Simplicity of Groups

Ms Poonam^{#1}, Ms Shilpa Aggrwal^{#2} #1Department of Mathematics, Govt. College, Hisar #2Department of Mathematics, K.U.Kurukshetra

Abstract

Result:

The aim of this paper is to check whether a group is simple or not. For this we use some test.

Key Words - Group, set, prime, simple, sylow subgroup.

I. INTRODUCTION

The theory of simple group plays an important role in Modern Algebra. In this article we discuss about a few theorems that are useful in providing that a group of particular order is a non abelian simple group

Simple Group: A group G is said to be simple if G has no normal subgroup except {e} and G itself.

```
Sylow p Subgroup of G : Let G be finit group & let p be a prime advisor of O(G). If p^{k}/O(G) and p^{k+1} o(G)
                 then any subgroup of G of order p^k is called a sylow p subgroup.
```

If a finite group contains unique sylow p-subgroup then it is normal subgroup.

II. SOME USEFUL TEST TO CHECK SIMPLICITY OF A GROUP

Theorem 1	Cayley Test:	
	Let G be a group.	
	O(G) = 2n where n is an odd number greater than 1. Then G contains a normal	1
	subgroup of order n. Hence G is not simple.	
Exam		
	1. $O(G) = 58$	
	Then	
	$O(G) = 2 \times 29$	
	29>1 & 29 is odd number. Then by clayey test G is not simple.	
	Hence, any group of order 58 is not simple.	
	2. $O(G) = 62$	
	Then	
	$O(G) = 2 \times 31$	
	Again G is not simple by cayley test. Hence, any group of order 62 is not simple.	
Theorem2	If $O(G) = p^{h}(h>1)$. Then G contains a normal subgroup of order p. Hence, G is not simple.	
Example		
	1. $O(G) = 125$	
	Then	
	$O(G) = 5^3$	
	By Th ^m 2. G contains a normal subgroup of order 5. So G is not simple. Hence any	7
	group of order 25 is not simple.	
	2. $O(G) = 64$	
	Then	
	$O(G) = 2^6$	
		_
	By $Th^m 2$. G contains a normal subgroup of order 2. So G is not simple. Hence any	/
	group of order 64 is not simple.	
	Index theorem	
	If G is a finite group and H is a proper sub group of G such that O(G) { ([G:H])! Then G has	3
	proper normal subgroup and hence G is not simple	
	Example:1	
	If $O(G) = 12$	
	Then $O(G) = 12^{-12}$ Then $O(G) = 2^{2}.3$	
	Hence by sylow first Th^m G has a subgroup H of order 2 ² . Let it be that subgroup.	
	nence by sylow first In G has a subgroup H of order 2. Let it be that subgroup.	

Then
$$[G:H] = \frac{o(G)}{o(H)} = \frac{12}{4} = 3$$

As $12 \nmid 3!$ So $O(G) \nmid ([G:H])!$ Then by index th^m G contains a proper normal subgroup. Hence, G is not simple.

Example:2

If O(G) = 108 $2^2 \cdot 3^3$ Then O(G) = 108 =Then by sylow first Th^m G has a subgroup of order 3³. Let it be that subgroup Then[G:H] $=\frac{o(G)}{o(H)} = \frac{108}{27} = 4$

As 108 4! So O(G) ([G:H])! So by index Thm G has a proper normal subgroup. Hence G is not a simple.

Sylow Test for Non Simplicity:-

If G is a group of order p.m where p is prime integer and (p.m) = 1, then $n_p = 1 + 1$

kp ,k ≥ 0 and n_p /O(G) where n_p denotes the number of sylow p subgroup of G.

If $n_p = 1$ then G has unique p sylow subgroup which is normal.

Example:-

 $O(G) = 40 = 5.8 = p^{r}.q$ P = 5 is prime and (5, 8) = 1Hence G has a 5 sylow subgroup of order 5. $n_{5} = 1 + 5k$ If K=0 $n_{5} = 1 + 5.0 = 1/O(G)$ 6 🕴 O(G) K=1 n_{r} = 1+5.1 = K=2 n_5 = 1+5.2 =11 ł O(G) K=3 n_5 = 1+5.3 = 16 ł O(G) Hence only one sylow 5-subgroup and it must be normal. Hence G is not simple =30=3.5.2 Example: O(G) So n_3 = 1+3K n_3 = 1 or 10 n_5 = 1+5K n_5 = 1 or 6 n_2 = 1 + 2K n_2 = 1, 3, 5, 15 <u>Case1</u> If $n_3 = 1$ and $n_5 = 1$ and n_2 is anything G has a unique slyow 3-subgroup and slyow 5-subgroup, then they must be normal ,hence G is not simple.

Hence G is simple.

<u>Case2</u> If $n_3 = 1$ and $n_5 = 6$ and n_2 is anything

G has a unique slyow 3-subgroup and it must be simple , hence G is not simple

<u>Case3 If</u> $n_3 = 10$ and $n_5 = 1$ and n_2 is anything

G has a unique slyow 5-subgroup and it must be simple , hence G is not simple

<u>Case4 If</u> $n_3 = 10$ and $n_5 = 6$ and n_2 is anything Let $G_1 \ G_2 \ G_3 \ \dots \ G_{10}$ be 10 distinct slyow 3-subgroup of G

Also
$$G_i \cap G_j \subseteq G_i$$
 $j \le 10$, $i \ge 1$

 $G_i \cap G_i$ is a subgroup of G_i

 $O(G_i \cap G_j) / (G_i)$ i.e. $O(G_i \cap G_j) / 3$

Also $G_i \neq G_j$ $G_i \neq G_i \cap G_j$

 $O(G_i \cap G_j) = 1$ or $G_i \cap G_j = \{e\}$

Morever if
$$e \neq a \in G_i$$
, $a^3 = e$

This shows that O(a) = 3 for all $a \neq e \in G_i$

Which shows that there are $10 \times (3-1) = 20$ non identity elements of order 3 Similarly ther are $6 \times (5 - 1) = 24$ elements of order 5 G has at least (20+24)=44 elements which is a contradiction. Hence case 4 is not possible Hence G is not simple.

REFERENCE

- "Contemporary Abstract Algebra" by Joseph A. Gallian. ISBN 1305887859, 9781305887855 [1]
- [2] "A Course in Abstract Algebra" by V.K. Khanna & S.K.
- [3] Bhambri, Second Edition, Vikas Publication House Pvt Limmited, 1999,0"Abstract Algebra" by I.N. Hersterin. ISBN 70698675X, 9780706986754.
- [4] "A first Court in Abstract Algebra" (7th Edition) by J.B. Fraleigh. ISBN 13:9780201763904
 [5] "Abstract Algebra" (3rd Edition) by David S. Dummit, Richard M.Foote, ISBN 9780471433347-10:0471368792