Simplicity of Groups

Ms Poonam ${ }^{\# 1}$, Ms Shilpa Aggrwal ${ }^{\# 2}$
\#1Department of Mathematics, Govt. College,Hisar
\#2Department of Mathematics,K.U.Kurukshetra

Abstract

The aim of this paper is to check whether a group is simple or not. For this we use some test.
Key Words - Group, set, prime, simple, sylow subgroup.

I. INTRODUCTION

The theory of simple group plays an important role in Modern Algebra. In this article we discuss about a few theorems that are useful in providing that a group of particular order is a non abelian simple group

Simple Group: A group G is said to be simple if G has no normal subgroup except $\{\mathrm{e}\}$ and G itself.
Sylow p Subgroup of \mathbf{G} : Let G be finit group \& let p be a prime advisor of $O(G)$. If $p^{k} / O(G)$ and $p^{k+1} \nmid o(G)$ then any subgroup of G of order p^{k} is called a sylow p subgroup.
Result: If a finite group contains unique sylow p-subgroup then it is normal subgroup.

II. SOME USEFUL TEST TO CHECK SIMPLICITY OF A GROUP

Theorem 1 Cayley Test:

Let G be a group.
$\mathrm{O}(\mathrm{G})=2 \mathrm{n}$ where n is an odd number greater than 1 . Then G contains a normal subgroup of order n. Hence G is not simple.

Example:

1. $\quad \mathrm{O}(\mathbf{G})=58$

Then
$\mathrm{O}(\mathrm{G})=2 \times 29$
$29>1 \& 29$ is odd number. Then by clayey test G is not simple.
Hence, any group of order 58 is not simple.
2. $\quad \mathrm{O}(\mathrm{G})=62$

Then
$\mathrm{O}(\mathrm{G})=2 \times 31$
Again G is not simple by cayley test. Hence, any group of order 62 is not simple.
Theorem2 If $\mathrm{O}(\mathrm{G})=\mathrm{p}^{\mathrm{h}}(\mathrm{h}>1)$. Then G contains a normal subgroup of order p . Hence, G is not simple.

Example:

1. $\quad \mathrm{O}(\mathrm{G})=\mathbf{1 2 5}$

Then
$\mathrm{O}(\mathrm{G})=5^{3}$
By Th^{m} 2. G contains a normal subgroup of order 5. So G is not simple. Hence any group of order 25 is not simple.
2. $\quad O(G)=64$

Then
$\mathrm{O}(\mathrm{G})=2^{6}$
By Th^{m} 2. G contains a normal subgroup of order 2. So G is not simple. Hence any group of order 64 is not simple.

Theorem3 Index theorem

If G is a finite group and H is a proper sub group of G such that $O(G) \nmid([G: H])$! Then G has proper normal subgroup and hence G is not simple
Example:1
If $\mathrm{O}(\mathrm{G})=12$
Then $\mathrm{O}(\mathrm{G})=2^{2} .3$
Hence by sylow first $\mathrm{Th}^{\mathrm{m}} \mathrm{G}$ has a subgroup H of order 2^{2}. Let it be that subgroup.

Then

$$
[\mathrm{G}: \mathrm{H}]=\frac{O(G)}{O(H)}=\frac{12}{4}=3
$$

As $12 \nmid 3$! So $\mathrm{O}(\mathrm{G}) \nmid([\mathrm{G}: \mathrm{H}])$! Then by index $\mathrm{th}^{\mathrm{m}} \mathrm{G}$ contains a proper normal subgroup.
Hence, G is not simple.
Example:2

$$
\text { If } \mathrm{O}(\mathrm{G})=108
$$

Then $\mathrm{O}(\mathrm{G})=108=\quad 2^{2} \cdot 3^{3}$
Then by sylow first $\mathrm{Th}^{\mathrm{m}} \mathrm{G}$ has a subgroup of order 3^{3}. Let it be that subgroup
Then[G:H] $=\frac{O(G)}{O(H)}=\frac{108}{27}=4$
As $108 \nmid 4!$ So $O(G) \nmid([G: H])!$ So by index $T h m$ G has a proper normal subgroup.
Hence G is not a simple.
Sylow Test for Non Simplicity:-
If G is a group of order $\mathrm{p} . \mathrm{m}$ where p is prime integer and (p.m) $=1$, then $n_{p}=1+$
$\mathrm{kp}, \mathrm{k} \geq \mathrm{o}$ and $n_{p} / \mathrm{O}(\mathrm{G})$ where n_{p} denotes the number of sylow p subgroup of G .
If $n_{p}=1$ then G has unique p sylow subgroup which is normal.
Hence G is simple.
Example:-
$\mathrm{O}(\mathrm{G})=40=5.8=\mathrm{p}^{\mathrm{r}} . \mathrm{q}$ $\mathrm{P}=5$ is prime and $(5,8)=1$
Hence G has a 5 sylow subgroup of order 5 .

