
International Journal of Mathematics Trends and Technology ( IJMTT ) - Volume 65 Issue 2 - February 2019 

   ISSN: 2231 – 5373                                 http://www.ijmttjournal.org  Page 102 

Existence and Uniqueness of a Fuzzy Solution 

for Some Fuzzy Neutral Partial Differential       

Equation with Nonlocal Condition 
 

Atimad Harir*#1, Said Melliani#2, L.Saadia Chadli#3 
#Laboratory of Applied Mathematics and Scientific Computing, 

Sultan Moulay Slimane University,P.O. Box 523, Beni Mellal, 23000,Morocco 

 

Abstract  
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I. INTRODUCTION    

—In this work, we study the existence of fuzzy solutions for fuzzy  neutral  partial differential equations with 

nonlocal conditions of the  following from: 

 

 

𝑑

𝑑𝑡
 𝑥 𝑡  ⊖ 𝐹  𝑡, 𝑥 1 𝑡    = 𝐴  𝑥 𝑡  ⊖ 𝐹  𝑡, 𝑥 1 𝑡    ⊕ 𝐺  𝑡, 𝑥 2 𝑡   ,   0 ≤ 𝑡 ≤ 𝑎,

𝑥 0 ⊕ 𝑔 𝑥 =  𝑥0 ∈  𝐸𝑛                                     (1)

  

 

 

Where 𝐴:   𝐸𝑛   →    𝐸𝑛  is  fuzzy operator, is the infinitesimal generator of an  𝐶0 -semigroup on  𝐸𝑛  and  𝐸𝑛  is 

the set of all upper semi continuous, convex, normal fuzzy numbers with bounded a-level intervals, 

called spaces of fuzzy numbers, or more general with values in 𝐸𝑛   , where (𝐸𝑛 ,⊕ ,⊙, 𝐷)  represents any from 

the fuzzy number type spaces introduced by section 2, and  

      EEEE
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The very recent paper [10] is concerned with equation 1 in Banach space X, the theory of neutral differential 

equations has many applications, for the reader, we refer to [1,3]. Differential equations with nonlocal 

conditions have been studied extensively in the literature. The importance of nonlocal conditions in different 

fields has been discussed [4,5,9] and the references therein. In the past several years theorems about existence, 

uniqueness and stability of differential equations with nonlocal conditions have been studied by Byszewski and 

Lakshmikantham [6],  Balachandran and Chandrasekaran [2],  Lin and Liu [14]and Ntouyas and Tsamatos [15]. 

but it is known that the classical of neutral differential equations whose solution are real valued functions (or 

Banach space valued function, respectively ) often represent an idealization of real situations, where imprecision 

may in fact play a significant role. 

Generally, several systems are mostly related to uncertainty and inexactness. The problem of 

inexactness is considered in general exact science, and that of uncertainty is considered as vague 

or fuzzy and accident. Ding and Kandel [7,16-19] analyzed a way to combine differential equations 

with fuzzy sets to form a fuzzy logic system called a fuzzy dynamical system, which can be 

regarded to form a fuzzy neutral functional differential equation. 

Note that with respect to Banach spaces, the fuzzy number type spaces (𝐸𝑛 ,⊕,⊙, 𝐷)   represent more general 

structures, in the sense that although the metric has similar properties with a metric derived from a norm of 

Banach space, however (𝐸𝑛 ,⊕,⊙, 𝐷)   with respect to the addition ⨁ is not a group and with respect to the 

scalar multiplication is not linear space . 

The organization of this work is as follows:in Section 2, we call some fundamental results on fuzzy 

numbers. In Section 3 we study the existence of fuzzy mild solutions. 

 

II. PRELIMINARIES  

In this section, we introduce notations, definitions, and preliminary facts which are used throughout this paper. 



International Journal of Mathematics Trends and Technology ( IJMTT ) - Volume 65 Issue 2 - February 2019 

   ISSN: 2231 – 5373                                 http://www.ijmttjournal.org  Page 103 

Let    d][c,T   ℝ be a compact interval and denote 𝐸𝑛 =  𝑢   𝑢 ∶ ℝ𝑛  → [0,1] satisfies (1)-(4) below } 

where 

 

1. u is normal i.e, there exists an  𝑥0 ∈  ℝ𝑛  such that 𝑢 𝑥0 = 1  

2. u is fuzzy convex i.e for  𝑥, 𝑦 ∈  ℝ𝑛   and    0 <  𝜆 ≤ 1,  𝑢 𝜆𝑥 +  1 − 𝜆 𝑦 ≥ min[𝑢 𝑥 , 𝑢(𝑦)]  
3. 𝑢  is upper semi-continuous on ℝ. 

4. [𝑢]0 is a compact set. 

