Cube Root Cube Mean Labeling of Graphs

S. Kulandhai Therese ${ }^{1}$, K.Romila ${ }^{2}$
${ }^{1}$ Asst.Professor, St. Mary's College, Thoothukudi, TamilNadu, India.
${ }^{2}$ M. Phil Scholar, St. Mary's College, Thoothukudi, TamilNadu, India.

Abstract

A function f is called cube root cube mean labeling of a graph $G(V, E)$ with p vertices and q edges if $f: V(G) \rightarrow\{1,2, \ldots, q+1\}$ is injective and the induced function f^{*} defined as $f^{*}(u v)=\left[\sqrt[3]{\frac{f(u)^{3}+f(v)^{3}}{2}}\right\rfloor$ for all $u v \in E(G)$, is bijective. Then the resulting edge labels are distinct. A graph that admits a cube root cube mean labeling f is called a cube root cube mean graph. In this paper, we introduce cube root cube mean labeling and investigate cube root cube mean labeling of PathP ${ }_{n}$, Comb, Ladder Quadrilateral snake and Fish.

Keywords: Mean labeling of graphs, Cube Root Cube Mean labeling of graphs.

I. INTRODUCTION

By a graph $G=(V, E)$ we mean a finite undirected graph without loops or parallel edges. For all detailed survey of graph labeling we refer to Gallian[2]. For all other standard terminology and notations we follow Harary[4]. The concept of Mean labeling has been introduced by Somasundaram and Ponraj[5]. Root Square Mean Labeling of Graphs has been introduced by Sandhya, Somasundaram and Anusa[6]. Root Cube Mean Labeling of Graphs has been introduced by Gowri and Vembarasi[3]. Motivated the above works we introduced a new type of labeling called Cube Root Cube Mean Labeling.

In this paper we investigate the Cube Root Cube Mean Labeling of Path, Comb, Ladder, Quadrilateral snake and Fish graphs.

II. PRELIMINARIES

Definition: 2.1

A walk in which vertices are distinct is called a path. A path on n vertices is denoted by P_{n}.

Definition: 2.2

The graph obtained by joining a single pendent edge to each vertex of a path is called a Comb graph.

Definition: 2.3

The Cartesian product of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is a graph $G=(V, E)$ with $V=V_{1} \times V_{2}$ and two vertices $u=\left(u_{1} u_{2}\right)$ and $v=\left(v_{1} v_{2}\right)$ are adjacent in $G_{1} \times G_{2}$ whenever ($u_{1}=v_{1}$ and u_{2} is adjacent to v_{2}) or ($u_{2}=v_{2}$ and u_{1} is adjacent to v_{1}).It is denoted by $G_{1} \times G_{2}$.

Definition: 2.4

The Corona of two graphs G_{1} and G_{2} is the graph $G=G_{1} \odot G_{2}$ formed by taking one copy of G_{1} and $\left|\left(G_{1}\right)\right|$ copies of G_{2} where the $i^{\text {th }}$ vertex of G_{1} is adjacent to every vertex in the $i^{\text {th }}$ copy of G_{2}.

Definition: 2.5

The product graph $P_{2} \times P_{n}$ is called a ladder and it is denoted by L_{n}.

Example:

Ladder graph of L_{5} is given below

Definition: 2.6

A Quadrilateral Snake Q_{n} is obtained from path $u_{1}, u_{2}, \ldots \ldots, u_{n}$ by joining u_{i} and u_{i+1} to two new vertices v_{i} and w_{i} respectively and then joining v_{i} and w_{i}. That is every edge of a path is replaced by a cycle C_{4}.

Example:

Quadrilateral graph of Q_{4} is given below

Definition: 2.7

The Fish graph is the graph with 6 vertices and 7 edges.

Example:

III. MAIN RESULTS

Theorem: 3.1

Any path P_{n} is a cube root cube mean labeling graph.

