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Abstract

Pool testing for presence or absence of a trait is less expensive, less time consum-
ing and therefore more cost effective. This study presents a multi-stage adaptive
pool testing estimator p̂n of prevalence of a trait in the presence of test errors. An
increase in the number of stages improves the efficiency of the estimator, hence con-
struction of a multi-stage model. The study made use of the Maximum Likelihood
Estimate (MLE) method and Martingale method to obtain the adaptive estimator
and Cramer-Rao lower bound method to determine the variance of the constructed
estimator. Matlab and R, statistical softwares were used for Monte-carlo simula-
tion and verification of the model, then analysis and discussion of properties of
the constructed estimator, notably efficiency in comparison with the non-adaptive
estimator in the absence of test errors in the literature of pool testing done along-
side provision of the confidence interval of the estimator. Results have shown that
the efficiency of the multi-stage adaptive estimator in the presence of test errors is
higher than that of the non-adaptive estimator in the absence of test errors. This
efficiency also increases with increase in sensitivity and specificity of the test kits.
This makes the multi-stage adaptive estimator in the presence of test errors better
than the non-adaptive estimator in the absence of test errors, especially so that
errors in experiments in our day to day encounters are inevitable.

Keywords: Pool testing, Adaptive estimator, Test errors, Confidence in-
terval
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1 Introduction

Prevalence of defective units in a large population from accurate diagnostic tests is a
fundamental risk assessment and management factor [6]. Estimation of defective units
one-by-one is inefficient and uneconomical, considering that in a given population only a
few individuals may be defective. It is against this background that pool testing comes
in handy because it is more effective, less time consuming and less expensive [3]. Pool
testing occurs when units from a population are pooled and tested as a group for the
presence or absence of a particular trait. It also reduces the Mean Squared Error (MSE)
of the estimates, hence it is more efficient, as was established by Sobel and Ellashoff, [9].
There are two forms of pool testing namely

(i) Non-adaptive pool testing scheme

(ii) Adaptive pool testing scheme

1.1 Non-adaptive testing scheme

In this testing scheme, a large population is divided in to n groups which are then
subjected to testing [3]. When tested, a group can either test positive or negative and
the outcome of the test aids in constructing the non-adaptive model.

1.2 Adaptive testing scheme

In this scheme a population is divided in to n groups, which are partitioned depending
on the number of stages to be considered. Predetermined parameters are used to partition
the groups and the number of partitioning parameters depends on the number of stages
[6]. Partitioned groups are then tested at various stages for the presence or absence of a
trait and the results used to construct the adaptive model.

1.3 Introduction of the model

In this study we obtained a multi-stage adaptive estimator p̂n of prevalence of a trait
in the presence of test errors, using the maximum likelihood estimate (MLE) method and
investigated its effeciency in comparison with the non-adaptive estimator in the absence
of test errors. The adaptive testing scheme involves testing groups in stages and updating
group sizes from one stage to the next, with the group size at a stage depending on the
outcome of the test(s) at the preceding stage(s). That is testing n1 groups each of size
k1 at stage one; n2 groups each of size k2 at stage two; n3 groups each of size k3 at
stage three and so on; where k3 depends on both k1 and k2 while k2 depends on k1 .
For a general adaptive scheme, at stage i ni groups each of size ki , where ki depends
on ki−1, ki−2, ki−3, .....k1 are constructed. The constructed groups are then subjected
to testing, where a group yields either a positive or a negative result. The number of
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groups, ni is determined before the experiment is carried out while k′is are sequentially
determined as the experiment progresses [7].

2 Literature Review

Pool testing has been recognized as a sampling scheme that can provide substantial
benefits [7]. Early application of pool testing include tests for prevalence of plant virus
transmissions by insects [10] and [9] and this was one of the pioneering applications of this
concept. In [3] statistical and mathematical concepts of pool testing are introduced and
used to estimate the proportion of individuals infected with some disease among the US
conscripts. He also derived optimum group sizes assuming that the population was large
enough for the application of the binomial model and consequently realized significant
savings by reducing the number of tests required. In [9] estimation in the pool testing
procedure is discussed.

