-open in Y. Hence, f: som* g -open map.
```

Example 3.24:

```
Let X = Y = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\} and \sigma = \{\phi, \{a\}, Y\}, \alpha* g O(X, \tau) = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}, X\}, S*O(X, \tau) = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, X\} and \alpha*gO(Y, \sigma) = \{\phi, \{a\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, Y\}, S*O(Y, \sigma) = P(X) Let f: (X, \tau) \longrightarrow (Y, \sigma) be an identity map. Clearly, f: s = \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a
```

Remark 3.25:

The concept of α * g-open map and g* -open map are independent as can be seen from the following examples.

Example 3.26:

```
Let X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\} and \sigma = \{\phi, \{a\}, \{a, b\}, Y\}, \alpha * g O(X, \tau) = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}, g*O(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\} and \alpha * gO(Y, \sigma) = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, Y\}, g*O(Y, \sigma) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, Y\}. Let f: (X, \tau) \longrightarrow (Y, \sigma) be an identity map. Clearly, f is \alpha * g —open map. But f(\{a, c\}) = \{a, c\} is not g*-open in Y. Hence, f is not g*-open map.
```

Example 3.27:

```
Let X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, X\} and \sigma = \{\phi, \{b\}, \{a, b\}, \{b, c\}, Y\}, \alpha*g O(X, \tau) = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}, g*O(X, \tau) = \{\phi, \{a\}, \{b\}, \{c\}, X\} and \alpha*gO(Y, \sigma) = \{\phi, \{b\}, Y\}, g*O(Y, \sigma) = \{\phi, \{a\}, \{b\}, \{c\}, Y\}.
Let f: (X, \tau) \longrightarrow (Y, \sigma) be a mapdefined by f(a)=a, f(b)=b, f(c)=c. Clearly, f is g* -open map. But f(\{a\}) = \{a\} is not \alpha*g-open in Y. Hence, f is not \alpha*g-open map.
```

Theorem 3.28:

ISSN: 2231 – 5373

If a map $f:(X,\tau)\to (Y,\sigma)$ is open and $g:(Y,\sigma)\to (Z,\eta)$ is $\alpha*g$ -open, then $(g\circ f)$ is $\alpha*g$ - open map. *Proof:*

Let O be an open set in X. Since f is an open map, f(O) is open in Y and we know that g is $\alpha *g$ - open map then $(g \circ f)(O) = g(f(O))$ is $\alpha *g$ - open in Z. Therefore, $(g \circ f)$ is $\alpha *g$ - open map.

Remark 3.29:

The composition of two α * g-open maps need not be α * g -open maps as it can be seen from the following examples.

Example 3.30:

Let $X = Y = Z = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\} \text{ and } \sigma = \{\phi, \{a\}, \{a, b\}, Y\} \text{ and } \eta = \{\phi, \{a\}, \{b\}, \{a, b\}, Z\}, \alpha * g O(X, \tau) = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}, \alpha * g O(Y, \sigma) = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, Y\} \text{ and } \alpha * g O(Z, \eta) = \{\phi, \{a\}, \{b\}, \{a, b\}, Z\}. \text{Let } f: (X, \tau) \longrightarrow (Y, \sigma) \text{ be an identity map. Clearly, } f \text{ is } \alpha * g \text{ -open map.}$ Consider the map $g: (Y, \sigma) \to (Z, \eta)$ defined by g(a) = a, g(b) = b, g(c) = c. Clearly, $g = a, c \in a$ is not $g = a, c \in a$. Therefore, $g = a, c \in a$ is not $g = a, c \in a$. Therefore, $g = a, c \in a$ is not $g = a, c \in a$. Therefore, $g = a, c \in a$ is not $g = a, c \in a$.

IV. $\alpha * g$ -CLOSED MAPS

Definition 4.1:

A map $f:(X,\tau)\to (Y,\sigma)$ is called a $\alpha*g$ - closed map if image of each closed set in X is $\alpha*g$ - closed in Y.

