Functions on $\alpha^{*} \mathrm{~g}$-Open Set in Topological Spaces

P.Anbarasi Rodrigo ${ }^{1}$ \& J. Harlin Jebaseeli ${ }^{2}$
${ }^{1}$ Assistant Professor, Department of Mathematics, St. Mary's college (Autonomous),Thoothukudi, India.
${ }^{2}$ M. Phil Scholar, Department of Mathematics, St. Mary's College (Autonomous), Thoothukudi, India.

Abstract

The purpose of this paper is to introduce $\alpha * g$-open maps and $\alpha * g$-closed mapsin topological spaces and discussits properties. Additionally, we relate and compare these functions with some other functions in topological spaces.

Keywords $-\alpha * g$-open maps and $\alpha * g$-closed maps.

I. INTRODUCTION

Generalized closed mappings were introduce and studied by Malghan. In 1983,A.SMashour et al and I.A. Hasanein introduced α-open maps and α-closed maps, recentlyP. Anbarasi Rodrigo and S.Pious Missier introduced α^{*}-open maps and α^{*}-closed maps in Topology. In this paper, we introduce $\alpha^{*} \mathrm{~g}$-open maps and $\alpha^{*} \mathrm{~g}$-closed maps also we relate and compare these functions with some other functions in topological spaces.

II. PRELIMINARIES

Throughout this paper (X, $\tau),(\mathrm{Y}, \sigma)$ and (Z, η) or $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ represent non-empty topological spaceson which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space(X, τ), cl(A) and $\operatorname{int}(\mathrm{A})$ denote the closure and the interior of A respectively.
The power set of X isdenoted by $\mathrm{P}(\mathrm{X})$.

Definition 2.1

A map $f:(X, \tau) \rightarrow(Y, \sigma)$ is called aopen map if image of each open set in X is open in Y .

Definition 2.2

A map $f:(X, \tau) \rightarrow(Y, \sigma)$ is called a closed map if image of each closed set in X is closed in Y .

Definition 2.3

A map $f:(X, \tau) \rightarrow(Y, \sigma)$ is called a $\boldsymbol{\alpha}$-open map[6] if image of each open set in X is α - open in Y.

Definition 2.4

A subset A of a topological space X is said to be $\boldsymbol{\alpha}^{*}$-open[7]if $A \subseteq \operatorname{int}^{*}\left(\mathrm{cl}\left(\right.\right.$ int $\left.{ }^{*}(\mathrm{~A})\right)$).

Definition 2.5

A map $f:(X, \tau) \rightarrow(Y, \sigma)$ is called ag -open map[6] if image of each open set in X is g - open in Y.

Definition 2.6

A map $f:(X, \tau) \rightarrow(Y, \sigma)$ is called a $\boldsymbol{g} \boldsymbol{\alpha}$-open map[6] if image of each open set in X is $g \alpha$ - open in Y .

Definition 2.7

A map $f:(X, \tau) \rightarrow(Y, \sigma)$ is called a $\alpha \boldsymbol{g}$-open map[6] if image of each open set in X is αg - open in Y.

Definition 2.8

A subset A of a topological space X is said to be generalized closed(briefly g-closed) [3] if $\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is open in X .

Definition 2.9

A subset A of a topological space X is said to be generalized $\boldsymbol{\alpha}$-closedset[5](briefly $\mathrm{g} \alpha$-closed) $\alpha \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is $\alpha-$ open in (X, τ).

Definition 2.10

A subset A of a topological space X is said to be $\boldsymbol{\alpha}$ generalized-closed set[4] if $\alpha \mathrm{cl}(\mathrm{A}) \subseteq \mathrm{U}$ whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is open in (X, τ).

III. $\alpha^{*} \mathrm{~g}$-OPEN MAPSAND α *g-CLOSED MAPS

Definition 3.1:

A map $f:(X, \tau) \rightarrow(Y, \sigma)$ is called $a \boldsymbol{\alpha} * \boldsymbol{g}$-open mapif image of each open set in X is $\alpha * g$-open in Y.

