Quotient of Ordered Meet Hyper Lattices with a Regular Relation

${ }^{1}$ D Ameena Beave, ${ }^{2}$ V Senthamil Selvi, ${ }^{3}$ S Ramalakshmi
${ }^{1,2,3}$ Student, Thassim Beevi Abdul Kader College for women, Kilakari, Tamil Nadu, India.

Abstract

: In this paper, we consider meet hyperlattices and we define ordered meet hyperlattices. It is already introduced that there exists product of hyperlattices [5]. We introduce the notion of product of two ordered meet hyperlattices in this paper. Moreover, we define the quotient of ordered meet hyperlattices with a regular relation. Also, we investigate isomorphism on the product of two ordered meet hyperlattices with a regular relation.

Keywords: Meet hyper lattice [1], regular relation, Quasi-ordered relation.

I. INTRODUCTION AND BASIC DEFINITIONS

We define a regular relation on Ordered meet hyperlattice such that its quotient [4] is an ordered hyperlattice and we study some properties of such relations.

Definition 1.1:

Let H be a non-empty set. A Hyper operation on H is a map \circ from $\mathrm{H} \times \mathrm{H}$ to $\mathrm{P}^{*}(\mathrm{H})$, the family of non-empty subsets of H . The Couple ($\mathrm{H},{ }^{\circ}$) is called a hypergroupoid. For any two non-empty subsets A and B of H and $\mathrm{x} \in \mathrm{H}$, we define $\mathrm{A} \circ \mathrm{B}=\mathrm{U}_{a \in A, b \in B} \mathrm{a} \circ \mathrm{b}$;

$$
A \circ x=A \circ\{x\} \quad \text { and } \quad x \circ B=\{x\} \circ B
$$

A Hypergroupoid (H, \circ) is called a Semihypergroup if for all a, b, c of H we have $(a \circ b) \circ c=a \circ(b \circ c)$. Moreover, if for any element $a \in H$ equalities

$$
\mathrm{A} \circ \mathrm{H}=\mathrm{H} \circ \mathrm{a}=\mathrm{H} \text { holds, then }(\mathrm{H}, \circ) \text { is called a Hyper group. }
$$

Definition 1.2:

A Lattice is a partially ordered set L such that for any two elements x, y of $L, g l b\{x, y\}$ and lub $\{x, y\}$ exists. If L is a lattice, then we define $x V y=\operatorname{glb}\{x, y\}$ and lub $\{x, y\}$.

Definition 1.3:

Let L be a non-empty set, $\boldsymbol{\wedge}: \mathrm{L} \times \mathrm{L} \rightarrow \mathrm{p}^{*}(\mathrm{~L})$ be a hyper operation and $\mathrm{V}: \mathrm{L} \times \mathrm{L} \rightarrow \mathrm{L}$ be an operation. Then ($\mathrm{L}, \mathrm{V}, \boldsymbol{\wedge}$) is a Meet Hyperlattice if for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{L}$. The following conditions are satisfied:

1) $x \in x \wedge x$ and $x=x \vee x$
2) $x \vee(y \vee z)=(x \vee y) \vee z$ and $x \wedge(y \wedge z)=(x \wedge y) \wedge z$
3) $x \vee y=y \vee x$ and $x \wedge y=y \wedge x$
4) $x \in x \wedge(x \vee y) \cap x \vee(x \wedge y)$

Definition 1.4[3]:

Let $\left(L_{1}, V_{1}, \Lambda_{1}, \leq_{1}\right)$ and $\left(L_{2}, V_{2}, \Lambda_{2}, \leq_{2}\right)$ be two ordered hyperlattiice.
Give ($L_{1} \times L_{2}, V^{\prime}, \wedge^{\prime}$), he two hyperoperations V^{\prime} and \wedge^{\prime} on $L_{1} \times L_{2}$ such that for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in L_{1} \times L_{2}$, we have
$\left(x_{1}, y_{1}\right) \wedge^{\prime}\left(x_{2}, y_{2}\right)=\left\{(\mathrm{u}, \mathrm{v}) ; \mathrm{u} \in x_{1} \wedge_{1} x_{2}, \mathrm{v} \in y_{1} \wedge_{2} y_{2}\right\}$,
$\left(x_{1}, y_{1}\right) \leq\left(x_{2}, y_{2}\right)$ if and only if $x_{1} \leq_{1} x_{2}, y_{1} \leq_{2} y_{2}$.
The Hyper operation \mathbf{V}^{\prime} is defined similar to Λ^{\prime}.