Proof:

Let $G=P_{n}$ be the graph with vertices $u_{1}, u_{2}, \ldots \ldots, u_{n}$ and the edges $e_{1}, e_{2}, \ldots \ldots, e_{q}$
Define the function $f: V\left(P_{n}\right) \rightarrow\{1,2, \ldots \ldots \ldots, q+1\}$ as follows.
$f\left(u_{i}\right)=i, 1 \leq i \leq n$
And the induced edge labeling function $f^{*}: E(G) \rightarrow N$ defined by
$f^{*}(e=u v)=\left\lfloor\sqrt[3]{\frac{f(u)^{3}+f(v)^{3}}{2}}\right\rfloor$

Now $f^{*}\left(u_{i} u_{i+1}\right)=\left\lfloor\sqrt[3]{\frac{f\left(u_{i}\right)^{3}+f\left(u_{i+1}\right)^{3}}{2}}\right\rfloor$

$$
\begin{aligned}
& =\left\lfloor\sqrt[3]{\frac{i^{3}+(i+1)^{3}}{2}}\right\rfloor \\
& =\left\lfloor\sqrt[3]{\frac{2 i^{3}+3 i^{2}+3 i+1}{2}}\right\rfloor
\end{aligned}
$$

Clearly $f^{*}\left(u_{n-1} u_{n}\right)=\left\lfloor\sqrt[3]{\frac{2 n^{3}-3 n^{2}+3 n-1}{2}}\right\rfloor$
Hence the edge labels are distinct.
Thus Path graph admits a Cube root cube mean labeling.

Example: 3.2

The Cube Root Cube Mean labelingof P_{5} is given below

Figure: 1

Theorem: 3.3

Any Comb graph is Cube Root Cube Mean labeling graphs.

Proof:

Let G be a comb graph.
Let $u_{1}, u_{2}, \ldots \ldots, u_{n}$ be the vertices of comb and the edges are $e_{1}, e_{2}, \ldots \ldots, e_{q}$.
Let P_{n} be the path $u_{1}, u_{2}, \ldots \ldots, u_{n}$ in G and join a vertex v_{i} to u_{i} for $1 \leq i \leq n$.
Define the function $f: V\left(P_{n} \odot k_{1}\right) \rightarrow\{1,2, \ldots \ldots, q+1\}$ as follows
$f\left(u_{i}\right)=2 i-1 ; 1 \leq i \leq n ;$
$f\left(v_{i}\right)=2 i ; \quad 1 \leq i \leq n ;$
Then the induced edge labeling function $f^{*}: E(G) \rightarrow N$ defined by
$f^{*}\left(e=u_{i} u_{i+1}\right)=2 i ; \quad 1 \leq i \leq n ;$
$f^{*}\left(e=u_{i} v_{i}\right)=2 i-1 ; \quad 1 \leq i \leq n$; are distinct.
Hence the comb graphs are Cube root cube mean labeling graphs.

Example: 3.4

The Cube Root Cube Mean labeling of $P_{7} \odot k_{1}$ is given below

Figure: 2

Theorem: 3.5

The ladder L_{n} is a Cube Root Cube Mean graph.

Proof:

Let G be a Ladder graph.
Let $\left\{u_{1}, u_{2}, \ldots \ldots, u_{n}, v_{1}, v_{2}, \ldots \ldots, v_{n}\right\}$ be the vertices of ladder.
Define a function $f: V\left(L_{n}\right) \rightarrow\{1,2, \ldots \ldots, q+1\}$ as
$f\left(u_{1}\right)=1$
$f\left(u_{i}\right)=\left\{\begin{array}{cl}3 i-1 & ; i \text { is even } \\ 3 i-3 & ; i \text { is odd }\end{array} ; \quad 1 \leq i \leq n\right.$
$f\left(v_{i}\right)=\left\{\begin{array}{cl}3 i-3 & \text {; } i \text { is even } \\ 3 i-1 & ; \text { is odd }\end{array} ; \quad 1 \leq i \leq n\right.$
Then we got the edge labels
$f^{*}\left(u_{i} u_{i+1}\right)=\left\{\begin{array}{cl}3 i & ; i \text { is odd } \\ 3 i-1 & ; i \text { is even }\end{array} ; \quad 1 \leq i \leq n-1\right.$
$f^{*}\left(v_{i} v_{i+1}\right)=\left\{\begin{array}{ll}3 i-1 & ; i \text { is odd } \\ 3 i & ; i \text { is even }\end{array} ; 1 \leq i \leq n-1\right.$
$f^{*}\left(u_{i} v_{i}\right)=3 i-2 ; 1 \leq i \leq n$ are distinct.
Hence L_{n} is a Cube Root Cube Mean labeling graph.