In the subsequent years this concept has had relevant applications in various clinical
studies including psychopathology, public health and plant quarantine [1] and [2]. Alter-
natively, positively pooled samples can be partitioned into relatively smaller subsets there
by reducing on cost and effort, which provides obvious motive for pooling samples [6]. In
[5] an estimation model based on pool testing with retesting pools that test negative is
developed. Pool testing need not only be applied to population where retesting is needed
[8], like in identification of disease infected individuals in a human population, but also on
other populations with no intentions of retesting the individuals contributing to positive
pooled samples. For instance if a bunch of food items is being tested for contamination,
there may be no interest in identifying the particular items which are affected. The aim
may instead be on estimating the proportion of defective items in a population or deciding
that the number of positive pooled samples justifies removing a food product from the
market. In another related study, bacteriological testing of egg laying hens of salmonella
in Great Britain was carried out using organ cultures pooled five at a time. Individual
samples contributing to positive pooled samples are not tested again . A population com-
prised of birds in a hen house. If the infection was confirmed they were destroyed and
compensation paid for the number of birds estimated to be uninfected [8].

In this procedure maximum likelihood estimation is applied to estimate the pro-
portion and Cramer-Rao lower bound method is used to determine the variance of the
estimator. In this paper, we present a multi-stage adaptive pool testing model with im-
perfect tests and compare its efficiency with that of the non-adaptive model with perfect
tests

3 Model Description Formulation and Analysis

We describe a multi-stage adaptive scheme with imperfect tests as it is the backbone
of this study and thereafter perform comparison analysis with other existing estimators,
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in the absence of test errors. For a multi-stage adaptive scheme, we set n1 = λ1n ,
n2 = λ2n , n3 = λ3n , ...., nn = (1 − λ1n − λ2n − .... − λn−1n) ; where λ1 , λ2 ,..... ,
λn−1 are parameters used to partition the pools; k2 depends on the outcome at stage
1 , k3 depends on the outcomes at stages 1 and 2 and kn depends on the outcomes
at stages 1, 2, 3, ......., n − 1 . Each constructed group at each stage is then subjected to
testing, yielding either a positive or negative result. This is shown in Figure 3.1 below:

Figure 3.1: Multi-stage adaptive pool testing.

To achieve the construction of the multi-stage adaptive model in the presence of test
errors, we consider two stage, three stage and four stage adaptive models in the presence
of test errors and there after generalize to obtain the multi-stage model.

3.1 Two stage adaptive model

In this scheme, the population is divided into two sets of groups n1 and n2 which are
tested in two stages, with n1 groups tested at stage one and n2 groups tested at stage
two. We set n1 = λn and n2 = (1− λn) , where n is the number of groups constructed
initially. k1 which is the group size at stage one is determined by

k1 = argminl[V ar(p̂)]|p=p0 , (1)

Suppose X1 groups test positive on the test at stage-one, then

X1 ∼ Binomial(λn, π(p)|k=k1). (2)
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where λ is the parameter used to partition the pools while π(p) is the probability that
a group is defective and is given by

π(p) := η[1− (1− p)k] + (1− φ)(1− p)k (3)

Using this model we obtain the prevalence estimator at stage one as

p̂1 = 1−

[
η − X1

λn

η + φ− 1

] 1
k1

, (4)

The variance of Equation (4) is similar to the variance of the non-adaptive estimator in
the presence of test errors, p̂ except for K1 in place of p . This variance is given by

V ar(p̂) =
π(p)(1− π(p))

nk2(1− p)2k−2(η + φ− 1)2

=
(1− p)2−2kπ(p)(1− π(p))

nk2(η + φ− 1)2
(5)

=
(1− p)2π(p)(1− π(p))(1− p)−2k

nk2(η + φ− 1)2

For the estimator at stage two, p̂2 , we have λn groups each of size k1 tested at stage
one and 1− λn groups each of size k2 tested at stage two. k2 is determined by

k2 = argminl[V ar(p̂1)]|p1=p, (6)

Suppose that out of the (1−λ)n groups each of size k2 tested at stage two, X2 groups
test positive on the test, then for fixed X1 we have

X2|X1 ∼ Binomial((1− λ)n, π2|1(p)) (7)

Using this model, the estimator at stage two can be obtained as the solution to

k1X1q
k1 [(1− φ)− η]

η − (η + (1− φ))qk1
+
k2(X1)X2q

k2(X1)[(1− φ)− η]

η − (η + (1− φ))qk2(X1)

=
k1q

k1(λn−X1)(η + (1− φ))

1− [η − (η + (1− φ))qk1 ]
+
k2(X1)q

k2(X1)[(1− λ)n−X2][η + (1− φ)]

1− [η − (η + (1− φ))qk2(X1)]
.