Definition 1.5:

Let \mathcal{R} be an equivalence relation on a non-empty set L and $\mathrm{A}, \mathrm{B} \underline{\mathrm{C}} \mathrm{L}, \mathrm{A} \overline{\mathcal{R}} \mathrm{B}$ means that for all $a \in A$, there exists some $b \in B$ such that $a \mathcal{R} b$,
for all $b^{\prime} € B$, there exists $a^{\prime} \in A$ such that $a^{\prime} \mathcal{R} b^{\prime}$.
Also, \mathcal{R} is called a regular relation respect to \wedge if $\mathrm{x} \mathcal{R} \mathrm{y}$ implies that $\mathrm{x} \wedge \mathrm{z} \overline{\mathcal{R}} \mathrm{y} \wedge \mathrm{z}$, or all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{L} . \mathcal{R}$ is called a Regular relation if it is regular respect to V and \wedge, at the same time.

Definition 1.6:

An Ideal P of a meet hyperlattice L is Prime [2] if for all $x, y \in L$ and $x V$ y $\in P$, we have $x \in$ P and $y \in P$.

II. QUOTIENT OF ORDERED MEET HYPERLATTICES WITH A REGULAR RELATION.

In this section, we study special relation which is regular on ordered meet hyperlattices which has connection with order on L and we derive ordered meet hyperlattice from an ordered meet hyperlattice with such regular relation.

Let ($\mathrm{L}, \mathrm{V}, \Lambda, \leq$) be an ordered meet hyperlattice and v be a relation which is transitive and contains the relation \leq. Moreover, for any $x, y € L$, if $x v y$, we have $\mathrm{x} \wedge \mathrm{z} \bar{v} \mathrm{y} \wedge \mathrm{z}$ and $\mathrm{x} V \mathrm{z} \bar{v} \mathrm{y} V \mathrm{z}$, for all $\mathrm{z} € \mathrm{~L}$ and $\mathrm{x} € \mathrm{y}$ $\Lambda \mathrm{z}$ implies that $\mathrm{x} v \mathrm{y}, \mathrm{y} v \mathrm{x}, \mathrm{x} v \mathrm{z}, \mathrm{zvx}$, we call such relations as quasi-ordered relations. We know that if v is a regular relation, the quotient L / v is a hyperlattice. But this relaton is not equivalence relation. So, we define v^{*} $=\{(\mathrm{a}, \mathrm{b}) \mathrm{\epsilon} v \times v ; \mathrm{a} v \mathrm{~b}, \mathrm{~b} v \mathrm{a}\}$.

Theorem 2.1:

Let $(\mathrm{L}, \mathrm{V}, \boldsymbol{\Lambda}, \leq)$ be an ordered strong meet hyperlattice and v^{*} be a relation defined by

$$
v^{*}=\{(\mathrm{a}, \mathrm{~b}) \mathrm{\epsilon} v \times v ; \mathrm{a} v \mathrm{~b}, \mathrm{~b} v \mathrm{a}\} \text {. Thus, } \mathrm{L} / v^{*} \text { is an ordered hyperlattice. }
$$

Proof:

We can easily show that v^{*} is an equivalence relation.
Now we show that v^{*} is a regular relation.
Let $\mathrm{x} v^{*} \mathrm{y}, \mathrm{z} \in \mathrm{L}$ and $\mathrm{x}^{\prime} \in \mathrm{x} \wedge \mathrm{z}$.
Thus, $\mathrm{x} v$ y and $\mathrm{y} v \mathrm{x}$.
Therefore $\mathrm{x} \wedge \mathrm{z} \bar{v} \mathrm{y} \wedge \mathrm{z}, \mathrm{y} \wedge \mathrm{z} \bar{v} \mathrm{x} \wedge \mathrm{z}$ and we conclude that there exists $\mathrm{y}^{\prime} \in \mathrm{y} \wedge \mathrm{z}$ such that $\mathrm{x}, ~ v \mathrm{y}^{\prime}$.
By the property of v, we have $\mathrm{y}^{\prime} v \mathrm{z}$ and $\mathrm{z} v \mathrm{x}^{\prime}$.
So, $\mathrm{y}^{\prime} v \mathrm{x}^{\prime}$ and $\mathrm{x} \wedge \mathrm{z} \bar{v}^{*} \mathrm{y} \wedge \mathrm{z}$.
Since V is a binary operation, we show that $\mathrm{x} \vee \mathrm{z} \bar{v}^{*} \mathrm{y} \vee \mathrm{z}$.
So, v^{*} is a regular relation and L / v^{*} is a hyperlattice.
We have to show that L / v^{*} is an ordered hyperlattice.
Let $v^{*}(\mathrm{x}) \preccurlyeq v^{*}(\mathrm{y})$.
Since L / ν^{*} is a hyperlattice, we have $v^{*}(\mathrm{x}) \wedge \nu^{*}(\mathrm{z})=v^{*}\left(\mathrm{z}^{\prime}\right)$ where $\mathrm{z} \in \mathrm{x} \wedge \mathrm{z}$ and $v^{*}(\mathrm{y}) \wedge v^{*}(\mathrm{z})=v^{*}(\mathrm{w}), \mathrm{w} \in \mathrm{y}$ ^z.
Thus, there exists $\mathrm{x}^{\prime} \in v^{*}(\mathrm{x})$ and $\mathrm{y}^{\prime} \in v^{*}(\mathrm{y})$ such that $\mathrm{x}^{\prime} \leq \mathrm{y}^{\prime}$.
Therefore, we have $\left(\mathrm{x}^{\prime} \wedge \mathrm{z}\right) \leq\left(\mathrm{y}^{\prime} \wedge \mathrm{z}\right)$ and so $\left(\mathrm{x}^{\prime} \wedge \mathrm{z}\right) v\left(\mathrm{y}^{\prime} \wedge \mathrm{z}\right)$.
So, $v^{*}\left(\mathrm{x}^{\prime}\right) \wedge v^{*}(\mathrm{z}) \preccurlyeq v^{*}\left(\mathrm{y}^{\prime}\right) \wedge v^{*}(\mathrm{z})$.
Since $\nu^{*}\left(\mathrm{x}^{\prime}\right)=\nu^{*}(\mathrm{x})$ and $\nu^{*}\left(\mathrm{y}^{\prime}\right)=v^{*}(\mathrm{y})$, we have $\nu^{*}(\mathrm{x}) \wedge \nu^{*}(\mathrm{z}) \preccurlyeq v^{*}(\mathrm{y}) \wedge \nu^{*}(\mathrm{z})$.
Therefore, L / v^{*} is an ordered hyperlattice.

Theorem 2.2:

Let $(\mathrm{L}, \mathrm{\vee}, \wedge, \leq)$ be an ordered strong meet hyperlattice and v be a quasi-ordered relation. There is one to one correspondence between quasi-ordered relations on L which contain v and quasi ordered relations on L / v^{*}. Proof:

Let η be a quasi-ordered relation on L / ν^{*}.
We have to prove that $\tau=\left\{(\mathrm{x}, \mathrm{y}) ;\left(v^{*}(\mathrm{x}), v^{*}(\mathrm{y})\right) \eta\right\}$ is a quasi-ordered relation on L which contains v.
Let $\mathrm{x} \leq \mathrm{y}$. So, $\mathrm{x} v$ y and $\left(v^{*}(\mathrm{x}), v^{*}(\mathrm{y})\right) \in \mathrm{L} / v^{*}$.
Since η is a quasi-ordered relation, it is clear that $\left(v^{*}(\mathrm{x}), \nu^{*}(\mathrm{y})\right) \epsilon \eta$ and so $(\mathrm{x}, \mathrm{y}) \epsilon \tau$ and $\leq \subseteq \tau$.
We can prove that τ has the transitive property.
Now, let $\mathrm{x} \epsilon \mathrm{y} \wedge \mathrm{z}$. Therefore, $\nu^{*}(\mathrm{x}) \epsilon \nu^{*}(\mathrm{y}) \wedge v^{*}(\mathrm{z})$ where \wedge is a hyper operation on L / v^{*}.
Therefore, $\left(v^{*}(\mathrm{x}), v^{*}(\mathrm{y})\right) \epsilon \eta$ and $\left(v^{*}(\mathrm{x}), v^{*}(\mathrm{z})\right) \epsilon \eta$.
So, (x, y) $\epsilon \tau,(\mathrm{x}, \mathrm{z}) \in \tau,(\mathrm{y}, \mathrm{x}) \in \tau$, ($\mathrm{z}, \mathrm{x}) \in \tau$ and let $(\mathrm{x}, \mathrm{y}) \in \tau, \mathrm{a} \in \mathrm{x} \wedge \mathrm{z}$.
So, $v^{*}(\mathrm{a}) \epsilon v^{*}(\mathrm{x}) \wedge v^{*}(\mathrm{z})$ and since η is a quasi-ordered relation, there exists $v^{*}(\mathrm{~b}) \epsilon v^{*}(\mathrm{y}) \wedge v^{*}(\mathrm{z})$ such that $\left(v^{*}(\mathrm{a}), v^{*}(\mathrm{~b})\right) \eta$.
Hence (a, b) τ.
Also, we can show for V that τ is a quasi-ordered relation on L .
Similarly, if we have a quasi-ordered relation on L which contains v, then there exists a quasi-ordered relation on L / v^{*}.

Theorem 2.3:

Let $(\mathrm{L}, \mathrm{\vee}, \wedge, \leq)$ be an ordered strong meet hyperlattice and v, τ be two quasi-ordered relations on L such that $v \subseteq \tau$ and $v^{*}(\mathrm{x}) \tau / v v^{*}(\mathrm{y})$ if and only if there exists a $\in v^{*}(\mathrm{x})$, then there exists $\mathrm{b} \in v^{*}(\mathrm{y}), \mathrm{a} v \mathrm{~b}$. Then, τ / v is a quasi-ordered relation on L / v^{*}.

Proof:

Let $\left(v^{*}(\mathrm{x}), v^{*}(\mathrm{y})\right) \in \tau / v$.
Thus, there exists $\mathrm{x} \in \tau^{*}(\mathrm{a}), \mathrm{y} \in v^{*}(\mathrm{~b})$ such that $\mathrm{x} v \mathrm{y}$.

Hence, $\mathrm{a} v \mathrm{x}$ and $\mathrm{y} v \mathrm{~b}$.
So, a $v \mathrm{~b}$ and since $v \subseteq \tau$, we have a τ b.
We can easily prove that τ / v contains \preccurlyeq on L / v^{*} and has the transitive property.
Now, we let $\left(v^{*}(\mathrm{x}), v^{*}(\mathrm{y})\right) \in \tau / v$ and $v^{*}(\mathrm{z}) \in \mathrm{L} / v^{*}, v^{*}(\mathrm{c}) \in v^{*}(\mathrm{x}) \wedge v^{*}(\mathrm{z})$.
Thus, $(\mathrm{x}, \mathrm{y}) \in v$ and $\mathrm{c} \in \mathrm{x} \wedge \mathrm{z}$.
Since τ is a quasi-ordered relation, there exists $\mathrm{u} \in \mathrm{y} \wedge \mathrm{z}$ such that $\mathrm{c} \tau \mathrm{u}$.
Therefore, there exists $v^{*}(\mathrm{u}) \in v^{*}(\mathrm{y}) \wedge v^{*}(\mathrm{z})$ such that $\left(v^{*}(\mathrm{c}), v^{*}(\mathrm{u})\right) \in \tau / v$.
Also, let $v^{*}(\mathrm{z}) \in v^{*}(\mathrm{x}) \wedge v^{*}(\mathrm{y})$.
Thus, $\mathrm{z} \in \mathrm{x} \wedge \mathrm{y}$ and $\mathrm{z} \tau \mathrm{x}, \mathrm{z} \tau \mathrm{y}, \mathrm{x} \tau \mathrm{z}, \mathrm{y} \tau \mathrm{z}$.
Therefore, $\left(v^{*}(\mathrm{z}), v^{*}(\mathrm{x})\right) \in \tau / v,\left(v^{*}(\mathrm{z}), v^{*}(\mathrm{y})\right) \in \tau / v,\left(v^{*}(\mathrm{x}), v^{*}(\mathrm{z})\right) \in \tau / v \quad$ and $\quad\left(v^{*}(\mathrm{y}), v^{*}(\mathrm{z})\right) \in \tau / v$.
Similarly, we can prove for V.
In the following theorem we are going to investigate quasi-ordered relation on the product of two ordered meet hyperlattices.