Theorem 4.2:

A map $f: (X, \tau) \to (Y, \sigma)$ is $\alpha * g$ -closed if and only if $\alpha * g$ cl $(f(A)) \subseteq f(cl(A))$ for each set A in X. **Proof:**

Suppose that f is a α *g-closed map. Since for each set A in X, cl(A) is closed set in X, then f(cl(A)) is a α * g-closed set in Y. Since, f(A) \subseteq f(cl(A)), then α *g cl (f(A)) \subseteq f(cl(A))

Conversely, suppose A is a closed set in X. Since α *g cl (f(A)) is the smallest α * g-closed set containing f(A),then $f(A) \subseteq \alpha$ * g cl (f(A)) $\subseteq f(cl(A)) = f(A)$. Thus, $f(A) = \alpha$ *g cl (f(A)). Hence, f(A) is a α *g-closed set in Y. Therefore, f(A) is a α *g-closed map.

Theorem 4.3:

If $f:(X,\tau) \to (Y,\sigma)$ is g - closed map and $g:(Y,\sigma) \to (Z,\eta)$ is $\alpha *g$ -closed and (Y,σ) is $T_{1/2}$ spaces . Then the composition $g \circ f:(X,\tau) \to (Z,\eta)$ is $\alpha *g$ -closed map.

Proof:

Let O be a closed set in (X, τ) . Since f is g – closed , f(O) is g – closed in (Y, σ) and g is $\alpha *g$ –closedwhich implies g(f(O)) is $\alpha *g$ -closed in Z and $g(f(O)) = g \circ f(O)$. Therefore, $g \circ f$ is $\alpha *g$ -closed.

Theorem 4.4:

Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ be two mappings such that their composition $g \circ f: (X, \tau) \to (Z, \eta)$ be $\alpha *g$ -closed mapping. Then the following statements are true.

- 1. If f is continuous and surjective, then g is α *g-closed.
- 2. If g is $\alpha * g$ -irresolute and injective, then f is $\alpha * g$ -closed.
- 3. If f is g continuous , surjective and (X, τ) is a T $_{1/2}$ spaces, then g is $\alpha *g$ -closed.
- 4. If g is strongly $\alpha * g$ -continuous and injective, then f is $\alpha * g$ -closed.

Proof:

- 1. Let O be a closed set in (Y, σ) . Since, f is continuous, $f^1(O)$ is closed in (X, τ) . Since, $g \circ f$ is $\alpha *g$ -closed which implies $g \circ f$ ($f^1(O)$) is $\alpha *g$ -closed in (Z, η) . That is g(O) is $\alpha *g$ -closed in (Z, η) , since f issurjective. Therefore, g is $\alpha *g$ -closed.
- 2. Let O be a closed set in (X, τ) . Since $g \circ f$ is $\alpha *g$ -closed, $g \circ f$ (O) is $\alpha *g$ -closed in (Z, η) , Since g is $\alpha *g$ -closed, $g \circ f$ (O) is $\alpha *g$ -closed in (Y, σ) . Since f is injective. Therefore, f is $\alpha *g$ -closed.
- 3. Let O be a closed set of (Y, σ) . Since, f is g- continuous , f $^{-1}(O)$ is g closed in (X, τ) and (X, τ) is a $T_{1/2}$ spaces, f $^{-1}(O)$ is closed in (X, τ) . Since, g $^{\circ}$ f is α *g-closed which implies, g $^{\circ}$ f (f $^{1}(O)$) is α *g-closed in (Z, η) . That is g(O) is α *g-closed in (Z, η) , since f is surjective. Therefore, g is α *g-closed.

- 4. Let O be a closed set of (X, τ) . Since, $g \circ f$ is $\alpha *g$ -closed which implies , $g \circ f$ (O) is $\alpha *g$ -closed in (Z, η) . Since,
- g is strongly α *g- continuous, g $^{-1}$ (g $^{\circ}$ f (O)) is closed in (Y, σ). That is f(O) is closed in (Y, σ). Since g isinjective, f is α *g-closed.

