Some Topological Concepts In Penta Topological Space

G. Priscilla Pacifica¹& S. Shehnaz Fathima² ^{1,2}Department of Mathematics & St. Mary's College (Autonomous) Thoothukudi, Tamil Nadu, India.

Abstract:

The purpose of this paper is to introduce the concept of generalized closed set to penta topological space. Further we studied some fundamental properties of penta topological space.

Keyword: Penta topological space, $\tau_{1,2,3,4,5}$ open, $\tau_{1,2,3,4,5}$ closed, $\alpha(1,2,3,4,5)$ open, $\alpha(1,2,3,4,5)$ closed, $\beta(1,2,3,4,5)$ open, $\beta(1,2,3,4,5)$ closed, semi (1,2,3,4,5) open, semi (1,2,3,4,5) closed, regular (1,2,3,4,5) open and regular (1,2,3,4,5) closed.

Mathematics subject classification 2010: 54A05, 54A10.

I. INTRODUCTION

General topology plays a vital role in mathematics and other branches of science. Starting from single topology it extended to bitopology and tritopology etc. with usual definitions. In 1983, J.C Kelly[1] introduced bitopological space (X, τ_1, τ_2), where X is a non empty set together with two topologies τ_1 and τ_2 . As an extension of bitopological space, tritopological space($X, \tau_1, \tau_2, \tau_3$)was first initiated by Martin M. Kovar[2] in 2000, where X is a non empty set together with three topologies τ_1, τ_2 and τ_3 .Quad topological space($X, \tau_1, \tau_2, \tau_3, \tau_4$)was investigated by Mukundan[3], where X is a non empty set together with four topologies τ_1, τ_2, τ_3 and τ_4 . Penta topological space($X, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5$) was introduced by Muhammad Shahkar Khan and Gulzar Ali Khan[4] where X is a non empty set together with five topologies $\tau_1, \tau_2, \tau_3, \tau_4$ and τ_5 . In this paper we have investigated some properties of penta topological space and also we have analysed how the generalized closed set act on penta topological space.

II. PRELIMINARIES

Let X be a non empty set together with five topologies $\tau_1, \tau_2, \tau_3, \tau_4$ and τ_5 is called penta topological space and it is denoted by $(X, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5)$.

Example: 2.2

Definition: 2.1

$$X = \{a, b, c, d\}\tau_1 = \{\varphi, \{a\}, X\}\tau_2 = \{\varphi, \{a\}, \{b\}, \{a, b\}, X\}\tau_3 = \{\varphi, \{b\}, \{c\}, \{b, c\}, X\}$$

 $\tau_4 = \{\varphi, \{c\}, \{d\}, \{c, d\}, X\}\tau_5 = \{\varphi, \{a\}, \{c\}, \{a, c\}, X\}$. Then $(X, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5)$ is a penta topological space.

Definition: 2.3

Let $(X, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5)$ be a penta topological space. A subset A of X is called penta-open if

 $A \in \tau_1 \cup \tau_2 \cup \tau_3 \cup \tau_4 \cup \tau_5$ and its complement is said to be penta-closed

Remark: 2.4

Penta open sets satisfy all the axioms of topology.

Example: 2.5

$$X = \{a, b, c, d\}\tau_1 = \{\varphi, \{a\}, X\}\tau_2 = \{\varphi, \{b\}, X\}\tau_3 = \{\varphi, \{c\}, X\}\tau_4 = \{\varphi, \{d\}, X\}\tau_5 = \{\varphi, \{a, b\}, X\}$$

 $\{\varphi, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}\}$ are penta open sets and $\{\varphi, X, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\}$ are penta closed sets.

Remark: 2.6

ISSN: 2231-5373

 φ and X are both penta open and penta closed.

Theorem: 2.7

Arbitrary union of penta open sets is penta open.

Theorem: 2.8

Definition: 3.1

Arbitrary intersection of penta closed sets is penta closed.