For 0 <  𝛼 ≤ 1 denote {[𝑢]𝛼 = 𝑥 ∈  ℝ𝑛  | 𝑢 𝑥 ≥  𝛼 }, then from (1) to (4),it follows that the 𝛼 − level sets 

[𝑢]𝛼  for all 0 ≤  𝛼 ≤ 1 is a closed bounded interval which we denote by        [𝑢]𝛼 =  [𝑢1 𝛼 , 𝑢2 𝛼 ],    
If 𝑔: ℝ𝑛 ×   ℝ𝑛 →   ℝ𝑛  is any function, then, according to Zadeh's extension principle, we can extend 

𝑔: 𝐸𝑛 ×  𝐸𝑛 →   𝐸𝑛  by the function defined by   𝑔 𝑢, 𝑣  𝑧 = sup  𝑧=𝑔 𝑢 ,𝑣  min{𝑢 𝑥 , 𝑣(𝑦)} 

It is well known that [𝑔(𝑢, 𝑣)]𝛼 = 𝑔( 𝑢 𝛼 , [𝑣]𝛼)for all 𝑢, 𝑣 ∈  𝐸𝑛 ,0 ≤  𝛼 ≤ 1  and a continuos function g. 

Especially for addition and scalar multiplication, we have  [𝑢 ⊕ 𝑣]𝛼 =  [𝑢]𝛼 + [𝑣]𝛼 , [𝑘⨀𝑢]𝛼 = 𝑘[𝑢]𝛼  

where 𝑢, 𝑣 ∈  𝐸𝑛 , 𝑘 ∈  ℝ, 0 ≤  𝛼 ≤ 1. We say that there exists 𝑎 ⊖ 𝑏, if there exists 𝑐 ∈  𝐸𝑛  such that 𝑎 =
𝑏 ⨁   𝑐  and we denote 𝑐 =  𝑎 ⊖ 𝑏  [8]. 

The  distance between A and B is defined by the Hausdorff  metric 

 

𝑑𝐻 𝐴, 𝐵 = max{𝑠𝑢𝑝𝑎  ∈𝐴𝑖𝑛𝑓𝑏∈𝐵 ∥ 𝑎 − 𝑏 ∥, 𝑠𝑢𝑝𝑏  ∈𝐵𝑖𝑛𝑓𝑎∈𝐴 ∥ 𝑎 − 𝑏 ∥} 

where ∥ . ∥  denotes the usual Euclidean norm in ℝ𝑛 . 

 

We define  𝐷: 𝐸𝑛 ×   𝐸𝑛 →   ℝ+ ⋃ {0} by the equation 𝐷 𝑢, 𝑣 = 𝑠𝑢𝑝𝛼  ∈ 0,1 𝑑𝐻  𝑢 𝛼 ,  𝑣 𝛼  for all 𝑢, 𝑣 ∈  𝐸𝑛  

where 𝑑𝐻 is the Hausdorff metric . 

proposition1: Let  𝑢, 𝑣, 𝑤 and 𝑒 ∈  𝐸𝑛  

(i) 𝐷 𝑢⨁𝑤, 𝑣⨁𝑤 = 𝐷(𝑢, 𝑣) 

(ii)  𝐷 𝑘⨀𝑢, 𝑘⨀𝑣 =  𝑘 𝐷 𝑢, 𝑣 ,   ∀ 𝑘 ∈  ℝ  

(iii) 𝐷 𝑢⨁𝑣, 𝑤⨁𝑒 ≤ 𝐷 𝑢, 𝑤 + 𝐷(𝑣, 𝑒)  

(iv) If 𝑢 ⊖ 𝑣 and  𝑤 ⊖ 𝑒 exist, then 𝐷(𝑢 ⊖ 𝑣, 𝑤 ⊖ 𝑒) ≤ 𝐷 𝑢, 𝑣 + 𝐷(𝑤, 𝑒). 

(v) (𝐸𝑛 , 𝐷) is a complete metric space 

Now, according to [11], with the aid of (𝐸𝑛 ,⊕,⊙, 𝐷)   we can define new spaces as follows. 𝐶( 𝑎, 𝑏 , 𝐸𝑛) 

  the space of all continuous functions, endowed with the metric 

 𝐻 𝑢, 𝑣 =  𝑠𝑢𝑝𝑡∈𝑇  𝐷(𝑢 𝑡 , 𝑣(𝑡)). and the natural operations induced by those in 𝐸𝑛 ,  (𝐶  𝑎, 𝑏 , 𝐸𝑛 , 𝐻) is a 

complete metric space. 

Theoreme1:[10] 

1. If we denote 0 =  𝜒{0} then  0  ∈  𝐸𝑛  is neutral element with respect to ⊕ i.e 𝑢  ⊕  0 =  0  ⨁ 𝑢 = 𝑢 for all 

𝑢 ∈  𝐸𝑛  

2. for any 𝜆 , 𝜇 ∈  ℝ  with  𝜆 , 𝜇  ≥ 0  or 𝜆 , 𝜇  ≤ 0 and any 𝑢, 𝑣 ∈  𝐸𝑛  we have 

(𝜆 + 𝜇 ) ⊙   𝑢 =  𝜆 ⊙ 𝑢 ⊕ 𝜇  ⊙  𝑢 for general 𝜆 , 𝜇 ∈  ℝ   the above property does not hold 

  𝜆 ⊙  𝑢 ⊕ 𝑣  = 𝜆  ⊙  𝑢 ⨁  𝜆  ⊙  𝑣 , 𝜆 ⊙  𝜇 ⊙   𝑢 = (𝜆. 𝜇)  ⊙   𝑢 

3. If we denote ∥ 𝑢 ∥𝐸𝑛   = 𝐷(𝑢, 0 ), ∀ 𝑢 ∈  𝐸𝑛  then ∥. ∥𝐸𝑛    has the properties of a usual norm or 𝐸𝑛  i.e  

∥ 𝑢 ∥𝐸𝑛   = 0  if  𝑢 = 0  ,  ∥  𝜆 ⊙ 𝑢 ∥𝐸𝑛   =    𝜆 . ∥ 𝑢 ∥𝐸𝑛    and 

 ∥  𝑢 ⊙ 𝑣 ∥𝐸𝑛    ≤  ∥ 𝑢 ∥𝐸𝑛   +∥ 𝑣 ∥𝐸𝑛      and ≤   ∥ 𝑢 ∥𝐸𝑛   −∥ 𝑣 ∥𝐸𝑛     ≤ 𝐷(𝑢, 𝑣). 