(8)

and using cramer-Rao lower bound, its variance is obtained as

V ar(p̂2) =
π1(p)π2(p)(1− π1(p))(1− π2(p))

A
, (9)

where A is defined in the appendices.
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3.2 Three stage adaptive model

Next we consider the estimator at stage three, p̂3 , where we have λ1n groups each of size
k1 tested at stage one, λ2n groups each of size k2 tested at stage two and 1− λ1n− λ2n
groups each of size k3 tested at stage three. k3 is determined by

k3 = argminl[V ar(p̂2)]|p2=p1 , (10)

If out of the (1− λ1 − λ2)n groups each of size k3 tested at stage three, X3 groups test
positive on the test, then for fixed X1 and X2 we have

X3|X1, X2 ∼ Binomial((1− λ1 − λ2)n, π3|1,2(p)) (11)

We use this model to obtain the estimator at stage three as the solution to

k1X1q
k1 [(1− φ)− η]

η − (η + (1− φ))qk1
+
k2(X1)X2q

k2(X1)[(1− φ)− η]

η − (η + (1− φ))qk2(X1)
+
k3(X1, X2)X3q

k3(X1,X2)[(1− φ)− η]

η − (η + (1− φ))qk3(X1,X2)

=
k1q

k1(λ1n−X1)(η + (1− φ))

1− [η − (η + (1− φ))qk1 ]
+
k2(X1)q

k2(X1)[λ2n−X2][η + (1− φ)]

1− [η − (η + (1− φ))qk2(X1)]

+
k3(X1, X2)q

k3(X1,X2)[(1− λ1 − λ2)n−X3][η + (1− φ)]

1− [η − (η + (1− φ))qk3(X1,X2)]
= 0, (12)

and its variance as

V ar(p̂3) =
π1(p)π2(p)π3(p)(1− π1(p))(p)(1− π2(p))(p)(1− π3(p))

nB
(13)

where B is defined in appendices.

3.3 Four stage and multi-stage adaptive models

Extending the notion in the above sub-sections further we have estimators at stages four
and n given by solutions to

k1X1q
k1 [(1− φ)− η]

η − (η + (1− φ))qk1
+
k2(X1)X2q

k2(X1)[(1− φ)− η]

η − (η + (1− φ))qk2(X1)

+
k3(X1, X2)X3q

k3(X1,X2)[(1− φ)− η]

η − (η + (1− φ))qk3(X1,X2)
+
k4(X1, X2, X3)X4q

k4(X1,X2,X3)[(1− φ)− η]

η − (η + (1− φ))qk4(X1,X2,X3)

=
k1q

k1(λ1n−X1)(η + (1− φ))

1− [η − (η + (1− φ))qk1 ]
+
k2(X1)q

k2(X1)[λ2n−X2][η + (1− φ)]

1− [η − (η + (1− φ))qk2(X1)]

+
k3(X1, X2)q

k3(X1,X2)[λ3n−X3][η + (1− φ)]

1− [η − (η + (1− φ))qk3(X1,X2)]

+
k4(X1, X2, X3)q

k4(X1,X2,X3)[(1− λ1 − λ2 − λ3)n−X4][η + (1− φ)]

1− [η − (η + (1− φ))qk4(X1,X2,X3)]
= 0 (14)

International Journal of Mathematics Trends and Technology (IJMTT)  - Volume 65 Issue 3 - March 2019

ISSN: 2231-5373                              http://www.ijmttjournal.org                                 Page 6



6 Okoth Annette W.

and

k1X1q
k1 [(1− φ)− η]

η − (η + (1− φ))qk1
+
k2(X1)X2q

k2(X1)[(1− φ)− η]

η − (η + (1− φ))qk2(X1)
....

+
kn(X1, ..., X(n− 1))Xnq

kn(X1,...,X(n−1))[(1− φ)− η]

η − (η + (1− φ))qkn(X1,...,X(n−1))
(15)

=
k1q

k1(λ1n−X1)(η + (1− φ))

1− [η − (η + (1− φ))qk1 ]
+
k2(X1)q

k2(X1)[λ2n−X2][η + (1− φ)]

1− [η − (η + (1− φ))qk2(X1)]
...