Theorem 4.5:

Let $f:(X,\tau) \to (Y,\sigma)$ be a bijective map. Then the following are equivalent:

- (1) f is a α *g- open map.
- (2) f is a α *g- closed map.
- (3) f^{-1} is a $\alpha *g$ continuous map.

Proof:

- (1) \Rightarrow (2) Suppose O is a closed set in X. Then X\O is an open set in X and by (1) $f(X\setminus O)$ is $a\alpha * g$ open in Y. Since, f is bijective, then $f(X\setminus O) = Y\setminus f(O)$. Hence, f(O) is a $\alpha * g$ closed map.
- (2) \Rightarrow (3) Let f be a α * g-closed map and O be closed set in X. Since, f is bijective then (f⁻¹)⁻¹(O) = f(O) which is a α *g-closed set in Y. Therefore, f is a α *g-continuous map.
- (3) \Rightarrow (1) Let O be an open set in X. Since, f^{-1} is a α *g- continuous map then $(f^{-1})^{-1}(O) = f(O)$ is a α *g-open set in Y. Hence, f is α *g- open map.

Theorem 4.6:

A map $f: (X, \tau) \to (Y, \sigma)$ is $\alpha *$ g-open if and only if for any subset O of (Y, σ) and any closed set of (X, τ) containing $f^{-1}(O)$, there exists a $\alpha *$ g-closed set A of (Y, σ) containing O such that $f^{-1}(A) \subset F$.

Proof:

Suppose f is α *g- open. Let $O \subset Y$ and F be a closed set of (X, τ) such that $f^{-1}(O) \subset F$. Now X-F is an open set in (X, τ) . Since f is α *g- open map, f (X - F) is α *g- open set in (Y, σ) . Then, A = Y - f(X - F) is a α *g-closed set in (Y, σ) . Note that $f^{-1}(O) \subset F$ implies $O \subset A$ and $f^{-1}(A) = X - f^{-1}(X - F) \subset X - (X - F) = F$. That is $f^{-1}(A) \subset F$. Conversely, let B be an open set of (X, τ) . Then, $f^{-1}((f(B))^c) \subset B^c$ and B^c is a closed set in (X, τ) . Byhypothesis, there exists a α *g- closed set A of (Y, σ) such that $(f(B))^c \subset A$ and $f^{-1}(A) \subset B^c$ and so B $\subset (f^{-1}(A))^c$. Hence, $A^c \subset f(B) \subset f((f^{-1}(A)))^c$ which implies $f(B) = A^c$. Since, A^c is a α *g- open. f (B) is α *g- open in (Y, σ) and therefore f is α *g- open map.

REFERENCES

- [1] Anbarasi Rodrigo. P, α * g-closed sets in Topological spaces, Mathematical Sciences International Research Journal Vol 6 Spl Issue (2017) Pg. No.(176 180).
- [2] Anbarasi Rodrigo. P, and Karthika. D, Functions related to $\alpha * g$ –closed sets, Mathematical Sciences International Research Journal Vol7 Spl IssuePg. No. (127 131).
- [3] Levine, N., Generalized Closed Sets in Topology, Rend. Circ. Mat. Palermo. 19 (2) (1970), 89-96.
- [4] Maki. H, Devi. R, and Balachandran. K, Associated topologies of generalized
- [5] α closed sets and α generalised closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A Math., 15 (1994), 51-63.
- [6] Maki. H, Devi. R, and Balachandran. K, Generalized, α closed sets in topology, Bulletin of Fukuoka University of Education, Part III, 42 (1993), 13-21.
- [7] Mashhour. A.S, Hasanein.I.A, and Deeb. S.N.E.L,α –continuous and α –open mappings, ActaMath. Hung., Vol.41, (1983), 213-218.
- [8] Pious Missier. S and Anbarasi Rodrigo. P, Some notion of nearly open sets in Topological Spaces, International Journal of Mathematical Archive. 4 (12) 20131-7.