Remark1 : from theorem 1, (2) we can deduce that for any  𝜆 , 𝜇 ∈  ℝ  with 𝜆 >  𝜇 > 0   and any  𝑢 ∈  𝐸𝑛  

𝜆 ⊙ 𝑢  ⊖  𝜇  ⊙  𝑢  exists and 𝜆 ⊙ 𝑢  ⊖  𝜇  ⊙  𝑢 = (𝜆 − 𝜇) ⊙  𝑢  

The following definitions and theorems are given in  [12] 

Definition1: A mapping 𝐹: 𝑇 ×  𝐸𝑛 → 𝐸𝑛   is strongly measurable if, for all 𝛼 ∈ [0,1] the multi-valued mapping 

𝐹𝛼 :  𝑇 →  𝑃𝐾(ℝ𝑛) defined by  𝐹𝛼 𝑡 =  [𝐹(𝑡)]𝛼  is Lebesgue measurable when 𝑃𝐾(ℝ𝑛) is endowed with the 

topology generated by the Hausdorff metric 𝑑𝐻 and T is a subinterval of real number ℝ where 𝑃𝐾(ℝ𝑛) denote 

the family of all nonempty compact convex subsets of  ℝ𝑛  

 

Definition2: A mapping is called levelwise continuous at 𝑡0  ∈ 𝑇 if the set-valued mapping 𝐹𝛼 𝑡 =  [𝐹(𝑡)]𝛼  is 

continuous at𝑡 = 𝑡0 with respect to the Hausdorff metric 𝑑𝐻 for all 𝛼 ∈  0,1 . 
A mapping 𝐹: 𝑇 → 𝐸𝑛    is called integrably bounded if there exists an integrable function  such that  

 ∥ 𝑥 ∥ ≤ (𝑡) for all 𝑥 ∈  𝐹0(𝑡)  

Definition3:  Let 𝐹: 𝑇 → 𝐸𝑛 .Then the integral of  𝐹  over  𝑇, denoted by  𝐹 𝑡 𝑑𝑡𝑇  or  𝐹 𝑡 𝑑𝑡𝑑
𝑐  is 

defined   
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[  𝐹 𝑡  
𝑇

𝑑𝑡 ]𝛼 =   𝐹𝛼 𝑡   𝑑𝑡
𝑇

=   𝑓 𝑡 𝑑𝑡
𝑇

  𝑓: 𝑇 →  ℝ𝑛  is a measurable selection for  

𝐹𝛼 𝑡  }  for all 0 <  𝛼 ≤ 1. 
Also, a strongly measurable and integrably bounded mapping 𝐹: 𝑇 × 𝐸𝑛 → 𝐸𝑛  is said to be integrable over T if 

 𝑓 𝑡 𝑑𝑡
𝑇

 ∈ 𝐸𝑛  

Theoreme2: If 𝐹: 𝑇 → 𝐸𝑛 . is strangely mesurable and integrably bounded, then F is integrable. It is known that  

 [ 𝐹 𝑡  
𝑇

𝑑𝑡 ]0 =   𝐹0 𝑡   𝑑𝑡
𝑇

 

Theoreme3: Let 𝐹, 𝐺: 𝑇 → 𝐸𝑛  be integrable and  𝜆 ∈  ℝ . Then 

(i)  (𝐹 𝑡 + 𝐺 𝑡 )
𝑇

𝑑𝑡 =  𝐹 𝑡  
𝑇

𝑑𝑡 +  𝐺 𝑡  
𝑇

𝑑𝑡  

(ii)   𝜆 𝐹 𝑡  
𝑇

𝑑𝑡 =  𝜆  𝐹 𝑡  
𝑇

𝑑𝑡  

(iii)D(F,G) is integrable, 

(iv)D( 𝐹 𝑡  
𝑇

𝑑𝑡,  𝐺 𝑡  
𝑇

𝑑𝑡)≤   𝐷 𝐹, 𝐺  𝑡  
𝑇

𝑑𝑡   

Definition4: A mapping 𝐹: 𝑇 → 𝐸𝑛  is Hukuhara differentiable at 𝑡0 ∈ 𝑇  if there exists a  𝐹′(𝑡0) → 𝐸𝑛   such 

that the limits 

                            lim→0+
𝐹 𝑥0 + ⊝  𝐹 (𝑥0 )


 = lim→0+

𝐹 (𝑥0 ) ⊝ 𝐹 𝑥0 − 


 

exist and are equal to 𝐹′ (𝑡0 ) (𝐹
′ (𝑡0 )  is called the Hukuhara derivative of F at 𝑡0 ∈ 𝑇.  Here the limit is taken in 

the metric space  (𝐸𝑛 , 𝐷). At the end points of T, we consider only the one-site derivatives. 

