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1. INTRODUCTION 
Initially Sharma [16] study of nonlinear abstract measure differential equations and studied some basic 

results concerning the existence and uniqueness of solutions for such equations. Later, such equations were 

studied by various authors for different aspects of the solutions under continuous and discontinuous 

nonlinearities. The abstract measure differential equations involve the derivative of the unknown set-function 

with respect to the  -finite complete measure. Some of the abstract measure differential equations have been 

studied in a series of papers by Joshi [17], Dhage [2–3], Dhage et al. [8] and Dhage and Bellale [9] for different 
aspects of the solutions. 

  The perturbed ordinary differential equations have been treated in Dhage [14] and it is mentioned that 

the inverse of such equations yields the sum of two operators in appropriate function spaces. The Dhage [15] 

fixed point theorem is useful for proving the existence results for such perturbed differential equations under 

mixed geometrical and topological conditions on the nonlinearities involved in them. 

The fixed point theorems so far used in the above papers of Dhage [1], Joshi [17], Bellale [4-6] study 

the abstract measure integro differential equation and existence theorem. This is a stringent condition and 

recently, the authors in  Dhage [8] proved the existence and uniqueness results for abstract measure differential 

equations. Here our approach is different from that of Sharma [16] and Joshi [11]. The results of this paper 

complement and generalize the results of the above-mentioned papers on abstract measure differential equations 

under weaker conditions. 

2. PRELIMINARIES 

A mapping :T X X  is called D -Lipschitz if there exists a continuous and nondecreasing function 

: R R   such that 

|| || (|| ||)Tx Ty x y     

for all ,x y X , where (0) 0  . In particular if ( ) , 0,r r     T is called a Lipschitz with a Lipschitz 

constant  . Further if 1,  then T is called a contraction on X with the contraction constant α .  

Let X be a Banach space and let :T X X , T is called compact if ( )T X is a compact subset of 

X . T is called totally bounded if for any bounded subsets S of X, T (S ) is a totally bounded subset of X . T is 

called completely continuous if T is continuous and totally bounded on X. Every compact operator is totally 

bounded, but the converse may not be true, however, two notions are equivalent on bounded subsets of X . The 

details of different types of nonlinear contraction, compact and completely continuous operators appear in 
Granas and Dugundji [19]. 

To prove the main existence result of this section, we need the following nonlinear alternative proved 

in Dhage [2].  

 

Theorem 2.1. Let U and U  denote respectively the open and closed bounded subset of a Banach algebra X 

such that 0 U . Let :A X X and :B U X  be two operators such that  

(a) A is nonlinear D -contraction, and 
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(b) B is completely continuous. 

Then either 

(i) the equation Ax Bx x   has a solution in U , or 

(ii) there is a point u U  such that satisfying .
u

A Bu u
 

    
 

 

for some 0 <   < 1, where U is a boundary of U in X.

 
An interesting corollary to Theorem 2.1 in the applicable form is 

 

Corollary 2.1. Let Br(0) and (0)rB  denote respectively the open and closed balls in a Banach algebra X 

centered at origin 0 of radius r for some real number r > 0. Let : , : (0)rA X X B B X   be two operators 

such that  

(a) A is contraction, and 

(b) B is completely continuous. 

Then either 

(i) the operator equation Ax Bx x   has a solution x in X with || ||x r , or 

(ii) there is an u X such that || ||u r satisfying 
u

A Bu u
 

  
 

 


 for some 0 <   < 1.    

In the following section we state our perturbed abstract measure differential equations to be discussed 

qualitatively in the subsequent part of this paper. 

 

3. STATEMENT OF THE PROBLEM 

Let  X be a real Banach algebra with a convenient norm || . || . Let ,x y X . Then the line segment xy  

in X is defined by 

{ | ( ),0 1}xy z X z x r y x r             (3.1) 

Let 0x X be a fixed point and z X . Then for any 0x x z , we define the sets Sx and xS in X by 

{ | 1},xS rx r            (3.2) 

and 

{ | 1}xS rx r            (3.3) 

Let 1 2,x x xy  be arbitrary. We say 1 2x x  if 
1 2x xS S , or equivalently, 0 1 0 2x x x x . In this case we also 

write 2 1x x . 