Theorem 3.2:

Every open map is $\alpha * g$-open map

Proof:

Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be an open map. Since f is an open map, the image of each open set in X is open in Y . Since every open set is $\alpha * g$-open. Hence, f is $\alpha * g$-open map.

Remark 3.3:

The following example supports that the converse of the above theorem is not true in general.

Example 3.4:

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{Y}\}$, $\alpha^{*} \mathrm{~g} \mathrm{O}(\mathrm{X}, \tau)=\{\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{X}\}$ and $\alpha^{*} \mathrm{gO}(\mathrm{Y}, \sigma)=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{Y}\}$.
Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a map defined by $f(a)=a, f(b)=b, f(c)=c$. Clearly, f is
$\alpha^{*} g$-open map. But $f(\{a, c\})=\{a, c\}$ is not open in Y. Therefore, f is not an open map.

Theorem 3.5:

Every α-open map is $\alpha * g$-open map.

Proof:

Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a α-open map. Since f is a α-open map, the image of each open set in X is α-open in Y. Since every α-open set is $\alpha * g$-open. Hence, f is $\alpha * g$-open map.

Remark 3.6:

The converse of above theorem need not be true.

Example 3.7:

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{Y}\}, \alpha * \mathrm{gO}(\mathrm{X}, \tau)=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}$, $\mathrm{X}\}, \alpha \mathrm{O}(\mathrm{X}, \tau)=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}$ and $\alpha^{*} \mathrm{gO}(\mathrm{Y}, \sigma)=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{Y}\}, \alpha \mathrm{O}(\mathrm{Y}, \sigma)=\{\phi,\{\mathrm{a}\}$, $\{\mathrm{a}, \mathrm{b}\}$,
$\{\mathrm{a}, \mathrm{c}\}, \mathrm{Y}\}$.Let $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ be an identity map. Clearly, f is $\alpha^{*} \mathrm{~g}$-open map. But $\mathrm{f}(\{\mathrm{b}\})=\{\mathrm{b}\}$ is not α-open in Y. Therefore, f is not α-open map.

Theorem 3.8:

Every g -open map is $\alpha * g$-open map

Proof:

Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a g -open map. Since f is a g -open map, the image of each open set in X is g -open in Y. Since every g -open set is $\alpha * g$-open. Hence, f is $\alpha * g$-open map.

Remark 3.9:

The converse of above theorem need not be true.

Example 3.10:

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{Y}\}$, $\alpha^{*} \mathrm{gO}(\mathrm{X}, \tau)=\{\phi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}, \mathrm{X}\}, \mathrm{g} \mathrm{O}(\mathrm{X}, \tau)=\mathrm{P}(\mathrm{X})$ and $\alpha * \mathrm{gO}(\mathrm{Y}, \sigma)=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$, $\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}, \mathrm{Y}\}, \mathrm{gO}(\mathrm{Y}, \sigma)=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{Y}\}$. Let $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ be a map defined by $f(a)=f(b)=a, f(c)=d, f(d)=b$. Clearly, f is $\alpha * g$-open map. But $f(\{b, c, d\})=\{a, b, d\}$ is not g-open in Y . Therefore, f is notg-open map.

Theorem 3.11:

Every α *g -open map is g α-open map

Proof:

Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a $\alpha * \mathrm{~g}$-open map. Since f is $\alpha * \mathrm{~g}$-open map, the image of each open set in X is $\alpha * \mathrm{~g}$-open in Y. Since every $\alpha * \mathrm{~g}$-open set is $\mathrm{g} \alpha$-open. Hence, f is $\mathrm{g} \boldsymbol{\alpha}$-open map.

Remark 3.12:

The converse of above theorem need not be true.