If  𝐹: 𝑇 → 𝐸𝑛  is differentiable at   𝑡0 ∈ 𝑇, then we say that 𝐹′ (𝑡0 ) is the fuzzy derivative of 𝐹(𝑡) at point 𝑡0. 

For the concepts of fuzzy measurability and fuzzy continuity we refer to [13]. 

 

Theoreme4: Let 𝐹: 𝑇 → 𝐸1  be differentiable with level sets  𝐹𝛼 𝑡 = [𝑓1
𝛼 , 𝑓2

𝛼 ]. Then  𝑓1
𝛼 , 𝑓2

𝛼 ∶  0,1  → ℝ1  

are differentiable and    [𝐹′ 𝑡 ]𝛼  =  𝑓1
𝛼 ′

, 𝑓2
𝛼 ′

 for all 0 <  𝛼 ≤ 1. 

Definition5: A mapping 𝐹: 𝑇 ×  𝐸𝑛 → 𝐸𝑛    is called levelwise continuous  provided that for any fixed  𝛼 ∈
[0,1] and arbitrary 휀 > 0  there exists a  𝛿  휀, 𝛼 > 0 such that  𝑑𝐻([𝑓( 𝑡, 𝑥)]𝛼 ,  𝑓 (𝑡0, 𝑥0)]𝛼  <  휀  

whenever   𝑡 − 𝑡0 <  𝛿  휀, 𝛼    and 𝑑𝐻([𝑥]𝛼 ,  𝑥0]𝛼 <   𝛿  휀, 𝛼     for all 𝑡 ∈ 𝑇, 𝑥 ∈   𝐸𝑛  . 
 

     Now, let us recall some elements of operator theory and semigroup of operators on 𝐸𝑛  in [11] 

Definition6: 𝐴: 𝐸𝑛 → 𝐸𝑛  is called linear operator if 

𝐴 𝜆⨀ 𝑥 ⨁ 𝜇⨀𝑦 =  𝜆 ⨀𝐴 𝑥 ⨁ 𝜇 ⨀𝐴(𝑦) 

for all 𝜆 , 𝜇 ∈  ℝ  with 𝜆 >  𝜇 > 0   and all  𝑥, 𝑦 ∈  𝐸𝑛   

Definition7: A family of functions (𝑇(𝑡))𝑡≥0 of continuous linear operators on 𝐸𝑛  is called fuzzy 𝐶0-semigroup 

if 

   1. For all 𝑥 ∈   𝐸𝑛   the mapping 𝑇 𝑡  𝑥 : ℝ+ → 𝐸𝑛     is continuous with respect to 𝑡 ≥ 0 

   2. 𝑇 𝑡 + 𝑠 = 𝑇 𝑡 [𝑇(𝑠)] for all  𝑡, 𝑠 ∈   ℝ+ 

   3. 𝑇 0 = 𝐼 where 𝐼 is the identity operator on 𝐸𝑛 . 

 

Definition8:  if 𝐴: 𝐸𝑛 → 𝐸𝑛  is a linear operator, then it is called generator of the 𝐶0-semigroup if for all 

𝑥 ∈   𝐸𝑛 , there exists  𝑇 𝑡  𝑥  ⊖ 𝑥  and  lim𝑡→ 0+
1

𝑡
⊙  𝑇 𝑡  𝑥  ⊖ 𝑥 = 𝐴(𝑥) 

Theoreme5: [11] if 𝐴: 𝐸𝑛 → 𝐸𝑛  is linear and continuous on 0  then for all 𝑥 ∈   𝐸𝑛  we have 

∥ 𝐴 𝑥 ∥𝐸𝑛 ≤ |  ∥ 𝐴 ∥ |𝐸𝑛 ∥ 𝑥 ∥𝐸𝑛   
where  ∥ 𝐴 ∥ |𝐸𝑛 = sup ∥ 𝐴 𝑥 ∥𝐸𝑛 , 𝑥 ∈   𝐸𝑛 , ∥ 𝑥 ∥𝐸𝑛 ≤ 1  ∈  ℝ, ∥ 𝐴 𝑥 ∥𝐸𝑛 = 𝐷(𝐴 𝑥 , 0 )  

if A is linear on 𝐸𝑛  and continuous on 0 , then it does not follow the continuity of A on the whole space 𝐸𝑛 . 

 

𝑇(𝑡) is generalized differentiable with respect to 𝑡 ∈   ℝ+, with the derivative equal to 𝐴[𝑇(𝑡)]. More exactly, it 

is Hukuhara differentiable with respect to 𝑡 ∈   ℝ+ i.e 

lim
→ 0

1


⊙  𝑇 𝑡 +   𝑥  ⊖ 𝑇(𝑡)𝑥 = 𝐴[𝑇(𝑡)(𝑥)] 

lim
→ 0

1


⊙  𝑇 𝑡  𝑥  ⊖ 𝑇(𝑡 − )𝑥 = 𝐴[𝑇(𝑡)(𝑥)] 

Here, the limit is taken in the metric space  (𝐸𝑛 , 𝐷). 

