Quotient of Ordered Meet Hyper Lattices with a Regular Relation

¹D Ameena Beave, ²V Senthamil Selvi, ³S Ramalakshmi ^{1,2,3}Student, Thassim Beevi Abdul Kader College for women, Kilakari, Tamil Nadu, India.

Abstract:

In this paper, we consider meet hyperlattices and we define ordered meet hyperlattices. It is already introduced that there exists product of hyperlattices [5]. We introduce the notion of product of two ordered meet hyperlattices in this paper. Moreover, we define the quotient of ordered meet hyperlattices with a regular relation. Also, we investigate isomorphism on the product of two ordered meet hyperlattices with a regular relation.

Keywords: Meet hyper lattice [1], regular relation, Quasi-ordered relation.

I. INTRODUCTION AND BASIC DEFINITIONS

We define a regular relation on Ordered meet hyperlattice such that its quotient [4] is an ordered hyperlattice and we study some properties of such relations.

Definition 1.1:

Let H be a non-empty set. A Hyper operation on H is a map \circ from H×H to P*(H), the family of non-empty subsets of H. The Couple (H, \circ) is called a hypergroupoid. For any two non-empty subsets A and B of H and x \in H, we define A \circ B = $\bigcup_{a \in A, b \in B} a \circ b$;

$$A \circ x = A \circ \{x\}$$
 and $x \circ B = \{x\} \circ B$

A Hypergroupoid (H, \circ) is called a Semihypergroup if for all a, b, c of H we have $(a \circ b) \circ c = a \circ (b \circ c)$. Moreover, if for any element $a \in H$ equalities

A \circ H = H \circ a = H holds, then (H, \circ) is called a Hyper group.

Definition 1.2:

A Lattice is a partially ordered set L such that for any two elements x, y of L, glb $\{x, y\}$ and lub $\{x, y\}$ exists. If L is a lattice, then we define x V y = glb $\{x, y\}$ and lub $\{x, y\}$. **Definition 1.3:**

Let L be a non-empty set, Λ : L × L \rightarrow p* (L) be a hyper operation and V: L × L \rightarrow L be an operation. Then (L, V, Λ) is a Meet Hyperlattice if for all x, y, z \in L. The following conditions are satisfied:

1) $x \in x \land x$ and $x = x \lor x$

- 2) x V (y V z) = (x V y) V z and $x \land (y \land z) = (x \land y) \land z$
- 3) x V y = y V x and $x \wedge y = y \wedge x$
- 4) $x \in x \land (x \lor y) \cap x \lor (x \land y)$

Definition 1.4[3]:

Let $(L_1, V_1, \Lambda_1, \leq_1)$ and $(L_2, V_2, \Lambda_2, \leq_2)$ be two ordered hyperlattice. Give $(L_1 \times L_2, V', \Lambda')$, he two hyperoperations V' and Λ' on $L_1 \times L_2$ such that for any $(x_1, y_1), (x_2, y_2) \in L_1 \times L_2$, we have $(x_1, y_1) \Lambda'(x_2, y_2) = \{(u, v); u \in x_1 \Lambda_1 x_2, v \in y_1 \Lambda_2 y_2\},\$

$$(x_1, y_1) \le (x_2, y_2)$$
 if and only if $x_1 \le x_2, y_1 \le y_2$.

The Hyper operation V' is defined similar to Λ '.

Definition 1.5:

Let \mathcal{R} be an equivalence relation on a non-empty set L and A, B <u>C</u> L, A $\overline{\mathcal{R}}$ B means that

for all a \in A, there exists some b \in B such that a \mathcal{R} b,

for all $b' \in B$, there exists a' $\in A$ such that a' \mathcal{R} b'.

Also, \mathcal{R} is called a regular relation respect to Λ if x \mathcal{R} y implies that $x \wedge z \overline{\mathcal{R}} y \wedge z$, or all x, y, $z \in L$. \mathcal{R} is called a Regular relation if it is regular respect to V and Λ , at the same time.

Definition 1.6:

P and $y \in P$.

An Ideal P of a meet hyperlattice L is Prime [2] if for all x, $y \in L$ and x V y $\in P$, we have x \in

II. QUOTIENT OF ORDERED MEET HYPERLATTICES WITH A REGULAR RELATION.

In this section, we study special relation which is regular on ordered meet hyperlattices which has connection with order on L and we derive ordered meet hyperlattice from an ordered meet hyperlattice with such regular relation.