Example 3.13:

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{a}, \mathrm{b}\}, \mathrm{Y}\}, \alpha^{*} \mathrm{gO}(\mathrm{X}, \tau)=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}$, $\mathrm{g} \alpha \mathrm{O}(\mathrm{X}, \tau)=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}$, and $\alpha * \mathrm{gO}(\mathrm{Y}, \sigma)=\{\phi,\{\mathrm{a}, \mathrm{b}\}, \mathrm{Y}\}, \mathrm{g} \alpha \mathrm{O}(\mathrm{Y}, \sigma)=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{Y}\}$.
Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a mapdefined by $f(a)=a, f(b)=b, f(c)=c$. Clearly, f is $g \alpha-$ open $\operatorname{map} \cdot \operatorname{Butf}(\{a\})=$ $\{\mathrm{a}\}$ is not $\alpha * \mathrm{~g}$-open in Y . Therefore, f is not $\alpha * \mathrm{~g}$-open map.

Theorem 3.14:

Every $\alpha * \mathrm{~g}$-open map is $\alpha \mathrm{g}$-open map.

Proof:

Let $f:(X, \tau) \rightarrow(Y, \sigma)$ be a $\alpha * \mathrm{~g}$-open map. Since f is $\alpha * \mathrm{~g}$-open map, the image of each open set in X is $\alpha * \mathrm{~g}$-open in Y. Since every $\alpha * \mathrm{~g}$-open set is $\alpha \mathrm{g}$-open. Hence, f is $\alpha \mathrm{g}$-open map.

Remark 3.15:

The converse of above theorem need not be true.

Example 3.16:

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{a}\}, \mathrm{Y}\}$, $\alpha^{*} \mathrm{gO}(\mathrm{X}, \tau)=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{X}\}, \alpha \mathrm{O}(\mathrm{X}, \tau)=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{X}\}$, and $\alpha * \mathrm{gO}(\mathrm{Y}, \sigma)=\{$ $\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{Y}\}, \alpha \mathrm{O}(\mathrm{Y}, \sigma)=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{Y}\}$.
Let $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ be a mapdefined by $\mathrm{f}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{b})=\mathrm{a}, \mathrm{f}(\mathrm{c})=\mathrm{b}$. Clearly, f is $\alpha \mathrm{g}$-open map.But $\mathrm{f}(\{\mathrm{a}\})=$ $\{\mathrm{c}\}$ is not $\alpha * \mathrm{~g}$-open in Y . Therefore, f is not $\alpha^{*} \mathrm{~g}$-open map.

Theorem 3.17:

A map $f:(X, \tau) \longrightarrow(Y, \sigma)$ is α^{*} g-open if and only if $f(\operatorname{int}(A)) \subseteq \alpha^{*} g$ int $(f(A))$ for each set Ain X.

Proof:

Suppose that f is a α^{*} g-open map. Since int $(A) \subseteq A$, then $f(\operatorname{int}(A)) \subseteq f(A)$. By hypothesis,
$f($ int $(A))$ is a α^{*} g-open and $\alpha * g$ int ($\left.f(A)\right)$ is the largest $\alpha^{*} g$-open set contained in $f(A)$. Hence $f($ int $(A))$ $\subseteq \alpha * \mathrm{~g}$ int $(\mathrm{f}(\mathrm{A}))$. Conversely, suppose A is an open set in X . Then
$f(\operatorname{int}(A)) \subseteq \alpha^{*} \operatorname{gint}(f(A))$. Since $\operatorname{int}(A)=A$, then $f(A) \subseteq \alpha * g$ int $(f(A))$. Therefore, $f(A)$ is a $\alpha * g$ - open set in (Y, σ) and f is $\alpha^{*} \mathrm{~g}$-open map.

Theorem 3.18:

Let $(\mathrm{X}, \tau),(\mathrm{Y}, \sigma)$ and (Z, η) be three topologies spaces $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ and $\mathrm{g}:(\mathrm{Y}, \sigma) \rightarrow(\mathrm{Z}, \eta)$ be two maps. Then

1. If $(g \circ \mathrm{f})$ is $\alpha * \mathrm{~g}$ - open and f is continuous, then g is $\alpha * \mathrm{~g}$ - open.
2. If $(\mathrm{g} \circ \mathrm{f})$ is open and g is $\alpha * \mathrm{~g}$-continuous, then f is $\alpha * \mathrm{~g}$ - open map.