 

Remark2 : By the linearity of 𝑇(𝑡) it easily follows that 

𝑇 𝑡  𝑥 𝑡  ⊖ 𝑦 𝑡  =  𝑇 𝑡 [𝑥 𝑡 ]  ⊖ 𝑇 𝑡 [𝑦 𝑡 ]]     𝑡 ≥ 0 
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III.   FUZZY NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS WITH NONLOCAL 

CONDITIONS 

 
the  Throughout the whole of this work, we assume that  

(𝐻0) The linear and continuous operator 𝐴 generates a 𝐶0-semigroup (𝑇(𝑡))𝑡≥0 on 𝐸𝑛  such that  

 ∥ 𝑇(𝑡) ∥ |𝐸𝑛   ≤ 𝑀 for all 𝑡 ≥ 0 with 𝑀 > 0. 

III.1 existence of mild solutions 
Let 𝐶( 0, 𝑎 , 𝐸𝑛) be the space of continuous functions. We assume that:    ( 𝐻1), 𝐹, 𝐺:  0, 𝑎 × 𝐸𝑛  → 𝐸𝑛  

are levelwise continuous and lipschitzians with respect to the second argument there existe constants  𝐿1 > 0  

and 𝐿2 > 0  such that 

 

𝑑𝐻([𝐹( 𝑡, 𝑥)]𝛼 ,  𝐹  𝑡, 𝑦 ]𝛼  ≤ 𝐿1 𝑑𝐻([𝑥]𝛼 ,  𝑦]𝛼            (2) 

And  

𝑑𝐻([𝐺( 𝑡, 𝑥)]𝛼 ,  𝐺  𝑡, 𝑦 ]𝛼  ≤ 𝐿2 𝑑𝐻([𝑥]𝛼 ,  𝑦]𝛼            (3) 

 

for any pairs  𝑡, 𝑥 ,  𝑡, 𝑦   ∈    0, 𝑎 × 𝐸𝑛 . 

 ( 𝐻2), 𝑔:    𝐶  0, 𝑎 , 𝐸𝑛  → 𝐸𝑛  is lipschitz continuous : there existe constants 𝐿3 > 0 such that 

 

𝑑𝐻([𝑔( 𝑢1)]𝛼 ,  𝑔  𝑢2 ]𝛼  ≤ 𝐿2 𝑑𝐻([𝑢1]𝛼 ,  𝑢2]𝛼             (4)   
     

for  𝑢1, 𝑢2 ∈  𝐶  0, 𝑎 , 𝐸𝑛 . 

 (𝐻3) 𝑖 :  𝐶  0, 𝑎 ,  0, 𝑎  , 𝑖 = 1,2  

 

Definition9: A continuous function 𝑥 .  :  0, 𝑎 → 𝐸𝑛  is said to be a mild solution of equation (1) if 

𝑥 𝑡 = 𝑇 𝑡  𝑥0 ⊝ 𝑔 𝑥 ⊝ 𝐹  0, 𝑥 1 0    ⊕ 𝐹  𝑡, 𝑥 h 1  t   ⊕  𝑇 𝑡 − 𝑠 𝐺  𝑡, 𝑥 h 2  t   
𝑡

0

𝑑𝑠  (5) 

for all 𝑡 ∈    0, 𝑎 . 
everywhere in this section when we refer to the equation (1) we mean that there +  is replaced by the fuzzy 

addition  ⊕ and -  is replaced by the fuzzy subtraction ⊝. 

 

Theoreme6: Assume that assumptions (𝐻0 −  𝐻3) hold. Then there existe a unique mild solution 𝑥 = 𝑥(𝑡) of 

Eq (1) provided that 

𝐿0 = 𝑀𝐿3 +  𝑀 + 1 𝐿1 + 𝑎 𝑀𝐿3 < 1 

 

Proof:  
Consider the operator N defined on 𝐶  0, 𝑎 , 𝐸𝑛      by 

 

𝑁𝑥 𝑡 = 𝑇 𝑡  𝑥0 ⊝ 𝑔 𝑥 ⊝ 𝐹  0, 𝑥 1 0    ⊕ 𝐹  𝑡, 𝑥  h 1  t   ⊕  𝑇 𝑡 − 𝑠 𝐺  𝑡, 𝑥  h 2  s   
𝑡

0

𝑑𝑠   

for all 0 ≤ 𝑡 ≤ 𝑎 

we shall that is N a contraction operator. Indeed, consider 

𝑥, 𝑦  ∈  𝐶  0, 𝑎 , 𝐸𝑛     and 𝛼  ∈ (0,1] then  

𝑑𝐻([( 𝑁𝑥)(𝑡)]𝛼 ,    𝑁𝑦  𝑡 ]𝛼   = 

𝑑𝐻([𝑇 𝑡  𝑥0 ⊝ 𝑔 𝑥 ⊝ 𝐹  0, 𝑥 1 0    ⊕ 𝐹  𝑡, 𝑥  h 1  t   ⊕  𝑇 𝑡 − 𝑠 𝐺  𝑡, 𝑥  h 2  s   
𝑡

0

𝑑𝑠  ]𝛼 ,  

 𝑇 𝑡  𝑥0 ⊝ 𝑔 𝑦 ⊝ 𝐹  0, 𝑦 1 0    ⊕ 𝐹  𝑡, 𝑦  h 1  t   ⊕  𝑇 𝑡 − 𝑠 𝐺  𝑡, 𝑦  h 2  s   
𝑡