III. BASIC PROPERTIES OF $\tau_{1,2,3,4,5}$ OPEN SETS

Let $(X, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5)$ be a penta topological space. $S \subset X$ is $\tau_{1,2,3,4,5}$ open if $S \subset A \cup B \cup C \cup D \cup E$ where $A \in \tau_1, B \in \tau_2, C \in \tau_3, D \in \tau_4, E \in \tau_5$.

Result: 3.2

 φ and X are $\tau_{1,2,3,4,5}$ open.

Theorem: 3.3

Let $(X, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5)$ be a penta topological space. Let $S_1, S_2 \subset X$. If S_1 and S_2 are $\tau_{1,2,3,4,5}$ open then

 $S_1 \cup S_2 \subset X$ is $\tau_{1,2,3,4,5}$ open.

Proof:

 S_1 and S_2 are $\tau_{1,2,3,4,5}$ open

$$S_1 = A_1 \cup B_1 \cup C_1 \cup D_1 \cup E_1$$

 $S_2 = A_2 \cup B_2 \cup C_2 \cup D_2 \cup E_2$ where $A_1, A_2 \in \tau_1; B_1, B_2 \in \tau_2; C_1, C_2 \in \tau_3; D_1, D_2 \in \tau_4$ and $E_1, E_2 \in \tau_5$

 $S_1 \cup S_2 = (A_1 \cup A_2) \cup (B_1 \cup B_2) \cup (C_1 \cup C_2) \cup (D_1 \cup D_2) \cup (E_1 \cup E_2)$ is $\tau_{1,2,3,4,5}$ open.

Theorem: 3.4

Let $(X, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5)$ be a penta topological space. Let $S_\alpha \in X$ where $\alpha \in I$. If S_α is $\tau_{1,2,3,4,5}$ open for each α then $\bigcup S_\alpha$ is $\tau_{1,2,3,4,5}$ open.

Proof:

 $S_{\alpha} = A_{\alpha} \cup B_{\alpha} \cup C_{\alpha} \cup D_{\alpha} \cup E_{\alpha}$ where $A_{\alpha} \in \tau_1, B_{\alpha} \in \tau_2, C_{\alpha} \in \tau_3, D_{\alpha} \in \tau_4, E_{\alpha} \in \tau_5$.

$$\bigcup_{\alpha \in I} S_{\alpha} = \bigcup (A_{\alpha} \cup B_{\alpha} \cup C_{\alpha} \cup D_{\alpha} \cup E_{\alpha})$$
$$= (\bigcup A_{\alpha}) \cup (\bigcup B_{\alpha}) \cup (\bigcup C_{\alpha}) \cup (\bigcup D_{\alpha}) \cup (\bigcup E_{\alpha})$$

 $\cup A_{\alpha} \in \tau_1, \cup B_{\alpha} \in \tau_2, \cup C_{\alpha} \in \tau_3, \cup D_{\alpha} \in \tau_4, \cup E_{\alpha} \in \tau_5.$

Hence $\cup S_{\alpha}$ is $\tau_{1,2,3,4,5}$ open.

Definition: 3.5

Let $(X, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5)$ be a penta topological space. Let $A \subset X$. If A is $\tau_{1,2,3,4,5}$ open then the complement of A is said to be $\tau_{1,2,3,4,5}$ closed.

Definition: 3.6

Let $(X, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5)$ be a penta topological space.

 $A \subset X$. $\tau_{1,2,3,4,5}$ cl $A = \cap \{F/F \supset A \text{ and } F \text{ is } \tau_{1,2,3,4,5} \text{ closed}\}$

 $A \subset X$. $\tau_{1,2,3,4,5}$ int $A = \cap \{F/F \supset A \text{ and } F \text{ is } \tau_{1,2,3,4,5} \text{ open}\}$

Theorem: 3.7

Arbitrary intersection of $\tau_{1,2,3,4,5}$ closed sets is $\tau_{1,2,3,4,5}$ closed in penta topological space.