Proof:

1. Let A be an open set in Y.Then, $f^{-1}(A)$ is an open set in X. Since $(g \circ f)$ is $\alpha * g$ - open map, then $(g \circ f)\left(f^{-}\right.$ $\left.{ }^{1}(A)\right)=g\left(f\left(\left(f^{-1}(A)\right)=g(A)\right.\right.$ is $\alpha * g$ - open set in Z. Therefore, g is a $\alpha * g$ - open map.
2. Let A be an open set in X. Then, $g(f(A))$ is an open set in Z. Therefore, $g^{-1}(g(f(A)))=f(A)$ is a $\alpha^{*} g$-open set in Y . Hence, f is a $\alpha^{*} \mathrm{~g}$ - open map.

Remark 3.19:

The concept of α * g-open map and semi -open map are independent as can be seen from the following examples.

Example 3.20:

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{Y}\}$,
$\alpha^{*} \mathrm{gO}(\mathrm{X}, \tau)=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}, \mathrm{SO}(\mathrm{X}, \tau)=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}, \mathrm{X}\}$ and $\alpha^{*} \mathrm{gO}(\mathrm{Y}, \sigma)=$ $\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{Y}\}, \mathrm{SO}(\mathrm{Y}, \sigma)=\{\{\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{Y}\}$.
Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a mapdefined by $\mathrm{f}(\mathrm{a})=\mathrm{a}, \mathrm{f}(\mathrm{b})=\mathrm{b}, \mathrm{f}(\mathrm{c})=\mathrm{c}$.Clearly, f is $\alpha^{*} \mathrm{~g}$-open map.But, $\mathrm{f}(\{\mathrm{b}\})$ $=\{b\}$ is not semi-open in Y. Hence, f is not semi -open map.

Example 3.21:

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{Y}\}$, $\alpha^{*} \operatorname{gO}(X, \tau)=\{\phi,\{a\},\{b\},\{a, b\},\{b, c\},\{a, b, c\},\{a, b, d\}, X\}, S O(X, \tau)=\{\phi,\{a\},\{b\},\{a, b\},\{b, c\},\{a, d\},\{b, d\}$, $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}, \mathrm{X}\}$ and $\alpha * \mathrm{gO}(\mathrm{Y}, \sigma)=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}, \mathrm{Y}\}$, $\operatorname{SO}(\mathrm{Y}, \sigma)=\{\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{a}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{b}, \mathrm{d}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}, \mathrm{Y}\}$.
Let $f:(X, \tau) \longrightarrow(Y, \sigma)$ be a mapdefined by $f(a)=a, f(b)=b, f(c)=c . f(d)=d$. Clearly, f is
semi-open map.But, $f(\{b, c\})=\{b, c\}$ is not $\alpha^{*} g$-open in Y. Hence, f is not $\alpha^{*} g$-open map.

Remark 3.22:

The concept of $\alpha *$ g-open map and semi* -open map are independent as can be seen from the following examples.

Example 3.23:

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \tau=\{\phi,\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{Y}\}, \alpha^{*} \mathrm{~g} \mathrm{O}(\mathrm{X}, \tau)=\{\phi,\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}$, $\mathrm{X}\}, \mathrm{S} * \mathrm{O}(\mathrm{X}, \tau)=\{\phi,\{\mathrm{a}, \mathrm{b}\}, \mathrm{X}\}$ and $\alpha * \mathrm{gO}(\mathrm{Y}, \sigma)=\{\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{a}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}, \mathrm{Y}\}$,
$\mathrm{S} * \mathrm{O}(\mathrm{Y}, \sigma)=\{\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{Y}\}$. Let $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ be an identity map. Clearly, f is $\alpha * \mathrm{~g}-$ open map. But $f(\{a, b\})=\{a, b\}$ is not semi*-open in Y. Hence, f is not semi* -open map.