0

𝑑𝑠]𝛼  

 

≤  𝑑𝐻([ [𝑇 𝑡 𝑥0 ]
𝛼 − [𝑇 𝑡 𝑔 𝑥 ]𝛼 − [𝑇 𝑡 𝐹  0, 𝑥 1 0   ]𝛼  + [𝐹  𝑡, 𝑥  h 1  t   ]𝛼

+ [ 𝑇 𝑡 − 𝑠 𝐺  𝑡, 𝑥  h 2  s   
𝑡

0

𝑑𝑠  ]𝛼 , [𝑇(𝑡) 𝑥0 ]
𝛼 − [𝑇(𝑡)𝑔(𝑦) ]𝛼    

+ [𝑇 𝑡 𝐹  0, 𝑦 1 0   ]𝛼 + [𝐹  𝑡, 𝑦  h 1  t   ]𝛼 + [ 𝑇 𝑡 − 𝑠 𝐺  𝑡, 𝑦  h 2  s   
𝑡

0

𝑑𝑠  ]𝛼 

≤  𝑑𝐻([𝑇 𝑡 𝑔 𝑥 ]𝛼 ,  𝑇 𝑡 𝑔 𝑦 ]𝛼   + 𝑑𝐻([𝑇 𝑡 𝐹  0, 𝑥 1 0   ]𝛼 , [𝑇 𝑡 𝐹  0, 𝑦 1 0   ]𝛼  ) 
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+𝑑𝐻([𝐹  𝑡, 𝑥  h 1  t   ]𝛼 ,  𝐹  𝑡, 𝑦  h 1  t   ]𝛼 

+ 𝑑𝐻([ 𝑇 𝑡 − 𝑠 𝐺  𝑡, 𝑥  h 2  s   
𝑡

0

𝑑𝑠  ]𝛼 , [ 𝑇 𝑡 − 𝑠 𝐺  𝑡, 𝑦  h 2  s   
𝑡

0

𝑑𝑠  ]𝛼) 

=  𝑑𝐻([𝑇 𝑡 𝑔 𝑥 ]𝛼 ,  𝑇 𝑡 𝑔 𝑦 ]𝛼   + 𝑑𝐻([𝑇 𝑡 𝐹  0, 𝑥 1 0   ]𝛼 , [𝑇 𝑡 𝐹  0, 𝑦 1 0   ]𝛼  ) 

+𝑑𝐻([𝐹  𝑡, 𝑥  h 1  t   ]𝛼 ,  𝐹  𝑡, 𝑦  h 1  t   ]𝛼 

+ 𝑑𝐻([ 𝑇 𝑡 − 𝑠 𝐺  𝑠, 𝑥  h 2  s   
𝑡

0

  ]𝛼𝑑𝑠, [ 𝑇 𝑡 − 𝑠 𝐺  𝑠, 𝑦  h 2  s   
𝑡

0

  ]𝛼𝑑𝑠) 

≤  𝑑𝐻([𝑇 𝑡 𝑔 𝑥 ]𝛼 ,  𝑇 𝑡 𝑔 𝑦 ]𝛼   + 𝑑𝐻([𝑇 𝑡 𝐹  0, 𝑥 1 0   ]𝛼 , [𝑇 𝑡 𝐹  0, 𝑦 1 0   ]𝛼  ) 