Let M denote the  -algebra of all subsets of X such that ( , )X M  is a measurable space. Let ca ( , )X M  be the 

space of all vector measures (real signed measures) and define a norm || . ||  on ca ( , )X M  by 

||p|| = |p|(X),         (3.4) 

where |p| is a total variation measure of p and is given by 

1

| | ( ) sup | ( ) |, ,i i

i

p X p E E X




        (3.5) 

where the supremum is taken over all possible partitions 1{ : }E i N  of X. It is known that ca(X,M) is a Banach 

space with respect to the norm ||.|| given by (3.4). 

Let   be a  -finite positive measure on X, and let ( , )p ca X M . We say p is absolutely continuous with 

respect to the measure   if   (E) = 0 implies p(E) = 0 for some E M . In this case we also write p   . 

Let 0x X be fixed and let M0 denote the σ - algebra on 
0xS .  Let z X  be such that 0z x  and let Mz denote 

the  -algebra of all sets containing M0 and the sets of the form 0,xS x x z . 
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Given a ( , )p ca X M with p   , consider the abstract measure differential equation (AMDE) of the form 

( , ( )) ( , ( ))x x
dp

f x p S g x p S
d

 


 ].[. ea  on zx0 .    (3.6) 

and 0( ) ( ), ,p E q E E M          (3.7) 

where q is a given known vector measure, 
dp

d
 is a Randon-Nikodym derivate of p with respect to 

, , : zf g S R R   , and ( , ( ))xf x p S  and ( , ( ))xg x p S  is  -integrable for each a( , )z zp c S M . 

 

Definition 3.1. Given an initial real measure q on 0M , a vector 0( , )( )z zp ca S M z x   is said to be a solution 

of AMDE (3.6)–(3.7) if  

(i) 0( ) ( ),p E q E E M    

(ii) p   on 0x z  and 

(iii) p satisfies (3.6) a.e.[  ] on 0x z . 

 
Remark 3.1. The AMDE (3.6)–(3.7) is equivalent to the abstract measure integral equation (in short AMIE) 

( ) ( , ( )) ( , ( ))x x

E E

p E f x p S d g x p S d          (3.8) 

 if 0,zE M E x z  , 

 and 0( ) ( ),p E q E if E M  .       (3.9) 

A solution p of the AMDE (3.6)–(3.7) on 0x z  will be denoted by
0

( , )xp S q . 

Note that our AMDE (3.6)–(3.7) includes the abstract measure differential equation considered in the 

previous papers as special case. To see this, define ( , ) 0g x y   for all 0x x z and y R , then AMDE               

(3.6)–(3.7) reduces to 

( , ( ))x
dp

f x p S
d




. .[ ]a e   on 0x z  .      (3.10) 

and  0( ) ( ), ,p E q E if E M 
       (3.11) 

The AMDE (3.10)–(3.11) has been studied in Joshi [3] and Dhage et al. [8] which further includes the abstract 

measure differential equations studied by S.Leela[10]  and Dhage [9] as special cases. Thus our AMDE              

(3.6)–(3.7) is more general and we claim that it is a new to the literature on measure differential equations. As a 

result the results of the present study are new and original contribution to the theory of nonlinear measure 

differential equations. In the following section we shall prove the existence and uniqueness theorems for AMDE 

(3.6)–(3.7). 

 
Remark 3.2 In this section, we prove an existence and approximation  result for the closed and bounded interval 

J = [a, b] under mixed partial Lipschitz and partial compactness type conditions on the nonlinearities involved 

in it. The function space ( , )C J R  of continuous real-valued functions defined on J. We define a norm || · || and 

the order relation ≤ in ( , )C J R by 

    || || sup | ( ) |
t J

x x t


       (3.12) 

And    ( ) ( )x y x t y t   for all t J     (3.13) 

 Clearly, ( , )C J R is a Banach space with respect to above supremum norm and also partially ordered w. 

r. t. the above partially order relation ≤. It is known that the partially ordered Banach space ( , )C J R is regular 

and lattice so that every pair of elements of E has a lower and an upper bound in it.  