+
kn(X1, ..., X(n− 1))qkn(X1,...,X(n−1))[(1− λ1 − λ2)n−X4][η + (1− φ)]

1− [η − (η + (1− φ))qkn(X1,...,X(n−1))]
= 0,

respectively. Using Cramer-Rao lower bound method their variances are obtained as

V ar(p̂4) =
π1(p)π2(p)π3(p)π4(p)(1− π1(p))(p)(1− π2(p))(p)(1− π3(p))(1− π4(p))

C
(16)

and

V ar(p̂n) =
π1(p)π2(p)...πn(p)(1− π1(p))(p)(1− π2(p))(p)...(1− πn(p))

D
(17)

where C and D are given in the appendices respectively.

3.4 Confidence Interval(CI) of p̂n

Next we provide the confidence interval for our multi-stage estimator, p̂n . This confidence
interval is given by

p̂n
+

−
Zα

2

√
var(p̂n), (18)

where Zα
2
∼ Normal(0, 1) . and p̂n and var(p̂n) are provided by the solution to 15 and

Equation 17 respectively. It follows from Equation 18 that

p ∈ [p̂n − Zα
2

√
var(p̂n), p̂n + Zα

2

√
var(p̂n)]

and by the law of Central Limit Theorem (CLT) we have

√
n(p̂n − p)

l→ Normal(0,
√
var(p̂n))

or
√
n

(p̂n − p)√
var(p̂n))

l→ Normal(0, 1).
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4 Discussion of Results, Conclusion and Recommen-

dations

In this section we discuss the results as provided by Tables 4.1 , 4.2 and 4.3 and Figures
4.1 , 4.2 and 4.3 . The highlights of the results will enable us make a detailed conclusion
to this study.

4.1 Discussion

Here we highlight our findings in this study. We estimated prevalence, p of a trait using
the Multi-stage adaptive pool testing scheme. We accomplished this by employing the
Maximum Likelihood Estimate (MLE) procedure. For us to recommend the suitability
of the Multi-stage adaptive estimator, it would be in order to first compare with the
non-adaptive estimator in the absence of test errors. Our measure of comparison herein
is the computation of Asymptotic Relative Efficiency (ARE) values for different values of
η and φ at various stages. For simplicity of comparison and understanding, ARE values
were computed for stages two to four. Upon careful analysis of the estimators at these
stages, we had a good basis to make a generalization about the multi-stage estimator in
the presence of test errors.

4.2 Comparing the Adaptive estimator in the presence of test
errors with the non-adaptive estimator in the absence of
test errors

We now compare our constructed estimators at stages two, three and four, that is p̂2 ,
p̂3 and p̂4 with the non-adaptive estimator in the absence of test errors. According to
[?], for the non-adaptive estimator in the absence of test errors, say, p̂e its variance is
defined as

var(p̂e) =
1− (1− p)k

nk2(1− p)k−2
(19)

ARE values for stages two, three and four are obtained by dividing Equation (19) by
Equations (9), (13) and (16) respectively. That is,

V ar(p̂e)

V ar(p̂2)
,
V ar(p̂e)

V ar(p̂3)
and

V ar(p̂e)

V ar(p̂4)
,

where V ar(p̂e) , V ar(p̂2) , V ar(p̂3) and V ar(p̂4) are given by Equations (19), (9), (13)
and (16) respectively. On simplifying we obtain

AREp̂2 =
S

k2(1− p)k−2π1(p)π2(p)(1− π1(p))(1− π2(p))
,
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AREp̂3 =
T

k2(1− p)k−2π1(p)π2(p)π3(p)(1− π1(p))(1− π2(p))(1− π3(p))
,

AREp̂4 =
U

k2(1− p)k−2π1(p)π2(p)π3(p)(1− π1(p))(1− π2(p))(1− π3(p))
,

where S, T and U are described in the appendices. Using these Equations and R-Gui
software Tables 4.1 , 4.2 and 4.3 was generated.