+𝑑𝐻([𝐹  𝑡, 𝑥  h 1  t   ]𝛼 ,  𝐹  𝑡, 𝑦  h 1  t   ]𝛼 

+  (𝑑𝐻

𝑡

0

([𝑇 𝑡 − 𝑠 𝐺  𝑠, 𝑥  h 2  s     ]𝛼 , [𝑇 𝑡 − 𝑠 𝐺  𝑠, 𝑦  h 2  s   )𝑑𝑠 

≤ max |𝑇1
𝛼 𝑡  𝑔1

𝛼 𝑥 − 𝑔1
𝛼 𝑦  |, 𝑇2

𝛼 𝑡  𝑔2
𝛼 𝑥 − 𝑔2

𝛼 𝑦   } 

+ max  |𝑇1
𝛼 𝑡  𝐹1

𝛼  0, 𝑥 1 0   − 𝐹1
𝛼  0, 𝑦 1 0    |, 𝑇2

𝛼 𝑡  𝐹2
𝛼  0, 𝑥 1 0   − 𝐹2

𝛼  0, 𝑦 1 0     } 

+ max  |  𝐹1
𝛼  𝑡, 𝑥 1 𝑡   − 𝐹1

𝛼  𝑡, 𝑦 1 𝑡    |,  𝐹2
𝛼  𝑡, 𝑥 1 𝑡   − 𝐹2

𝛼  𝑡, 𝑦 1 𝑡     } 

+  𝑚𝑎𝑥  |𝑇1
𝛼 𝑡 − 𝑠  𝐺1

𝛼  𝑡, 𝑥  h 2  s   − 𝐺1
𝛼  𝑡, 𝑦  h 2  s    |, 𝑇2

𝛼 𝑡 − 𝑠  𝐺2
𝛼  𝑡, 𝑥  h 2  s   

𝑡

0

− 𝐺2
𝛼  𝑡, 𝑦  h 2  s      } 𝑑𝑠  

≤ max 𝑇1
𝛼 𝑡 , 𝑇2

𝛼 𝑡  max   𝑔1
𝛼 𝑥 − 𝑔1

𝛼 𝑦  ,  𝑔2
𝛼 𝑥 − 𝑔2

𝛼 𝑦 |} 

+ max 𝑇1
𝛼 𝑡 , 𝑇2

𝛼 𝑡  max   𝐹1
𝛼  0, 𝑥 1 0   − 𝐹1

𝛼  0, 𝑦 1 0    ,  𝐹2
𝛼  0, 𝑥 1 0   − 𝐹2

𝛼  0, 𝑦 1 0   |} 

+ max   𝐹1
𝛼  𝑡, 𝑥 1 𝑡   − 𝐹1

𝛼  𝑡, 𝑦 1 𝑡    ,  𝐹2
𝛼  𝑡, 𝑥 1 𝑡   − 𝐹2

𝛼  𝑡, 𝑦 1 𝑡   | } 

+  max   𝑇1
𝛼 𝑡 − 𝑠 , 𝑇2

𝛼 𝑡 − 𝑠 |} max{ 𝐺1
𝛼  𝑡, 𝑥  h 2  s   − 𝐺1

𝛼  𝑡, 𝑦  h 2  s    , |𝐺2
𝛼  𝑡, 𝑥  h 2  s   

𝑡

0

− 𝐺2
𝛼  𝑡, 𝑦  h 2  s   | }  𝑑𝑠 

≤  𝑑𝐻([𝑇 𝑡 ]𝛼 , 0)𝑑𝐻([𝑔 𝑥 ]𝛼 ,  𝑔 𝑦 ]𝛼 + 𝑑𝐻([𝑇 𝑡 ]𝛼 , 0)𝑑𝐻([𝐹  0, 𝑥 1 0   ]𝛼 , [𝐹  0, 𝑦 1 0   ]𝛼) 

+ 𝑑𝐻([𝐹  𝑡, 𝑥  h 1  t   ]𝛼 ,  𝐹  𝑡, 𝑦  h 1  t   ]𝛼  

 𝑑𝐻([𝑇 𝑡 − 𝑠 ]𝛼 , 0)
𝑡

0

𝑑𝐻([𝐺  𝑠, 𝑥  h 2  s     ]𝛼 , [𝐺  𝑠, 𝑦  h 2  s     ]𝛼𝑑𝑠 

≤  𝐿3𝑑𝐻([𝑇 𝑡 ]𝛼 , 0)𝑑𝐻([𝑥]𝛼 ,  𝑦]𝛼 + 𝐿1𝑑𝐻([𝑇 𝑡 ]𝛼 , 0)𝑑𝐻([𝑥]𝛼 ,  𝑦]𝛼 + 𝐿1𝑑𝐻([𝑥]𝛼 ,  𝑦]𝛼  

+𝐿2   𝑑𝐻([𝑇 𝑡 − 𝑠 ]𝛼 , 0)𝑑𝐻([𝑥]𝛼 ,  𝑦]𝛼 
𝑡

0
 ds 

 

D  Nx  t ,  Ny  t   ≤   𝐿3𝐷 𝑇 𝑡 , 0  𝐷 𝑥 𝑡 , 𝑦 𝑡  + 𝐿1𝐷 𝑇 𝑡 , 0  𝐷 𝑥 𝑡 , 𝑦 𝑡  + 𝐿1𝐷 𝑥 𝑡 , 𝑦 𝑡   

+𝐿2   𝐷 𝑇 𝑡 − 𝑠 , 0  𝐷 𝑥 𝑠 , 𝑦 𝑠  𝑑𝑠 
𝑡

0
  

≤    𝐿3| ∥ 𝑇(𝑡) ∥ |𝐸𝑛  𝐷 𝑥 𝑡 , 𝑦 𝑡  + 𝐿1| ∥ 𝑇(𝑡) ∥ |𝐸𝑛  𝐷 𝑥 𝑡 , 𝑦 𝑡  + 𝐿1𝐷 𝑥 𝑡 , 𝑦 𝑡   

+𝐿2   ∥ 𝑇(𝑡 − 𝑠) ∥ |𝐸𝑛  𝐷 𝑥 𝑠 , 𝑦 𝑠  𝑑𝑠 
𝑡

0

 

Then we obtain 
 

D  Nx  t ,  Ny  t   ≤  𝑀𝐿3𝐷 𝑥 𝑡 , 𝑦 𝑡  +  (𝑀 + 1)𝐿1𝐷 𝑥 𝑡 , 𝑦 𝑡  + 𝑀𝐿2   𝐷 𝑥 𝑠 , 𝑦 𝑠  𝑑𝑠 
𝑡

0

 