4. MAIN RESULT 

Given a vector measure a ( , )p ca X M with p   , consider the initial and periodic boundry value problems 

of first order nonlinear abstract measure differential equation (in short AMDE), 
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 0

0

[ ( ) ( , ( ))] [ ( ) ( , ( ))] ( , ( )), ,

( ) ( ),

x x x x x

d
p S f x p S p S f x p S g x p S x x z

d

p E q E E M


     


  


        (4.1)                       

and 

 
0[ ( ) ( , ( ))] [ ( ) ( , ( ))] ( , ( )), ,

(0) ( ),

x x x x x

d
p S f x p S p S f x p S g x p S x x z

d

x x M


     


 


        (4.2)                          

Where q is a given known vector measure ,   R,   > 0 and f, g: zS R R   are continuous functions. 

The solution of the AMDE (4.1) or (4.2) we mean a function p   ca(Sz, Mz) such that 

(i) the function x   x – f (x, p(Sx)) is differentiable for each  x and 

(ii) x satisfies the equations in (4.1) or (4.2), 

where  ca(Sz, Mz) is the space of continuous real-valued functions defined on
0x z .The AMDEs (4.1) and (4.2) 

are linear perturbations of the second type of the nonlinear differential equations 

   
0

0

( , ( )),

( ) ( ),

x

dp
g x p S x x z

d

p E q E E M


  


  

                   (4.3)                          

and 

   
0( , ( )),

(0) ( ),

x

dp
g x p S x x z

d

x x M


  


 

                    (4.4) 

and a sharp classification of different types of perturbations of a differential equation appears in Dhage [2] 

which can be treated with the hybrid fixed point theory (see Dhage [15] and S.Heikkilaand and 

Lakshmikantham [7]). The AMDE (4.1) with   = 0 has been thoroughly discussed in the literature for different 

basic aspects of the solutions such as existence theorem, differential inequalities, maximal and minimal 

solutions, comparison principle under some mixed Lipschitz and compactness type conditions.    

Definition 4.1. A mapping   : E   E is called partially continuous at a point a   E if for   > 0 there exists a 

  > 0 such that || ||x a     whenever x is comparable to a and || ||x a   .   called partially continuous on 

E if it is partially continuous at every point of it. It is clear that if  is partially continuous on E, then it is 

continuous on every chain C contained in E. 

Definition 4.2. A non-empty subset S of the partially ordered Banach space E is called partially compact if 

every chain C in S is compact. A nondecreasing mapping   : E   E is called partially compact if   (C) is a 

relatively compact subset of E for all totally ordered sets or chains C in E.   is called uniformly partially 

compact if   is a uniformly partially bounded and partially compact operator on E.   is called partially totally 

bounded if for any totally ordered and bounded subset C of E,   (C) is a relatively compact subset of E. If   is 

partially continuous and partially totally bounded, then it is called partially completely continuous on E. 

Definition 4.3. An upper semi-continuous and monotone nondecreasing function : R R   is called a D-

function provided  (0) = 0. An operator  : E   E is called partially nonlinear D-contraction if there exists a 

D-function    such that  

  ||)(|||||| yxyx                                           

for all comparable elements x, y E, where 0 <   (r) < r for r > 0. In particular,  

 if  (r) = kr,  k > 0,   is called a partial Lipschitz operator with a Lischitz constant k and moreover, if                     

0 < k < 1,   is called a partial linear contraction on E with a contraction constant k. 
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The Dhage iteration method developed in Dhage [8], S.S.Bellale [18], may be described as “the 

sequence of successive approximations of a nonlinear equation beginning with a lower or an upper solution as 

its first or initial approximation converges monotonically to the solution."  

Theorem 4.1. Let ( , ,E  || . ||) be a regular partially ordered complete normed linear space such every compact 

chain C of E. Let A, B : E   E be two nondecreasing operators such that 

(a) A is partially bounded and partially nonlinear D-contraction, 

(b) B is partially continuous and partially compact, and 

(c) there exists an element x0   E such that x0   Ax0 + Bx0 or x0   Ax0 + Bx0. 

Then the operator equation Ax + Bx = x has a solution x* in E and the sequence {pn} of successive iterations 

defined by xn+1 = Axn + Bxn, n = 0,1,. . . , converges monotonically to x*. 

Remark 4.1. We consider the following basic hypothesis is as follows. 