Proof:

Follows from theorem 3.4

Theorem: 3.8

Let $(X, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5)$ be a penta topological space. Let $A \subset X$. A is $\tau_{1,2,3,4,5}$ open iff $\tau_{1,2,3,4,5}$ int A = A.

Proof:

Follows from the fact that arbitrary union of $\tau_{1,2,3,4,5}$ open sets is $\tau_{1,2,3,4,5}$ open.

Theorem: 3.9

Let $(X, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5)$ be a penta topological space. Let $A \subset X$. A is $\tau_{1,2,3,4,5}$ closed iff $\tau_{1,2,3,4,5}$ cl

Proof:

Follows from the fact that arbitrary intersection of $\tau_{1,2,3,4,5}$ closed sets is $\tau_{1,2,3,4,5}$ closed.

Theorem: 3.10

Let $(X, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5)$ be a penta topological space. For any $A \subset X$, $(\tau_{1,2,3,4,5} int A)^c = \tau_{1,2,3,4,5} cl A^c$.

Proof:

 $(\tau_{1,2,3,4,5} int A)^c = [\cup \{G/G \subseteq A \& G is \tau_{1,2,3,4,5} \text{ open }]^c$

$$= \cap \{ G^{c} / G^{c} \supseteq A^{c} \& G^{c} \text{ is } \tau_{1,2,3,4,5} \text{ closed } \}$$

$$= \cap \{F = G^c / F \supseteq A^c \& F \text{ is } \tau_{1,2,3,4,5} \text{ closed}\}$$
 where $F = G^c$

 $= \tau_{1,2,3,4,5} cl A^c$.

Remark: 3.11

 φ and X are $\tau_{1,2,3,4,5}$ closed.

Result: 3.12

The intersection of two $\tau_{1,2,3,4,5}$ open sets need not be $\tau_{1,2,3,4,5}$ open.

Example: 3.13

$$X = \{a, b, c\}\tau_1 = \{\varphi, \{a\}, \{b\}, \{a, b\}, X\}\tau_2 = \{\varphi, \{a\}, \{a, c\}, X\}\tau_3 = \{\varphi, \{b\}, \{b, c\}, X\}\tau_3 = \{\varphi, \{b\}, \{b\}, \{b\}, X\}\tau_3 = \{\varphi, \{b\}, \{b\}, \{b\}, X\}\tau_3 = \{\varphi, \{b\}, \{b\}, X\}\tau_3 = \{\varphi, \{b\}, X\}\tau_3$$

$$\tau_4 = \{\varphi, \{a\}, X\}\tau_5 = \{\varphi, \{b\}, \{b, c\}, X\}$$

 $A = \{a, c\}$ is $\tau_{1,2,3,4,5}$ open.

 $B = \{b, c\}$ is $\tau_{1,2,3,4,5}$ open.

 $A \cap B = \{c\}$ which is not $\tau_{1,2,3,4,5}$ open.

{b} cannot be written as $B_1 \cup B_2 \cup B_3 \cup B_4 \cup B_5$ where B_i is τ_i open for all i = 1 to 5

Remark: 3.14

Union of two $\tau_{1,2,3,4,5}$ closed sets need not be $\tau_{1,2,3,4,5}$ closed.

Example: 3.15

In the example 3.13 A and B are $\tau_{1,2,3,4,5}$ open.

 $\Rightarrow A^c$ and B^c are $\tau_{1,2,3,4,5}$ closed.

$$A^{c} = \{ b \} \text{ and } B^{c} = \{ a \}$$

 $A^c \cup B^c = \{a, b\}$ is not $\tau_{1,2,3,4,5}$ closed, since $\{a, b\}^c = \{c\}$ is not $\tau_{1,2,3,4,5}$ open.

Hence $\{a, b\}$ is not $\tau_{1,2,3,4,5}$ closed.

Result: 3.16

The set of all $\tau_{1,2,3,4,5}$ open sets contains $\tau_1 \cup \tau_2 \cup \tau_3 \cup \tau_4 \cup \tau_5$.