Let (L, V, Λ, \leq) be an ordered meet hyperlattice and ν be a relation which is transitive and contains the relation \leq . Moreover, for any x, y \in L, if x ν y, we have x Λ z $\overline{\nu}$ y Λ z and x V z $\overline{\nu}$ y V z, for all z \in L and x \in y Λ z implies that x ν y, y ν x, x ν z, z ν x, we call such relations as quasi-ordered relations. We know that if ν is a regular relation, the quotient L/ ν is a hyperlattice. But this relaton is not equivalence relation. So, we define $\nu^* = \{(a, b) \in \nu \times \nu; a \nu b, b \nu a\}$.

Theorem 2.1:

Let $(L, V, \Lambda \leq)$ be an ordered strong meet hyperlattice and ν^* be a relation defined by

 $v^* = \{(a, b) \in v \times v; a v b, b v a\}$. Thus, L/ v^* is an ordered hyperlattice.

Proof:

We can easily show that v^* is an equivalence relation.

Now we show that v^* is a regular relation.

Let $x\nu^*y$, $z \in L$ and $x' \in x \land z$.

Thus, $x \nu y$ and $y \nu x$.

Therefore x $\wedge z \overline{\nu} y \wedge z, y \wedge z \overline{\nu} x \wedge z$ and we conclude that there exists $y \in y \wedge z$ such that $x' \nu y'$.

By the property of ν , we have y' ν z and z ν x'.

So, y' ν x' and x \wedge z $\overline{\nu}^*$ y \wedge z.

Since V is a binary operation, we show that $x \lor z \bar{v}^* \lor \lor z$.

So, ν^* is a regular relation and L/ ν^* is a hyperlattice.

We have to show that L/ν^* is an ordered hyperlattice.

Let $\nu^*(\mathbf{x}) \leq \nu^*(\mathbf{y})$.

Since L/ ν^* is a hyperlattice, we have $\nu^*(x) \land \nu^*(z) = \nu^*(z')$ where $z' \in x \land z$ and $\nu^*(y) \land \nu^*(z) = \nu^*(w)$, $w \in y \land z$.

Thus, there exists $x' \in v^*(x)$ and $y' \in v^*(y)$ such that $x' \leq y'$.

Therefore, we have $(x' \land z) \le (y' \land z)$ and so $(x' \land z) \nu (y' \land z)$.

So, $\nu^*(x') \land \nu^*(z) \leq \nu^*(y') \land \nu^*(z)$.

Since $\nu^*(x') = \nu^*(x)$ and $\nu^*(y') = \nu^*(y)$, we have $\nu^*(x) \land \nu^*(z) \leq \nu^*(y) \land \nu^*(z)$.

Therefore, L/ν^* is an ordered hyperlattice.

Theorem 2.2:

Let (L, V, Λ, \leq) be an ordered strong meet hyperlattice and ν be a quasi-ordered relation. There is one to one correspondence between quasi-ordered relations on L which contain ν and quasi-ordered relations on L/ ν^* . **Proof:**

Let η be a quasi-ordered relation on L/ν^* . We have to prove that $\tau = \{(x, y); (\nu^*(x), \nu^*(y)) \eta\}$ is a quasi-ordered relation on L which contains ν . Let $x \leq y$. So, $x \nu y$ and $(\nu^*(x), \nu^*(y)) \in L/\nu^*$.

Since η is a quasi-ordered relation, it is clear that $(\nu^*(x), \nu^*(y)) \in \eta$ and so $(x, y) \in \tau$ and $\leq \subseteq \tau$.

We can prove that τ has the transitive property.

Now, let x ϵ y \wedge z. Therefore, $\nu^*(x) \epsilon \nu^*(y) \wedge \nu^*(z)$ where \wedge is a hyper operation on L/ ν^* .

Therefore, $(\nu^*(x), \nu^*(y)) \epsilon \eta$ and $(\nu^*(x), \nu^*(z)) \epsilon \eta$.

So, $(x, y) \in \tau$, $(x, z) \in \tau$, $(y, x) \in \tau$, $(z, x) \in \tau$ and let $(x, y) \in \tau$, a $\in x \land z$.

So, $\nu^*(a) \in \nu^*(x) \land \nu^*(z)$ and since η is a quasi-ordered relation, there exists $\nu^*(b) \in \nu^*(y) \land \nu^*(z)$ such that $(\nu^*(a), \nu^*(b)) \eta$.

Hence (a, b) τ .

Also, we can show for V that τ is a quasi-ordered relation on L.

Similarly, if we have a quasi-ordered relation on L which contains ν , then there exists a quasi-ordered relation on L/ ν^* .