p η = φ = 0.99 η = φ = 0.98 η = φ = 0.97 η = φ = 0.96 η = φ = 0.90
0.1 0.6201 0.5937 0.5679 0.5429 0.9733
0.2 0.9348 0.8920 0.8507 0.8107 1.0439
0.3 1.5885 1.4827 1.3853 1.2953 1.3985
0.4 3.0934 2.7607 2.4843 2.2492 2.0817
0.5 6.9677 5.7850 4.9357 4.2828 3.3723
0.6 18.6193 13.8911 10.9879 8.9982 5.9110
0.7 59.3263 36.9918 26.4215 20.2549 11.3545
0.8 202.1403 105.234 69.6775 51.2275 26.4611
0.9 922.4898 449.351 290.6582 211.1664 106.6068

Table 4.1: ARE values of p̂2 relative to p̂ for specified p, η and φ

p η = φ = 0.99 η = φ = 0.98 η = φ = 0.97 η = φ = 0.96 η = φ = 0.90
0.1 0.6979 0.6686 0.6400 0.6121 0.4590
0.2 0.9565 0.9058 0.8578 0.8120 0,5784
0.3 1.4487 1.3245 1.2169 1.1220 0.7158
0.4 2.4726 2.1414 1.8917 1.6911 0.9626
0.5 4.4726 4.0575 3.4339 2.9648 1.4774
0.6 12.6180 9.3723 7.4005 6.0547 2.5406
0.7 39.6622 24.7168 17.6506 13.5297 4.8532
0.8 134.8077 70.1796 46.466 34.1625 11.2807
0.9 615.0049 299.5731 193.7758 140.7802 45.4864

Table 4.2: ARE values of p̂3 relative to p̂ for specified p, η and φ
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p η = φ = 0.99 η = φ = 0.98 η = φ = 0.97 η = φ = 0.96 η = φ = 0.90
0.1 0.7753 0.7424 0.7102 0.6789 0.5076
0.2 0.9490 0.8888 0.8332 0.7816 0.5347
0.3 1.2518 1.11482 1.0049 0.9131 0.5555
0.4 1.8535 1.5650 1.3624 1.2051 0.6672
0.5 3.3923 2.7251 2.2866 1.9634 0.9654
0.6 8.1539 6.0084 4.7282 3.8611 1.6141
0.7 24.9753 15.5415 11.0927 8.5007 3.0478
0.8 84.3418 43.9045 29.0689 21.3714 7.0569
0.9 384.399 187.2438 121.116 87.9926 28.4306

Table 4.3: ARE values of p̂4 relative to p̂ for specified p, η and φ

Tables 4.1 , 4.2 and 4.3 provide generated ARE values for specified values of p , η
and φ at stages two, three and four. It can be noticed from the tables that the adaptive
estimators at stages two, three and four, that is p̂2 , p̂3 and p̂4 register ARE values slightly
less than 1 at p < 0.3 , except for η = φ = .90 where the efficiency is slightly less than 1
for p = 0.1 at stage two, for p < 0.5 at stage three and for p < 0.6 at stage four. This
means that when prevalence is low the adaptive estimators in the presence of test errors
are slightly less efficient than the non-adaptive estimator in the absence of test errors.
However, the scenario changes for p > 0.2 across all stages for η = φ > .90 and for
p > 0.4 for η = φ = .90 at stages three and four, as efficiency of the adaptive estimators
significantly improves. Therefore, as prevalence increases, the adaptive estimators in the
presence of test errors outperform the non-adaptive estimator in the absence of test errors
especially when the sensitivity and specificity of test kits are high. It is also clear from
the tables that ARE values increase with increase in the number of stages; the adaptive
estimator at stage two having the lowest ARE values while the estimator at stage four
has the highest ARE values. This is an important pointer to the fact that the adaptive
testing scheme gets better as the number of stages increases.

To depict these observations graphically, see Figures 4.1 , 4.2 and 4.3
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Figure 4.1: ARE of p̂2 vs probability, p

Figure 4.2: ARE of p̂3 vs probability, p
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Figure 4.3: ARE of p̂4 vs probability, p

Figures 4.1 , 4.2 and 4.3 represent ARE values plotted against prevalence p values at stages
two, three and four respectively. Clearly, as noted in Tables 4.1 , 4.2 and 4.3 , the ARE values
are slightly less than 1 at low values of p but increase significantly as prevalence increases. From
Figures 4.1 , 4.2 and 4.3 , it is clear that the adaptive estimators outperform the non-adaptive
estimator in the absence of test errors as the sensitivity and specificity of the test kit increases.