$$
n_{5}=1+5 \mathrm{k}
$$

If $\quad \mathrm{K}=0 \quad n_{5}=1+5.0=1 / \mathrm{O}(\mathrm{G})$

$\mathrm{K}=1$	n_{5}	$=$	$1+5.1$	$=$	$6 \nmid \mathrm{O}(\mathrm{G})$
$\mathrm{K}=2$	n_{5}	$=$	$1+5.2=$	$11 \nmid \mathrm{O}(\mathrm{G})$	
$\mathrm{K}=3$	n_{5}	$=$	$1+5.3=$	$16 \nmid \mathrm{O}(\mathrm{G})$	

Hence only one sylow 5 -subgroup and it must be normal.
Hence G is not simple
Example:
$\mathrm{O}(\mathrm{G}) \quad=30=3.5 .2$
So $n_{3}=1+3 \mathrm{~K}$
$n_{3} \quad=\quad 1$ or 10
$n_{5} \quad=\quad 1+5 \mathrm{~K}$
$n_{5} \quad=\quad 1$ or 6
$n_{2}=1+2 \mathrm{~K}$
$n_{2}=1,3,5,15$
.Case 1 If $n_{3}=1$ and $n_{5}=1$ and n_{2} is anything
G has a unique slyow 3 -subgroup and slyow 5 -subgroup, then they must be normal , hence G is not simple.
Case 2 If $n_{3}=1$ and $n_{5}=6$ and n_{2} is anything
G has a unique slyow 3 -subgroup and it must be simple, hence G is not simple
Case 3 If $n_{3}=10$ and $n_{5}=1$ and n_{2} is anything
G has a unique slyow 5 -subgroup and it must be simple , hence G is not simple
Case 4 If $n_{3}=10$ and $n_{5}=6$ and n_{2} is anything
Let $G_{1} \quad G_{2} G_{3} \ldots G_{10}$ be 10 distinct slyow 3-subgroup of G
Also $G_{i} \cap G_{j} \subseteq G_{i} \quad j \leq 10, i \geq 1$
$G_{i} \cap G_{j}$ is a subgroup of G_{i}
$\mathrm{O}\left(G_{i} \cap G_{j}\right) /\left(G_{i}\right)$ i.e. $\mathrm{O}\left(G_{i} \cap G_{j}\right) / 3$
Also $G_{i} \neq G_{j} \quad G_{i} \neq G_{i} \cap \quad G_{j}$
$\mathrm{O}\left(G_{i} \cap G_{j}\right)=1 \quad$ or $G_{i} \cap G_{j}=\{e\}$
Morever if $\mathrm{e} \neq a \in G_{i} \quad a^{3}=e$
This shows that $\mathrm{O}(\mathrm{a})=3$ for all $a(\neq e) \in G_{i}$

Which shows that there are $10 \times(3-1)=20$ non identity elements of order 3
Similarly ther are $6 \times(5-1)=24$ elements of order 5
G has atleast $(20+24)=44$ elements which is a contradiction.
Hence case 4 is not possible
Hence G is not simple.

REFERENCE

[1] "Contemporary Abstract Algebra" by Joseph A. Gallian. ISBN - 1305887859, 9781305887855
[2] "A Course in Abstract Algebra" by V.K. Khanna \& S.K.
[3] Bhambri, Second Edition,Vikas Publication House Pvt Limmited,1999,0"Abstract Algebra" by I.N. Hersterin. ISBN 70698675X, 9780706986754.
[4] "A first Court in Abstract Algebra" ($7^{\text {th }}$ Edition) by - J.B. Fraleigh. ISBN - 13:9780201763904
[5] "Abstract Algebra" (3 ${ }^{\text {rd }}$ Edition) by David S. Dummit, Richard M.Foote,ISBN - 9780471433347-10:0471368792