Theorem: 3.17

Let $(X, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5)$ be a penta topological space. The set of all $\tau_{1,2,3,4,5}$ open sets is a generalized topology on X.

Proof:

Follows from Result 3.2, Theorem 3.4 and Result 3.12

Definition: 3.18

Let $(X, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5)$ be a penta topological space. $A \subset X$ is called semi(1, 2, 3, 4, 5) open if

 $A \subset \tau_{1,2,3,4,5} \ cl\tau_{1,2,3,4,5} int A.$

Definition: 3.19

Let $(X, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5)$ be a penta topological space. $A \subset X$ is called semi(1, 2, 3, 4, 5) closed if A^c is semi(1, 2, 3, 4, 5) open.

Definition: 3.20

Let $(X, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5)$ be a penta topological space. $A \subset X$ is called pre(1, 2, 3, 4, 5) open if

 $A \subset \tau_{1,2,3,4,5} int \tau_{1,2,3,4,5} cl A.$

Definition: 3.21

Let $(X, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5)$ be a penta topological space. $A \subset X$ is called pre(1, 2,3,4, 5) closed if A^c is pre(1,2,3,4,5) open.

Definition: 3.22

Let $(X, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5)$ be a penta topological space. $A \subset X$ is called $\alpha(1, 2, 3, 4, 5)$ open if

 $A \subset \tau_{1,2,3,4,5}$ int $\tau_{1,2,3,4,5}$ $cl\tau_{1,2,3,4,5}$ int A.

Definition: 3.23

Let $(X, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5)$ be a penta topological space. $A \subset X$ is called $\alpha(1, 2, 3, 4, 5)$ closed if A^c is $\alpha(1, 2, 3, 4, 5)$ open.

Definition: 3.24

ISSN: 2231-5373

Let $(X, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5)$ be a penta topological space. $A \subset X$ is called $\beta(1, 2, 3, 4, 5)$ open if

 $A \subset \tau_{1,2,3,4,5} cl \tau_{1,2,3,4,5} int \tau_{1,2,3,4,5} cl A.$

Definition: 3.25

Let $(X, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5)$ be a penta topological space. $A \subset X$ is called $\beta(1, 2, 3, 4, 5)$ closed if A^c is $\beta(1, 2, 3, 4, 5)$ open.

Definition: 3.26

Let $(X, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5)$ be a penta topological space. $A \subset X$ is called regular(1, 2, 3, 4, 5) open if

 $A = \tau_{1,2,3,4,5} int \tau_{1,2,3,4,5} cl A.$

Definition: 3.27

Let $(X, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5)$ be a penta topological space. $A \subset X$ is called regular(1, 2, 3, 4, 5) closed if $A = \tau_{1,2,3,4,5} cl\tau_{1,2,3,4,5} intA$.

Example:3.28

$$\begin{split} X &= \{a, b, c, d\} \tau_1 = \{\varphi, \{a\}, \{b\}, \{a, b\}, X\} \tau_2 = \{\varphi, \{a\}, \{c\}, \{a, c\}, X\} \\ \tau_3 &= \{\varphi, \{a\}, \{b\}, \{a, b, c\}, X\} \tau_4 = \{\varphi, \{b\}, \{c\}, \{b, c\}, X\} \tau_5 = \{\varphi, \{a\}, \{c\}, \{a, b, c\}, X\} \end{split}$$

 $\tau_{1,2,3,4,5}$ open sets are $\{\varphi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, X\}$

 $\tau_{1,2,3,4,5}$ closed sets are { φ , {b, c, d}, {a, c, d}, {a, b, d}, {c, d}, {b, d}, {a, d}, {d}, X}

Take $A = \{a, c\}$

$$\tau_{1,2,3,4,5}intA = \{a, c\}$$

$$\tau_{1,2,3,4,5} \ cl\tau_{1,2,3,4,5} \ intA = \tau_{1,2,3,4,5} \ cl\{a,c\} = \{a,c,d\}$$

 $A \subset \tau_{1,2,3,4,5} \ cl\tau_{1,2,3,4,5} \ intA$. Hence A is semi (1,2,3,4,5) open.