Example: 3.6

A Cube Root Cube Mean labeling of L_{6}.

Figure: 3

Theorem: 3.7

Quadrilateral snake Q_{n} is Cube Root Cube Mean graph.

Proof:

Let G be a Quadrilateral snake Q_{n}.
Define a function $f: V\left(Q_{n}\right) \rightarrow\{1,2, \ldots \ldots, q+1\}$ by
$f\left(u_{i}\right)=4 i-3 ; \quad 1 \leq i \leq n$
$f\left(v_{i}\right)=4 i-2 ; \quad 1 \leq i \leq n-1$
$f\left(w_{i}\right)=4 i-1 ; \quad 1 \leq i \leq n-1$
Then the induced edge function
$f^{*}: E(G) \rightarrow N$ defined by
$f^{*}\left(u_{i} v_{i}\right)=4 i-3 ; \quad 1 \leq i \leq n-1$
$f^{*}\left(u_{i} u_{i+1}\right)=4 i-1 ; \quad 1 \leq i \leq n-1$
$f^{*}\left(u_{i+1} w_{i}\right)=4 i ; \quad 1 \leq i \leq n-1$
$f^{*}\left(u_{i} w_{i}\right)=4 i-2 ; \quad 1 \leq i \leq n-1$ are distinct.
Hence the Quadrilateral snake Q_{n} is Cube Root Cube Mean Labeling graphs.

Example: 3.8

A Cube Root Cube Mean labeling of Q_{5}.

Figure: 4

Theorem: 3.9
Fish graph is a Cube Root Cube Mean graph.

Proof:

Let G be Fish graph.
Let $\left\{u_{1}, u_{2}, v_{1}, v_{2}, w_{1}, w_{2}\right\}$ be the vertices of G.
The Fish graph consists of n vertices and $n+1$ edges.
Define $f: V(G) \rightarrow\{1,2, \ldots \ldots, q+1\}$ by
$f\left(u_{i}\right)=2 i+3 ; 1 \leq i \leq 2$
$f\left(v_{i}\right)=6 i-4 ; 1 \leq i \leq 2$
$f\left(w_{i}\right)=2 i-1 ; 1 \leq i \leq 2$

Then we find the edge labels
$f^{*}(e)=i$;are distinct.
Hence Fish graph is a Cube Root Cube Mean graph.

Example: 3.10

The Cube Root Cube Mean labeling of Fish graph is given below.

Figure: 5

REFERENCES

[1] S. Arockiaraj, A. DuraiBaskar and A. Rajesh Kannan, F - Root Square Mean Labeling of Graphs Obtained From Path, International Journal of Mathematics and Combinatorics, Vol. 2(2017), 92-104.
[2] J.A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 17(2014), \# DS6
[3] R. Gowri and G. Vembarasi, Root Cube Mean Labeling of Graphs, International Journal of Engineering Science, Advanced Computing and Bio-Technology .8, No.4; (2017), 248-255.
[4] F. Harary, Graph Theory, Narosa Publishing House Reading, New Delhi, 1988.
[5] R. Ponraj and S. Somasundaram, Mean labeling of graphs, National Academy of Science Letters 26, (2013), 210-213.
[6] S. Sandhya, S. Somasundaram and S. Anusa, Some More Results on Root Square Mean Graphs, Journal of Mathematics Research .7, No.1; (2015), 72-81