(H1) The mapping ( , ( ))xx x f x p S  is increasing in R for each 
0x x z  . 

(H2) There exists a D-function such that  

0 ( , ( )) ( , ( )) ( )yf x p Sx f x p S x y     

For
0x x z   all and x, y   R with x   y. 

Moreover, 0 <   (r) < r for r > 0. 

(H3) There exists a constant  Mf  > 0 such that 

 |f ( , ( )xx p S )|   Mf  for all 
0x x z  and  x  R. 

(H4) There exists a Mg > 0 such that  |g( , ( )xx p S )|   Mg, 

for all 
0x x z  and x   R. 

 (H5)  g( , ( )xx p S ) is nondecreasing in x for each  
0x x z . 

 

Remark 4.2.  If the hypothesis (H1) holds, then the function ( , ( ))xx x f x p S  is injective in R for each 

0x x z  

 

Remark 4.3.  The hypotheses (H2) and (H3) hold, in particular if f satisfies the inequality 

( )
0 ( , ( )) ( , ( ))

( )
x y

L x y
f x p S f x p S

K x y


  

 
 

for all x, y   R with x   y, where L > 0 and K > 0 are constants satisfying L   K. 

The lemma given below follows from the theory of calculus and linear differential equations. 

Lemma 4.1.  Assume that hypothesis (H1) holds. Then for any continuous function h : Sz × R   R, the 

function p   ca(X, M) is a solution of the AMDE 

0

0

[ ( ) ( , ( ))] [ ( ) ( , ( ))] ( ), ,

(0) ,

x x x x

d
p S f x p S p S f x p S h x x x z

d

x M


     


 


       (4.5) 

if and only if x satisfies the abstract measure integral equation (AMIE) 

            0

0

( ) ( , ( )) ( ) ,

x

x x x

xp x ce f x p S e e h x dx x x z    
  

,                (4.6) 

where 0 0(0, )c M f M  . 

Proof.  Let h   ca(X, M). Assume first that x is a solution of the AMDE (4.5) defined on J. By definition, the 

function x   p(Sx) - f(x, p(Sx)) is continuous on 0x z , and so, differentiable there, whence 

     ,[ ]x xS
d

d
p f x p S


 is   integrable on 0x z  . Applying integration to (4.5) from 0 to x, we obtain the 

AMIE  (4.6) on 0x z .  

Conversely, assume that x satisfies the AMIE (4.5). Then by direct differentiation we obtain the first equation in 

(4.6). Again, substituting x = 0 in (4.6) we get 

 0 0(0) (0, (0)) (0, )x f x M f M   . 
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 Since the mapping   , xx Sx x f p  is increasing in R for all 
0x x z the mapping (0, )x x f x  is 

injective in R, whence 0(0)x M . Hence the proof. We need the following definition in what follows. 

Definition 4.4.  A function ( , )z zu ca S M  is called a lower solution of the AMDE (4.1) on 
0x z , if the 

function   , xx Sx x f p  is differentiable and satisfies the inequalities 

0

0,

[ ( ) ( , ( ))] [ ( ) ( , ( ))] ( , ( )), ,

(0)

x x x x x

d
p S f x p S p S f x p S g x p S x x z

d

x M


     


 


           (4.7)  

for all 
0x x z . Similarly, an upper solution  of the AMDE(4.1) on ca(Sz,Mz)  is defined. 

The AMDE ( 4.1) has a lower solution ( , )z zu ca S M .  

Now we are in a position to prove the following existence and approximation theorem for the AMDE (4.1) on 

ca(Sz,Mz). 

Theorem 4.2.  Assume that the hypotheses (H1) through (H3) and (H4) through (H6) hold. Then the AMDE (4.1) 

has a solution x* defined on ca(Sz,Mz) and the sequence 0{ }n np 
  of successive approximations defined by 

converges monotonically to x*, where 0 0(0, )c M f M  . 

Proof. Set E = ca(Sz, Mz). Then, by Lemma 4.1, every compact chain C in E possesses the compatibility 

property with respect to the norm || . || and the order relation   so that every compact chain C is in E. 