Hence $\{b, d\}$ is semi (1,2,3,4,5) closed.

 $\tau_{1,2,3,4,5} \ clA = \{a, c, d\}$

 $\tau_{1,2,3,4,5} int \tau_{1,2,3,4,5} cl A = \tau_{1,2,3,4,5} int \{a, c, d\} = \{a, c\}$

 $A \subset \tau_{1,2,3,4,5}$ int $\tau_{1,2,3,4,5}$ cl A.Hence A is pre (1,2,3,4,5) open.

{*b*, *d*} is pre (1,2,3,4,5) closed.

 $\tau_{1,2,3,4,5} int \tau_{1,2,3,4,5} cl\tau_{1,2,3,4,5} int A = \tau_{1,2,3,4,5} int \{a, c, d\} = \{a, c\}$

 $A \subset \tau_{1,2,3,4,5}$ int $\tau_{1,2,3,4,5}$ cl $\tau_{1,2,3,4,5}$ int A. Hence A is $\alpha(1,2,3,4,5)$ open.

 $\{b, d\}$ is $\beta(1,2,3,4,5)$ open.

Theorem: 3.29

Let $(X, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5)$ be a penta topological space. Let $A \subset X$. A is semi (1, 2,3,4, 5) open iff there exist a $\tau_{1,2,3,4,5}$ open set 0 such that $0 \subset A \subset \tau_{1,2,3,4,5}$ cl0.

Proof:

Let *A* be semi(1,2,3,4,5) open. Then $A \subset \tau_{1,2,3,4,5} c l \tau_{1,2,3,4,5} int A$.

Now $\tau_{1,2,3,4,5}$ int $A \subset A \subset \tau_{1,2,3,4,5}$ cl $\tau_{1,2,3,4,5}$ int A. Take $0 = \tau_{1,2,3,4,5}$ int A.

Then *O* is $\tau_{1,2,3,4,5}$ open and $O \subset A \subset \tau_{1,2,3,4,5}$ *clO*.

Conversely, suppose there exist $\tau_{1,2,3,4,5}$ open with $0 \subset A \subset \tau_{1,2,3,4,5}$ *cl0*.

Now *O* is $\tau_{1,2,3,4,5}$ open and $O \subset A$ and hence $O \subset \tau_{1,2,3,4,5}$ int *A*.

Therefore $\tau_{1,2,3,4,5} \ cl0 \subset \tau_{1,2,3,4,5} \ cl\tau_{1,2,3,4,5}$ int *A*.

Now $A \subset \tau_{1,2,3,4,5}$ *cl0* and hence $A \subset \tau_{1,2,3,4,5}$ *cl* $\tau_{1,2,3,4,5}$ *int A*.

Theorem: 3.30

Let $(X, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5)$ be a penta topological space. Let $A \subset X$. *A* is semi (1, 2,3,4, 5) open iff $\tau_{1,2,3,4,5}$ $clA = \tau_{1,2,3,4,5}$ $cl\tau_{1,2,3,4,5}$ *int A*.

Proof:

Suppose *A* is semi (1, 2, 3, 4, 5) open. Then $A \subset \tau_{1,2,3,4,5} cl\tau_{1,2,3,4,5} int A$.

Always $\tau_{1,2,3,4,5}$ int $A \subset A$.

 $\Rightarrow \tau_{1,2,3,4,5} \ cl[\tau_{1,2,3,4,5} \ int \ A] \subset \tau_{1,2,3,4,5} \ clA \quad ------1$

Also $\tau_{1,2,3,4,5} \ clA \subset \tau_{1,2,3,4,5} \ cl\tau_{1,2,3,4,5} \ int A$ ------2

1 and 2 $\Rightarrow \tau_{1,2,3,4,5} \ clA = \tau_{1,2,3,4,5} \ cl\tau_{1,2,3,4,5} \ int A.$

Conversely, suppose $\tau_{1,2,3,4,5} \ clA = \tau_{1,2,3,4,5} \ int A$.