Example 3.24:

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{a}\}, \mathrm{Y}\}, \alpha^{*} \mathrm{~g} \mathrm{O}(\mathrm{X}, \tau)=\{\phi$, $\{a\},\{b\}$,
$\{a, b\},\{b, c\},\{a, b, c\},\{a, b, d\}, X\}, S * O(X, \tau)=\{\phi,\{a\},\{b\},\{a, b\},\{a, d\},\{b, c\},\{b, d\},\{a, b, c\},\{a, b, d\},\{b, c, d\}, X\}$ and
$\alpha * \mathrm{gO}(\mathrm{Y}, \sigma)=\{\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{a}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}, \mathrm{Y}\}, \mathrm{S} * \mathrm{O}(\mathrm{Y}, \sigma)=\mathrm{P}(\mathrm{X})$
Let $f:(X, \tau) \longrightarrow(Y, \sigma)$ be an identity map. Clearly, f is semi*-open map. But $(f\{b\})=\{b\}$ is not $\alpha * g$-open in Y. Hence, f is not $\alpha * g$-open map.

Remark 3.25:

The concept of α * g-open map and g^{*}-open map are independent as can be seen from the following examples.

Example 3.26:

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{Y}\}, \alpha * \mathrm{~g} \mathrm{O}(\mathrm{X}, \tau)=\{\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}$, $X\}, g^{*} \mathrm{O}(\mathrm{X}, \tau)=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}, \mathrm{X}\}$ and $\alpha * \mathrm{gO}(\mathrm{Y}, \sigma)=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{Y}\}$, $\mathrm{g}^{*} \mathrm{O}(\mathrm{Y}, \sigma)=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{Y}\}$. Let $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ be an identity map. Clearly, f is $\alpha * \mathrm{~g}$-open map. But $f(\{a, c\})=\{a, c\}$ is not g^{*}-open in Y. Hence, f is notg* -open map.

Example 3.27:

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\phi,\{\mathrm{a}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\}, \mathrm{Y}\}, \alpha * \mathrm{~g} \mathrm{O}(\mathrm{X}, \tau)=\{\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}$, $\mathrm{X}\}, \mathrm{g}^{*} \mathrm{O}(\mathrm{X}, \tau)=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\}, \mathrm{X}\}$ and $\alpha * \mathrm{gO}(\mathrm{Y}, \sigma)=\{\phi,\{\mathrm{b}\}, \mathrm{Y}\}, \mathrm{g} * \mathrm{O}(\mathrm{Y}, \sigma)=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\}, \mathrm{Y}\}$.
Let $f:(X, \tau) \longrightarrow(Y, \sigma)$ be a mapdefined by $f(a)=a, f(b)=b, f(c)=c$. Clearly, f is g^{*}-open map. But $f(\{a\})=\{a\}$ is not
$\alpha^{*} \mathrm{~g}$-open in Y. Hence, f is not $\alpha^{*} \mathrm{~g}$-open map.

Theorem 3.28:

If a map $f:(X, \tau) \rightarrow(Y, \sigma)$ is open and $g:(Y, \sigma) \rightarrow(Z, \eta)$ is α^{*} g-open, then $(g \circ f)$ is $\alpha^{*} g$ - open map.

Proof:

Let O be an open set in X. Since f is an open map, $f(O)$ is open in Y and we know that g is $\alpha^{*} \mathrm{~g}$ - open map then $(g \circ f)(\mathrm{O})=\mathrm{g}(\mathrm{f}(\mathrm{O}))$ is $\alpha^{*} \mathrm{~g}$ - open in Z. Therefore, $(g \circ f)$ is $\alpha^{*} \mathrm{~g}$ - open map.

Remark 3.29:

The composition of two $\alpha * \mathrm{~g}$-open maps need not be $\alpha^{*} \mathrm{~g}$-open maps as it can beseen from the following examples.