Now, using the hypotheses (H1) and (H3), by Lemma 4.1 the AMDE (4.1) is equivalent to the nonlinear AMIE 

   
0

( ) ( , ( )) ( , ( ))

x

x x x

x xp x ce f x p S e e g x p S dx    
        (4.8) 

                       0 ,x u        

              
1

0

( ) ( , ( )) ( , ( ))

x

x x x

n n x n xp x ce f x p S e e g x p S dx 

    
    

0x x z  

 

for 0x x z  Define two operators , :A B E E  by 

 
0( ) ( , ( )), ,xAp x f x p S x x z         (4.9) 

and 

 
0

0

( ) ( , ( )) , .

x

x x x

xBp x ce e e g x p S dx x x z  
        (4.10) 

Then, the AMIE (3.6) is transformed into an operator equation as 

 0( ) ( ) ( ), .Ap x Bp x p x x x z          (4.11) 

 

We shall show that the operators A and B satisfy all the conditions of Theorem 4.1. Firstly, we show that the 

operators A and B are nondecreasing on E. Let x, y   E be such that x   y. Then, by hypothesis (H2),  

 ( ) ( , ( )) ( , ( )) ( )x yAp x f x p S f x p S Ap y    

for all 
0x x z . Similarly by hypothesis (H4),  
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0

( ) ( , ( ))

x

x x x

xBp x ce e e g x p S dx   
      

   
0

( , ( ))

x

x x x

xce e e g x p S dx   
    

   = Bp(y) 

for all 
0x x z . This shows A and B are nondecreasing operators on E into E. 

From (H3) it follows that  

   || || sup | ( ) | sup | ( , ) |x xAp x Ap S f x p S M    

           
0x x z              0x x z   

 

for all x  E. As a result, A is bounded and consequently partially bounded on E. Next, we show that A is a 

partial nonlinear D-contraction on E with a D function  . Let x, y   E be such that x   y. 

Then, by hypothesis (H2), 

    | ( ) ( ) | | ( , ( )) ( , ( )) |x yAp x Ap y f x p S f x p S    

    ( , ( )) ( , ( ))x yf x p S f x p S   

    ( ( ) ( ))x yp S p S   

    (| ( ) ( ) |)x yp S p S   

    (|| ||)x y    

for all 
0x x z . Taking the supremum over x, we obtain 

    || || (|| ||)Ax Ay x y    

for all x, y  E with x   y. This shows that A is a partial nonlinear D-contraction on E with the D-function  . 
Next, we show that B is a partially compact and partially continuous operator on E into E. First we show that B 

is a partially continuous on E. Let {pn} be a sequence in a chain C of E converging to a point x   C. Then by 

the dominated convergence theorem for integration, we obtain 

  
0

lim ( ) lim ( , ( ))

x

x x x

n n x
n n

Bp x ce e e g x p S dx 

 

 
  

 


  
 

                     
0

lim ( , ( ))

x

x x x

n x
n

ce e e g x p S dx 


  

    

         
0

lim ( , ( ))

x

x x x

n x
n

ce e e g x p S dx 



  
 

    

                       
0

( , ( ))

x

x x x

n xce e e g x p S dx   
    

                       = Bpn(x) 

for all 0x x z . Moreover, it can be shown as below that {Bpn} is an equicontinuous sequence of functions on E. 

Now, following the arguments similar to that given in Granas and Dugundji [19], it is proved that B is a a 

partially continuous operator on E. 

Next, we show that B is a partially compact operator on E. It is enough to show that B(C) is a uniformly 

bounded and equi-continuous set in E for every chain C in E. Let    x   C be  arbitrary. Then by the hypothesis 

(H3), 

   

  
0

| ( ) | | | ( , ( ))

x

x x x

n xBp x ce e e g x p S dx   
  

 

  
0 0 0

0

| ( , ) |

M

x

gM f x M e M dx  
  
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  0 0 0

( 1)
| ( , ) |

M
ge M

M f x M

 
  


 

 

for all 
0x x z . Taking the supremum over x, we obtain 

 

  0 0 0

( 1)
|| ( ) || | ( , ) |

M
ge M

Bp x M f x M

 
  


 

for all Cx . This shows that B is uniformly bounded on C. 