Claim: *A* is semi (1,2,3,4,5) open.

 $A \subset \tau_{1,2,3,4,5} \ clA = \tau_{1,2,3,4,5} \ cl\tau_{1,2,3,4,5} \ int A$

 $A \subset \tau_{1,2,3,4,5} \ cl \tau_{1,2,3,4,5} int A.$

Therefore A is semi (1,2,3,4,5) open.

Theorem: 3.31

Let $(X, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5)$ be a penta topological space. $A \subset X$ is called regular (1, 2,3,4, 5) open iff A^c is regular(1, 2,3,4, 5) closed.

Proof:

Suppose A is regular (1, 2, 3, 4, 5) open.

$$\Leftrightarrow A = \tau_{1,2,3,4,5} \operatorname{int} \tau_{1,2,3,4,5} \operatorname{cl} A$$
$$\Leftrightarrow A^{c} = [\tau_{1,2,3,4,5} \operatorname{int} \tau_{1,2,3,4,5} \operatorname{cl} A]^{c}$$
$$\Leftrightarrow A^{c} = \tau_{1,2,3,4,5} \operatorname{cl} \tau_{1,2,3,4,5} \operatorname{int} A^{c}$$

 $\Leftrightarrow A^c$ is regular(1,2,3,4,5) closed.

Theorem:3.32

Let $(X, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5)$ be a penta topological space. Let $A \subset X$.

 $[semi(1,2,3,4,5)intA]^c = semi(1,2,3,4,5)clA^c.$

Proof:

$$[semi(1,2,3,4,5)intA]^{c} = [\cup \{G/G \subset A \& G \text{ is } semi(1,2,3,4,5)open\}]^{c}$$
$$= \cap \{G^{c}/G^{c} \supset A^{c}\&G^{c} \text{ is } semi(1,2,3,4,5)closed\}$$
$$= \cap \{F/F \supset A^{c}\&F \text{ is } semi(1,2,3,4,5)closed\} \text{ where } F = G^{c}.$$
$$= semi(1,2,3,4,5)cl A^{c}$$

Hence $[semi(1,2,3,4,5)intA]^c = semi(1,2,3,4,5)clA^c$.

Theorem:3.33

Let $(X, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5)$ be a penta topological space. Let $A \subset X.A$ is semi(1, 2, 3, 4, 5) closed iff $A \supset \tau_{1,2,3,4,5}$ int $\tau_{1,2,3,4,5}$ closed iff $A \supset A$.

Proof:

A is semi (1, 2,3,4, 5) closed

 $\Leftrightarrow A^c$ is semi(1,2,3,4,5) open

$$\Leftrightarrow A^{c} \subset \tau_{1,2,3,4,5} \ cl\tau_{1,2,3,4,5} int \ A^{c}$$
$$\Leftrightarrow A \supset [\tau_{1,2,3,4,5} \ cl\tau_{1,2,3,4,5} int \ A^{c}]^{c}$$
$$\Leftrightarrow A \supset \tau_{1,2,3,4,5} int [\tau_{1,2,3,4,5} int \ A^{c}]^{c}$$

 $\Leftrightarrow A \supset \tau_{1,2,3,4,5} int \tau_{1,2,3,4,5} cl A.$

Theorem: 3.34

Let $(X, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5)$ be a penta topological space. Let $A \subset X.A$ is pre(1,2,3,4,5) closed iff

 $A \supset \tau_{1,2,3,4,5} \ cl\tau_{1,2,3,4,5} \ int A.$

Proof:

$$A \supset \tau_{1,2,3,4,5} \ cl\tau_{1,2,3,4,5} \ int A.$$

A is pre(1,2,3,4,5) closed $\Leftrightarrow A^c$ is pre(1,2,3,4,5) open.