Example 3.30:

Let $\mathrm{X}=\mathrm{Y}=\mathrm{Z}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{X}\}$ and $\sigma=\{\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{Y}\}$ and $\eta=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}$, $\mathrm{Z}\}, \alpha * \mathrm{~g} \mathrm{O}(\mathrm{X}, \tau)=\{\phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{X}\}, \alpha * \mathrm{gO}(\mathrm{Y}, \sigma)=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}, \mathrm{Y}\}$ and $\alpha * g O(Z, \eta)=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{Z}\}$.Let $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ be an identity map.Clearly, f is $\alpha^{*} \mathrm{~g}$-open map. Consider the map $g:(Y, \sigma) \rightarrow(Z, \eta)$ defined by $g(a)=\mathrm{a}, \mathrm{g}(\mathrm{b})=\mathrm{b}, \mathrm{g}(\mathrm{c})=\mathrm{c}$. Clearly, g is $\alpha^{*} \mathrm{~g}$-open map. Here,
f and g are $\alpha^{*} \mathrm{~g}$-open maps. But $(g \circ f)(\{a, c\})=g(f(\{a, c\}))=g(\{a, c\})=\{\mathrm{a}, \mathrm{c}\}$ is not $\alpha^{*} \mathrm{~g}$-open in Z . Therefore, $(g \circ f)$ is not $\alpha^{*} g$-open open map.

IV. α * g-CLOSED MAPS

Definition 4.1:

A map $f:(X, \tau) \rightarrow(Y, \sigma)$ is called a $\boldsymbol{\alpha} * \boldsymbol{g}-\boldsymbol{c l o s e d}$ mapif image of each closed set in X is $\alpha * g-$ closed in Y.

Theorem 4.2:

A map $f:(X, \tau) \longrightarrow(Y, \sigma)$ is α^{*} g-closed if and only if $\alpha^{*} g \operatorname{cl}(f(A)) \subseteq f(c l(A))$ for each set A in X.

Proof:

Suppose that f is a α *g-closed map. Since for each set A in $\mathrm{X}, \mathrm{cl}(\mathrm{A})$ is closed set in X , then $\mathrm{f}(\mathrm{cl}(\mathrm{A}))$ is $\mathrm{a} \alpha{ }^{*} \mathrm{~g}$ closed set in Y. Since, $f(A) \subseteq f(c l(A))$, then $\alpha * \operatorname{gll}(f(A)) \subseteq f(c l(A))$
Conversely, suppose A is a closed set in X. Since $\alpha * \operatorname{cl}(f(A))$ is the smallest $\alpha * g$-closed set containing $f(A)$, then $f(A) \subseteq \alpha * g \operatorname{cl}(f(A)) \subseteq f(c l(A))=f(A)$. Thus, $f(A)=\alpha * g \operatorname{cl}(f(A))$. Hence, $f(A)$ is a $\alpha * g$-closed set inY. Therefore, f is a $\alpha * \mathrm{~g}$-closed map.

Theorem 4.3:

If $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ is g - closed map and $\mathrm{g}:(\mathrm{Y}, \sigma) \rightarrow(\mathrm{Z}, \eta)$ is $\alpha * \mathrm{~g}$-closed and (Y, σ) is
$\mathrm{T}_{1 / 2}$ spaces. Then the composition g of $:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Z}, \eta)$ is α *g -closed map.

Proof:

Let O be a closed set in (X, τ). Since f is g - closed, $f(O)$ is g - closed in (Y, σ) and g is $\alpha * g$-closedwhich implies $g(f(O))$ is $\alpha * g$-closed in Z and $g(f(O))=g \circ f(O)$. Therefore, $g \circ f$ is $\alpha * g$-closed.

Theorem 4.4:

Let $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ and $\mathrm{g}:(\mathrm{Y}, \sigma) \longrightarrow(\mathrm{Z}, \eta)$ be two mappings such that their composition $\mathrm{g} \circ \mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Z}, \eta)$ be $\alpha * \mathrm{~g}$-closed mapping. Then the following statements are true.