Theorem 2.3:

Let (L, V, Λ, \leq) be an ordered strong meet hyperlattice and ν, τ be two quasi-ordered relations on L such that $\nu \subseteq \tau$ and $\nu^*(x) \tau / \nu \nu^*(y)$ if and only if there exists $a \in \nu^*(x)$, then there exists $b \in \nu^*(y)$, $a \nu b$. Then, τ / ν is a quasi-ordered relation on L/ν^* .

Proof:

Let $(\nu^*(x), \nu^*(y)) \in \tau / \nu$. Thus, there exists $x \in \tau^*(a), y \in \nu^*(b)$ such that $x \nu y$. Hence, av x and y v b. So, a v b and since $v \subseteq \tau$, we have $a \tau b$. We can easily prove that τ/v contains $\leq \text{on } L/v^*$ and has the transitive property. Now, we let $(v^*(x), v^*(y)) \in \tau/v$ and $v^*(z) \in L/v^*$, $v^*(c) \in v^*(x) \land v^*(z)$. Thus, $(x, y) \in v$ and $c \in x \land z$. Since τ is a quasi-ordered relation, there exists $u \in y \land z$ such that $c \tau u$. Therefore, there exists $v^*(u) \in v^*(y) \land v^*(z)$ such that $(v^*(c), v^*(u)) \in \tau/v$. Also, let $v^*(z) \in v^*(x) \land v^*(y)$. Thus, $z \in x \land y$ and $z \tau x$, $z \tau y$, $x \tau z$, $y \tau z$. Therefore, $(v^*(z), v^*(x)) \in \tau/v$, $(v^*(z), v^*(y)) \in \tau/v$, $(v^*(x), v^*(z)) \in \tau/v$ and $(v^*(y), v^*(z)) \in \tau/v$. Similarly, we can prove for V.

In the following theorem we are going to investigate quasi-ordered relation on the product of two ordered meet hyperlattices.

Theorem 2.4:

Let $(L_1, \bigvee_1, \wedge_1, \leq_1)$ and $(L_2, \bigvee_2, \wedge_2, \leq_2)$ be two ordered strong meet hyperlattices and ν_1, ν_2 be quasiordered relations on L_1 and L_2 . Then, $(L_1 \times L_2) / \nu^*$ is isomorphic to $L_1/\nu_1^* \times L_2/\nu_2^*$. **Proof:**

We define f: $(L_1 \times L_2) / \nu^* \longrightarrow L_1 / \nu_1^* \times L_2 / \nu_2^*$ by $f(\nu^*(a), \nu^*(b)) = (\nu_1^*(a), \nu_2^*(b))$. We can show that f is well defined and one to one.

Now, we claim that f is a homomorphism between two ordered meet hyperlattices.

f $(\nu^*(a_1, b_1) \land \nu^*(a_2, b_2)) = f(\nu^*(u, v))$ where $u \in a_1 \land a_2, v \in b_1 \land b_2$. So, we have f $(\nu^*(a_1, b_1) \land \nu^*(a_2, b_2)) = (\nu^*(a_1) \land_1 \nu^*(a_2), \nu^*(b_1) \land_2 \nu^*(b_2))$ = f $(\nu^*(a_1, b_1)) \times f(\nu^*(a_2, b_2))$.

Similarly, these relations also hold for the binary operation
$$\vee$$
 and by the definition of order on $(L_1 \times L_2)$, if $\nu^*(a_1, b_1) \leq \nu^*(a_2, b_2)$, we have $(a_1, b_1) \nu(a_2, b_2)$.

Therefore, $(a_1, a_2) \in v_1$ and $(b_1, b_2) \in v_2$. Thus, $v_1^*(a_1) \leq_1 v_1^*(a_2)$ and $v_2^*(b_1) \leq_2 v_2^*(b_2)$. Therefore, f is an order preserving map and it is clear that f is onto. So, f is an isomorphism and the proof is completed.

III. CONCLUSION

In this paper, we have successfully derived a ordered meet hyperlattice from a ordered meet hyperlattice with a regular relation induced in it. We have also investigated quasi-ordered relations on the product of two ordered meet hyperlattices.

REFERENCES

- [1] https://www.insa.nic.in/writereaddata/UpLoadedFiles/IJPAM/Vol46 2015 5 ART04.pdf
- [2] https://www.researchgate.net/publication/317743259 Ordered join hyperlattices
- [3] <u>https://www.researchgate.net/publication/233366844_Lattices_Derived_from_Hyperlattices</u>
- [4] X. L. Xin and X. G. Li, Onhyperlattices and quotient hyperlattices, Southeast Asian Bulletin of Mathematics, 33 (2009), 299-311.
- [5] X. Z. Guo and X. L. Xin, Hyperlattice, Pure Appl. Math., 20 (2004), 40-43.