 

Again, let x1, x2  
0x z be arbitrary. Then for any x C , one has 

 1 2

1 2| ( ) ( ) | | | | |
x x

Bp x Bp x c e e
 

  
   

  
1 2

1 2

0 0

( , ( )) ( , ( ))

x x

x xx x

x xe e g x p S dx e e g x p S dx
 

  
    

  1 2| | | |
x x

c e e
 

 
 

 

  
1

1 2

0

| | ( , ( )

x

x x x

xe e e g x p S dx
 

  
    

  
1 2

2

0 0

| | ( , ( )) ( , ( ))

x x

x x x

x xe e g x p S dx e g x p S dx


  
     

  1 2 1 2

( 1)
| | | | | |

M

gx x x x
e M

c e e e e
   

 
    

  



   


 

  
1

2

| ( , ( )) |

x

x

x

x

e g x p S dx 
  

  1 2

1 2

( 1)
| | | | | ( ) ( ) |

M

g x x
e M

c e e p x p x


 
     
  



 


 

where, 
0

( )

x

x

gp x e M dx 
  

Since the functions xx e   and ( )x p x  are continuous on compact, ca(Sz,Mz)  they are uniformly 

continuous there. Hence, for   >  0, there exists a   > 0 such that 

  
1 2 1 2| | | ( ) ( ) |x x Bp x Bp x       

uniformly for all x 1, x2  0x z  and for all x   S. This shows that B(C) is an equi-continuous set in E. Now the 

set B(C) is uniformly bounded and equicontinuous in E, so it is compact by Arzela-Ascoli theorem. As a result, 

B is a partially continuous and partially compact operator on E. 

Thus, all the conditions of theorem 4.1 are satisfied and hence the operator equation  

Ax + Bx = x has a solution x* in E and the sequence of successive approximations {pn} defined by 

1 1n n np Ap Bp    converges monotonically to x*. As a result, the AMDE (4.1) has a solution x* defined on 

ca(Sz,Mz) and the sequence of successive approximations {pn} defined by (4.3) converges monotonically to x*. 

This completes the proof. 
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Remark 4.4.  We remark that Theorem 4.2  also remains true if we replace the hypothesis (H6) with the 

following one: 

(H7) The AMDE (4.1) has an upper solution ( , )v ca X M .  

 

Remark 4.5. We note that if the AMDE (4.1) has a lower solution u as well as an upper solution v such that 

u v , then under the given conditions of Theorem 4.2 it has corresponding solutions *x  and x* and these 

solutions satisfy * *x x . Hence they are the minimal and maximal solutions of the AMDE (4.1) in the vector 

segment [u, v] of the Banach space E = ca(X, M), where the vector segment [ , ]u v  is a set of elements in 

ca(X,M) defined by 

 [ , ] { ( , ) | }u v x C X M u x v     

This is because the order relation   defined by (3.2) is equivalent to the order relation defined by the order cone 

{ ( , ) | ( ) 0, }z z zK p ca S M p E E M     which is a closed set in ca(Sz, Mz). 

 

Example 4.1. consider the AMDE 

 

1 1

0[ ( ) tan ( )] [ ( ) tan ( )] tanh ( ), ,

(0) 1

x x x x x

d
p S p S p S p S p S x x z

d

x

  
     


 

        

Here, 1  and the functions f and g are given by 

 1( , ( )) tanxf x p S x  and ( , ( )) tanhxg x p S x  

for all 
0x x z  and x R . We show that the functions f and g satisfy all the hypotheses of theorem 4.3. First we 

show that f satisfies the hypotheses (H1)-(H3). Now, 

 1

2

1
[ ( , ( ))] [ tan ] 1 0,

1
x

d
x f x p S x x

x dx x


     

 
 

for all x R  and 0x x z , so that the function ( , ( ))xx x f x p S  is increasing in R for each 0x x z . 

Therefore, hypothesis (H1) holds. Next, let x, y   R be such that x   y. Then, 

1 1

2

1
0 ( , ( )) ( , ( )) tan tan ( )

1
x yf x p S f x p S x y x y      


 

for all x y   , showing that f satisfies the hypothesis (H2) with D-function    given by 

2
( ) , 0

1

r
r r r   

 
, 

Where 0   Again 

  1| ( , ( )) | | tan |
2

xf x p S x 


, 

for all 0x x z  and x R . This shows that f satisfies hypothesis (H3) with 
2

fM


 . 