Theorem 2.4:

Let $\left(L_{1}, \mathrm{~V}_{1}, \wedge_{1}, \leq_{1}\right)$ and $\left(L_{2}, \mathrm{~V}_{2}, \wedge_{2}, \leq_{2}\right)$ be two ordered strong meet hyperlattices and v_{1}, v_{2} be quasiordered relations on L_{1} and L_{2}. Then, $\left(L_{1} \times L_{2}\right) / v^{*}$ is isomorphic to $L_{1} / v_{1} * \times L_{2} / v_{2}{ }^{*}$.

Proof:

We define $\mathrm{f}:\left(L_{1} \times L_{2}\right) / v^{*} \rightarrow L_{1} / v_{1}^{*} \times L_{2} / v_{2} *$ by $\mathrm{f}\left(v^{*}(\mathrm{a}), v^{*}(\mathrm{~b})\right)=\left(v_{1} *(\mathrm{a}), v_{2} *(\mathrm{~b})\right)$.
We can show that f is well defined and one to one.
Now, we claim that f is a homomorphism between two ordered meet hyperlattices.
$\mathrm{f}\left(v^{*}\left(a_{1}, b_{1}\right) \wedge v^{*}\left(a_{2}, b_{2}\right)\right)=\mathrm{f}\left(v^{*}(\mathrm{u}, \mathrm{v})\right)$ where $\mathrm{u} \in a_{1} \wedge a_{2}, \mathrm{v} \in b_{1} \wedge b_{2}$.
So, we have $\mathrm{f}\left(v^{*}\left(a_{1}, b_{1}\right) \wedge v^{*}\left(a_{2}, b_{2}\right)\right)=\left(v^{*}\left(a_{1}\right) \wedge_{1} v^{*}\left(a_{2}\right), v^{*}\left(b_{1}\right) \wedge_{2} v^{*}\left(b_{2}\right)\right)$

$$
=\mathrm{f}\left(v^{*}\left(a_{1}, b_{1}\right)\right) \times \mathrm{f}\left(v^{*}\left(a_{2}, b_{2}\right)\right)
$$

Similarly, these relations also hold for the binary operation \checkmark and by the definition of order on $\left(L_{1} \times L_{2}\right)$, if $v^{*}\left(a_{1}, b_{1}\right) \preccurlyeq v^{*}\left(a_{2}, b_{2}\right)$, we have $\left(a_{1}, b_{1}\right) v\left(a_{2}, b_{2}\right)$.
Therefore, $\left(a_{1}, a_{2}\right) \in v_{1}$ and $\left(b_{1}, b_{2}\right) \in v_{2}$.
Thus, $v_{1}^{*}\left(a_{1}\right) \leq_{1} v_{1}^{*}\left(a_{2}\right)$ and $v_{2}^{*}\left(b_{1}\right) \leq_{2} v_{2}^{*}\left(b_{2}\right)$.
Therefore, f is an order preserving map and it is clear that f is onto.
So, f is an isomorphism and the proof is completed.

III. CONCLUSION

In this paper, we have successfully derived a ordered meet hyperlattice from a ordered meet hyperlattice with a regular relation induced in it. We have also investigated quasi-ordered relations on the product of two ordered meet hyperlattices.

REFERENCES

[1] https://www.insa.nic.in/writereaddata/UpLoadedFiles/IJPAM/Vol46_2015 5_ART04.pdf
[2] https://www.researchgate.net/publication/317743259 Ordered_join hyperlattices
[3] https://www.researchgate.net/publication/233366844 Lattices Derived from Hyperlattices
[4] X. L. Xin and X. G. Li, Onhyperlattices and quotient hyperlattices, Southeast Asian Bulletin of Mathematics, 33 (2009), 299-311.
[5] X. Z. Guo and X. L. Xin, Hyperlattice, Pure Appl. Math., 20 (2004), 40-43.