1. If f is continuous and surjective, then g is $\alpha * \mathrm{~g}$-closed.
2. If g is $\alpha * \mathrm{~g}$-irresolute and injective, then f is $\alpha * \mathrm{~g}$-closed.
3. If f is g - continuous, surjective and (X, τ) is a $\mathrm{T}_{1 / 2}$ spaces, then g is $\alpha * \mathrm{~g}$-closed.
4. If g is strongly $\alpha^{*} \mathrm{~g}$-continuous and injective, then f is $\alpha * \mathrm{~g}$-closed.

Proof:

1. Let O be a closed set in (Y, σ). Since, f is continuous, $f^{-1}(O)$ is closed in (X, τ). Since, g of is $\alpha * g$-closed which implies g of $\left(f^{1}(O)\right)$ is $\alpha * g$-closed in (Z, η). That is $g(O)$ is $\alpha * g$-closed in (Z, η), since f issurjective. Therefore, g is $\alpha^{* g}$-closed.
2. Let O be a closed set in (X, τ). Since g of is $\alpha * g$-closed, $g \circ f(O)$ is $\alpha * g$-closed in (Z, η), Since g is $\alpha * g$ irresolute, $\mathrm{g}^{-1}(\mathrm{~g}$ 。f $(\mathrm{O}))$ is $\alpha * \mathrm{~g}$-closed in (Y, σ). That is $\mathrm{f}(\mathrm{O})$ is $\alpha * \mathrm{~g}$-closed in (Y, σ). Since f is injective.Therefore, f is $\alpha * \mathrm{~g}$-closed.
3. Let O be a closed set of (Y, σ). Since, f is g - continuous, $f^{-1}(O)$ is $g-\operatorname{closed}$ in (X, τ) and (X, τ) is a $T_{1 / 2}$ spaces, $f^{-1}(O)$ is closed in (X, τ). Since, $g \circ f$ is $\alpha * g$-closed which implies, $g \circ f\left(f^{1}(O)\right)$ is $\alpha * g$-closed in (Z, η). That is $g(O)$ is $\alpha^{*} g$-closed in (Z, η), since f is surjective. Therefore, g is $\alpha * g$-closed.
4. Let O be a closed set of (X, τ).Since, $\mathrm{g} \circ \mathrm{f}$ is $\alpha * \mathrm{~g}$-closed which implies, $\mathrm{g} \circ \mathrm{f}(\mathrm{O})$ is $\alpha * \mathrm{~g}$-closed in (Z , η).Since,
g is strongly $\alpha * g$ - continuous, $g^{-1}(g$ of $(O))$ is closed in (Y, σ). That is $f(O)$ is closed in (Y, σ). Since g isinjective, f is $\alpha * \mathrm{~g}$-closed.

Theorem 4.5:

Let $\mathrm{f}:(\mathrm{X}, \tau) \longrightarrow(\mathrm{Y}, \sigma)$ be a bijective map. Then the following are equivalent:
(1) f is a $\alpha * \mathrm{~g}$ - open map.
(2) f is a $\alpha * \mathrm{~g}$ - closed map.
(3) f^{-1} is a $\alpha * g$ - continuous map.

Proof:

$(1) \Rightarrow$ (2) Suppose O is a closed set in X. Then $X \backslash O$ is an open set in X and by $(1) f(X \backslash O)$ is a α * g- openin Y. Since, f is bijective, then $f(X \backslash O)=Y \backslash f(O)$. Hence, $f(O)$ is a $\alpha^{*} g$ - closedin Y. Therefore, f is a $\alpha^{*} g$ - closed map.
(2) \Rightarrow (3) Let f be a $\alpha^{*} \mathrm{~g}$-closed map and O be closed set in X . Since, f is bijectivethen $\left(\mathrm{f}^{-1}\right)^{-1}(\mathrm{O})=\mathrm{f}(\mathrm{O})$ which is a $\alpha * \mathrm{~g}$ - closed set in Y . Therefore, f is a $\alpha * \mathrm{~g}$ - continuous map.
(3) \Rightarrow (1) Let O be an open set in X. Since, f^{-1} is a $\alpha * g$ - continuous map then $\left(f^{-1}\right)^{-1}(O)=f(O)$ is a $\alpha * g$-open set in Y. Hence, f is $\alpha * \mathrm{~g}$ - open map.