Furthermore, 

  | ( , ( )) | | tanh | 1,xg x p S x   

for all 0x x z  and x R , so that the hypothesis (H4) holds with Mg = 1. Again, since the function tanhx x  

is nondecreasing in R and so the hypothesis (H5) is satisfied. Finally, the function u(x) = - (x + 3) is a lower 

solution of the AMDE defined on ca(Sz,Mz) .Thus the functions f and g satisfy all the conditions of Theorem 

4.2. Hence we apply and conclude that the AMDE (3.10) has a solution x* defined on ca(Sz,Mz) and the 
sequence {pn} of successive approximations defined by  

0 ,x u   

1

1

0

( ) 1 tan ( ) tanh ( )
2

x

x x

n n np x p x e e p x dx 

     

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for each 
0x x z , converges monotonically to x*. A similar conclusion also remains true if we replace the lower 

solution u with the upper solution ( ) 3v x x  , ca(Sz,Mz). 

The following useful lemma is obvious and may be found in Dhage [1] and Nieto [13]. 

  

Definition 4.5.  A function ( , )z zu ca S M  is called a lower solution of the AMDE (4.1) if the function 

( , ( ))xx x f x p S  is differentiable and satisfies the inequalities 

[ ( ) ( , ( ))] [ ( ) ( , ( ))] ( , ( )),

(0) ( )

d
u x f x w x u x f x u x g x u x

d

u u M


    


 


  

for all 
0x x z . Similarly, an upper solution ( , )z zv ca S M  of the AMDE (4.2) is defined. 

We need the following hypotheses in what follows. 

(H6) The function f(x, p(Sx)) is periodic in x with measure M for all x R , 

i.e., f (0, x) = f (M, x) for all x R . 

(H5) The AMDE (4.2) has a lower solution ( , )z zu ca S M . 

 

Remark 4.6. We remark that Theorem 4.2 also remains true if we replace the hypothesis (H8) with the 

following one. 

(H9) 
The AMDE (4.2) has an upper solution ( , )z zv ca S M . 

Remark 4.7. We note that if the AMDE (4.2) has a lower solution u as well as an upper solution v such that 

u v , then under the given conditions of Theorem 4.2 it has corresponding solutions *x  and x* and these 

solutions satisfy *
*x x . Hence they are the minimal and maximal solutions of the AMDE (4.2) in the vector 

segment [ , ]u v  of the Banach space E = ca(Sz, Mz), where the vector segment [ , ]u v  is a set of elements in            

C(X, M) defined by 

[ , ] { ( , )| }u v x C X M u x v    . 

This is because the order relation   defined by (4.2) is equivalent to the order relation defined by the order cone 

{ ( , ) | ( ) 0, }z z zK p ca S M p E E M     which is a closed set in ca(Sz, Mz). 

Example 4.2. Given a closed and bounded interval  ( , )z zp ca S M , consider the AMDE 

  
1 1

0[ ( ) tan ( )] [ ( ) tan ( )] tanh ( ), ,

(0) ( ).

d
p x p x p x p x p x x x z

dx

x x M

  
     


 

              (4.12) 

Here, 1   and the functions f and g are given by 

1( , ( )) tanxf x p S x and ( , ( )) tanhxg x p S x  

for all 0x x z  and x R . Now, it can be shown that the functions f and g satisfy all the hypotheses of Theorem 

4.2 with ( ) 4 , ( , ).xu x e x X M    Hence we conclude that the AMDE (4.12) has a solution x* defined on 

ca(Sz,Mz) and the sequence {pn} of successive approximations defined by, 0 ,x u   

1

1

1

0

( ) tan ( ) ( , ( )) tanh ( ) ,n n x np x p x G x p S p x dx

     

for each 0x x z , converges monotonically to x*, where G(x, ( )xp S ) is a Green's function associated with the 

homogeneous PBVP 
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0( ) 0, ,

(0) ( ),

dp
p x x x z

d

x x M


   


 

                                                        (4.13) 

given by  
 

 

Again, a similar conclusion holds if we replace the lower solution u with the upper solution 

( ) 4 , ( , )xv x e x X M  . 
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