𝐻 𝑁𝑥, 𝑁𝑦 ≤  sup
0≤𝑡≤𝑎

{𝑀𝐿3𝐷 𝑥 𝑡 , 𝑦 𝑡  +  (𝑀 + 1)𝐿1𝐷 𝑥 𝑡 , 𝑦 𝑡  + 𝑀𝐿2   𝐷 𝑥 𝑠 , 𝑦 𝑠  𝑑𝑠 
𝑡

0

} 

≤  𝑀𝐿3 +  𝑀 + 1 𝐿1 + 𝑎𝑀𝐿2 𝐻(𝑥, 𝑦) 
Since 𝑀𝐿3 +  𝑀 + 1 𝐿1 + 𝑎𝑀𝐿2 < 1, N is a strict contraction mapping. By Banach fixed point theorem we 

conclude that N  has a unique fixed point 

𝑥 = 𝑁𝑥 ∈ ∈  𝐶  0, 𝑎 , 𝐸𝑛 . 
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Theoreme7: Suppose that 𝐹, 𝐺, 𝑔 and 𝑖 ,   𝑖 = 1,2 are the same as in theorem6. let  

𝑥 . , 𝑥0 , 𝑦 . , 𝑦0  be a mild solution of Eq (1) corresponding to 𝑥0 𝑦0 respectively. Then there exists a constant 

𝜉 > 0 such that 

            𝐻 𝑥 . , 𝑥0 , 𝑦 . , 𝑦0  ≤ 𝜉 𝐷(𝑥0, 𝑦0)  for any  𝑥0, 𝑦0  ∈  𝐸𝑛  and    𝜉 =  𝑀 (1 − 𝐿0)  

 Proof : Let  𝑥 𝑡, 𝑥0 , 𝑦 𝑡, 𝑦0  be a mild solution to Eq.(1) corresponding to  𝑥0, 𝑦0 respectively. Then 

𝑑𝐻( [𝑥 𝑡, 𝑥0 ]𝛼 ,  𝑦 𝑡, 𝑥0 ]𝛼 =  

𝑑𝐻([𝑇 𝑡  𝑥0 ⊝ 𝑔 𝑥 ⊝ 𝐹  0, 𝑥 1 0    ⊕ 𝐹  𝑡, 𝑥  h 1  t   ⊕  𝑇 𝑡 − 𝑠 𝐺  𝑡, 𝑥  h 2  s   
𝑡

0

𝑑𝑠  ]𝛼 ,  

 𝑇 𝑡  𝑥0 ⊝ 𝑔 𝑦 ⊝ 𝐹  0, 𝑦 1 0    ⊕ 𝐹  𝑡, 𝑦  h 1  t   ⊕  𝑇 𝑡 − 𝑠 𝐺  𝑡, 𝑦  h 2  s   
𝑡

0

𝑑𝑠]𝛼  

≤  𝑑𝐻([𝑇 𝑡 ]𝛼 , 0)𝑑𝐻([𝑥0]𝛼 ,  𝑦0]𝛼 + 𝐿3𝑑𝐻([𝑇 𝑡 ]𝛼 , 0)𝑑𝐻([𝑥]𝛼 ,  𝑦]𝛼 + 𝐿1𝑑𝐻([𝑇 𝑡 ]𝛼 , 0)𝑑𝐻([𝑥]𝛼 ,  𝑦]𝛼 +

 𝐿1𝑑𝐻([𝑥]𝛼 ,  𝑦]𝛼  +𝐿2   𝑑𝐻([𝑇 𝑡 − 𝑠 ]𝛼 , 0)𝑑𝐻([𝑥]𝛼 ,  𝑦]𝛼 
𝑡

0
 ds 

Then we obtain  
 

𝐷 𝑥 𝑡, 𝑥0 , 𝑦 𝑡, 𝑥0  ≤ | ∥ 𝑇(𝑡) ∥ |𝐸𝑛  𝐷 𝑥0, 𝑦0 + 𝐿3| ∥ 𝑇(𝑡) ∥ |𝐸𝑛  𝐷 𝑥 𝑡 , 𝑦 𝑡  + (𝑀 + 1) 𝐿1| ∥ 𝑇(𝑡)

∥ |𝐸𝑛  𝐷 𝑥 𝑡 , 𝑦 𝑡  + 𝐿2 ∥ 𝑇(𝑡) ∥ |𝐸𝑛    𝐷 𝑥 𝑠 , 𝑦 𝑠  𝑑𝑠 
𝑡

0

 

Thus, 

≤  𝑀𝐷 𝑥0, 𝑦0 + 𝑀𝐿3𝐷 𝑥 𝑡 , 𝑦 𝑡  + (𝑀 + 1)𝐿1𝐷 𝑥 𝑡 , 𝑦 𝑡  + 𝑀𝐿2   𝐷 𝑥 𝑠 , 𝑦 𝑠  𝑑𝑠 
𝑡

0

  

 𝐻(𝑥(. , 𝑥0), 𝑦(. , 𝑦0)) ≤ 𝑀𝐷 𝑥0, 𝑦0 +  𝑀𝐿3 +  𝑀 + 1 𝐿1 + 𝑎𝑀𝐿2 𝐻(𝑥(. , 𝑥0), 𝑦(. , 𝑦0)) 
So  
 

 

𝐻 𝑥 . , 𝑥0 , 𝑦 . , 𝑦0   ≤    𝑀 1 −  𝑀𝐿3 +  𝑀 + 1 𝐿1 + 𝑎𝑀𝐿2   𝐷 𝑥0, 𝑦0  

 

Were 𝑙0 =  𝑀𝐿3 +  𝑀 + 1 𝐿1 + 𝑎𝑀𝐿2 
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