Theorem 4.6:

A map $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is α^{*} g-open if and only if for any subset O of (Y, σ) and any closed set of (X, τ) containing $\mathrm{f}^{-1}(\mathrm{O})$, there exists a $\alpha * \mathrm{~g}$-closed set A of (Y, σ) containing O such that $\mathrm{f}^{-1}(\mathrm{~A}) \subset \mathrm{F}$.

Proof:

Suppose f is $\alpha *$ g- open. Let $\mathrm{O} \subset \mathrm{Y}$ and F be a closed set of (X, τ) such that $\mathrm{f}^{-1}(\mathrm{O}) \subset \mathrm{F}$. Now $\mathrm{X}-\mathrm{F}$ is an open set in (X, τ). Since f is $\alpha * g$ - open map, $f(X-F)$ is $\alpha * g$ - open set in (Y, σ). Then, $A=Y-f(X-F)$ is a $\alpha * g$ closed set in (Y, σ). Note that $f^{-1}(O) \subset F$ implies $O \subset A$ and $f^{-1}(A)=X-f^{-1}(X-F) \subset X-(X-F)=F$. That is , $\mathrm{f}^{-1}(\mathrm{~A}) \subset \mathrm{F}$. Conversely, let B be an open set of (X, τ). Then, $\mathrm{f}^{-1}\left((\mathrm{f}(B))^{c}\right) \subset B^{c}$ and B^{c} is a closed set in (X, τ). Byhypothesis, there exists a $\alpha * \mathrm{~g}$ - closed set A of (Y, σ) such that $(\mathrm{f}(B))^{c} \subset \mathrm{~A}$ and $\mathrm{f}^{-1}(\mathrm{~A}) \subset B^{c}$ and so B $\subset\left(\mathrm{f}^{-1}(A)\right)^{c}$. Hence, $A^{c} \subset \mathrm{f}(\mathrm{B}) \subset \mathrm{f}\left(\left(\mathrm{f}^{-1}(A)\right)\right)^{c}$ which implies $\mathrm{f}(\mathrm{B})=A^{c}$. Since, A^{c} is a $\alpha^{*} \mathrm{~g}$ - open. $\mathrm{f}(\mathrm{B})$ is $\alpha * \mathrm{~g}$ - open in (Y, σ) and therefore f is $\alpha * \mathrm{~g}$ - open map.

REFERENCES

[1] Anbarasi Rodrigo. P, α * g-closed sets in Topological spaces, Mathematical Sciences International Research Journal Vol 6 Spl Issue (2017) Pg. No.(176 - 180).
[2] Anbarasi Rodrigo. P, and Karthika. D, Functions related to $\alpha * g$-closed sets, Mathematical Sciences International Research Journal Vol7 Spl IssuePg. No. (127-131).
[3] Levine, N., Generalized Closed Sets in Topology, Rend. Circ. Mat. Palermo. 19 (2) (1970), 89-96.
[4] Maki. H, Devi. R, and Balachandran. K, Associated topologies of generalized
[5] α - closed sets and α - generalised closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A Math., 15 (1994), 51-63.
[6] Maki. H, Devi. R, and Balachandran. K, Generalized, α - closed sets in topology, Bulletin of Fukuoka University of Education, Part III, 42 (1993), 13-21.
[7] Mashhour. A.S, Hasanein.I.A, and Deeb. S.N.E.L, α-continuous and α-open mappings, ActaMath. Hung., Vol.41, (1983), 213-218.
[8] Pious Missier. S and Anbarasi Rodrigo. P, Some notion of nearly open sets in Topological Spaces, International Journal of Mathematical Archive. 4 (12) 20131-7.