$$\Leftrightarrow A^{c} \subset \tau_{1,2,3,4,5} int\tau_{1,2,3,4,5} cl A^{c}$$
$$\Leftrightarrow [A^{c}]^{c} \supset [\tau_{1,2,3,4,5} int\tau_{1,2,3,4,5} cl A^{c}]^{c}$$
$$\Leftrightarrow A \supset \tau_{1,2,3,4,5} cl\tau_{1,2,3,4,5} int A.$$

Theorem: 3.35

Let $(X, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5)$ be a penta topological space. Let $A \subset X.A$ is $\alpha(1, 2, 3, 4, 5)$ closed iff

 $A \supset \tau_{1,2,3,4,5} \ cl \tau_{1,2,3,4,5} \ int \tau_{1,2,3,4,5} \ cl \ A.$

Proof:

A is $\alpha(1,2,3,4,5)$ closed $\Leftrightarrow A^c$ is $\alpha(1,2,3,4,5)$ open

 $\Leftrightarrow A^c \subset \tau_{1,2,3,4,5} \ int \tau_{1,2,3,4,5} \ cl \ \tau_{1,2,3,4,5} \ int A^c$

$$\Leftrightarrow [A^{c}]^{c} \supset \left[\tau_{1,2,3,4,5} int\tau_{1,2,3,4,5} cl\tau_{1,2,3,4,5} int A^{c}\right]^{c}$$

 $\Leftrightarrow A \supset \tau_{1,2,3,4,5} \ cl \tau_{1,2,3,4,5} \ int \tau_{1,2,3,4,5} \ cl \ A.$

Theorem: 3.36

Let $(X, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5)$ be a penta topological space. Let $A \subset X.A$ is $\beta(1,2,3,4,5)$ closed iff $A \supset \tau_{1,2,3,4,5}$ int $\tau_{1,2,3,4,5}$ cl $\tau_{1,2,3,4,5}$ int A.

Proof:

A is $\beta(1,2,3,4,5)$ closed $\Leftrightarrow A^c$ is $\beta(1,2,3,4,5)$ open.

$$\Leftrightarrow A^{c} \subset \tau_{1,2,3,4,5} \ cl \tau_{1,2,3,4,5} \ int \ \tau_{1,2,3,4,5} \ cl \ A^{c}$$

$$\Leftrightarrow [A^{c}]^{c} \supset \left[\tau_{1,2,3,4,5} \ c l \tau_{1,2,3,4,5} \ int \tau_{1,2,3,4,5} \ c l \ A^{c}\right]^{c}$$

 $\Leftrightarrow A \supset \tau_{1,2,3,4,5} int \tau_{1,2,3,4,5} cl \tau_{1,2,3,4,5} int A.$

REFERENCE

- [1] Andrejevic.D, semi-preopen sets, Mat.Vensik, 38(1)(1986), 24-32
- [2] Kelly J.C (1963), Bitopological spaces, proc.LondonMath.Soc.3 PP. 17-89
- [3] Kovar M. Martin., (2000). On 3-Topological version of Thet-Regularity, Internat.J.Math, Sci, 23(6), 393-398.
- [4] Mukundan, D.V (2013), Introduction to Quad topological spaces (4-tuple topology), International Journal of Scientific Research, Volume 4, Issue7, 2483-2485.
- [5] Muhammad Shahkar Khan and Gulzar Ali Khan, p-Continuity and p-Homeomorphism in Penta topological spaces, European International Journal of Science and Technology, Vol.7 No.5, July 2018, ISSN: 2304-9693
- [6] Palaniammal.S.,(2011). Study of Tritopological spaces, Ph.D. Thesis.
- Priyadharshini P and Parvathi A(2017), Tri-b-Continuous Function in Tri Topological Spaces, International Journal of Mathematics and its Applications, Vol. 5, Issue 4F,959-962.