4.3 Conclusion and Recommendations

From the above discussions, it is clear that the multi-stage adaptive estimator in the presence
of test errors outperforms the non-adaptive estimator in the absence of test errors. A closer
look at the results reveals that the multi-stage adaptive estimator is particularly better in cases
where test kits have high sensitivity and specificity. Given that experiments are never 100%
perfect, the multi-stage adaptive testing scheme is therefore more ideal in estimating prevalence
of a trait.
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MULTI-STAGE ADAPTIVE POOL TESTING MODEL WITH TEST ERRORS 13

Appendices

A = (η + φ− 1)2n

[π2(p)(1− π2(p))λk21(1− p)2k1−2 + π1(p)(1− π1(p))(1− λ)k22(X1)(1− p)2k2(X1)−2]

(21)

B = (η + φ− 1)2

∗
[
π2(p)(1− π2(p))π3(p)(1− π3(p))λ1nk1(1− p)k1−2

+ π1(p)(1− π1(p))π3(p)(1− π3(p))λ2nk2(X1)(1− p)k2(X1)−2

+ π1(p)(1− π1(p))π2(p)(1− π2(p))λ2nk3(X2)(1− p)k3(X2)−2

C = (η + φ− 1)2n[
π2(p)(1− π2(p))π3(p)(1− π3(p))π4(p)(1− π4(p))λ1nk1(1− p)k1−2

+ π1(p)(1− π1(p))π3(p)(1− π3(p))π4(p)(1− π4(p))λ2nk2(X1)(1− p)k2(X1)−2

+ π1(p)(1− π1(p))π2(p)(1− π2(p))π4(p)(1− π4(p))λ3nk3(X2)(1− p)k3(X2)−2

+ π1(p)(1− π1(p))π2(p)(1− π2(p))π3(p)(1− π3(p))(1− λ1 − λ2 − λ3)nk4(X3)(1− p)k4(X3)−2

(23)

D = (η + φ− 1)2n

∗
[
π2(p)(1− π2(p))...πn(p)(1− πn(p))λ1nk1(1− p)k1−2

+ π1(p)(1− π1(p))...πn(p)(1− πn(p))λ2nk2(X1)(1− p)k2(X1)−2 + ....

+ π1(p)(1− π1(p))π2(p)(1− π2(p)).....π(n− 1)(p)(1− π(n− 1)(p))

(1− λ1 − λ2 − ...− λ(n− 1))nkn(X(n− 1))(1− p)kn(X3)−2
]

S = [1− (1− p)k](η + φ− 1)[
π2(p)(1− π2(p))λk21(1− p)2k1−2 + π1(p)(1− π1(p))(1− λ)k22(X1)(1− p)2k2(X1)−2

]
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14 Okoth Annette W.

T = [1− (1− p)k](η + φ− 1)[
π2(p)(1− π2(p))π3(p)(1− π3(p))λk21(1− p)2k1−2

+ π1(p)(1− π1(p))π3(p)(1− π3(p))λ2k22(X1)(1− p)2k2(X1)−2

+ π1(p)π2(p)(1− π1(p))(1− π2(p))(1− λ1 − λ2)k23(X2)(1− p)2k3(X2)−2
]

U = [1− (1− p)k](η + φ− 1)

[
π2(p)π3(p)π4(p)(1− π2(p))(1− π3(p))(1− π4(p))λk21(1− p)2k1−2

+ π1(p)π3(p)π4(p)(1− π1(p))(1− π3(p))(1− π4(p))λ2k22(X1)(1− p)2k2(X1)−2

+ π1(p)π2(p)π4(p)(1− π1(p))(1− π2(p))(1− π4(p))λ3k23(X2)(1− p)2k3(X2)−2

+ π1(p)π2(p)π3(p)(1− π1(p))(1− π2(p))(1− π3(p))(1− λ1 − λ2 − λ3)k24(X3)(1− p)2k4(X3)−2
]

International Journal of Mathematics Trends and Technology (IJMTT)  - Volume 65 Issue 3 - March 2019

ISSN: 2231-5373                              http://www.ijmttjournal.org                                 Page 15




