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Abstract  

        The specification and misspecification of a new class of volatility model that is robust to jumps and outliers 

is investigated via Monte Carlo experiment and real life examples. The class includes the Generalized 

Autoregressive Score (GAS) model derived from the classical Generalized Autoregressive Conditional 

Heteroscedasticity (GARCH) model. The Exponential GAS (EGAS) and Asymmetric Exponential GAS (AEGAS) 

models form the variants of the GAS model. Using three different levels of volatility persistence and GARCH 

probability distributions which are Normal (N), Student-t (T) and Skewed-Student-t (SKT), with estimates of 

Akaike Information Criterion (AIC) and kurtosis as criteria, we obtained useful information for studying the 

misspecification and tail behaviour of the newly proposed volatility model. The results of the Monte Carlo 

experiment, the crude oil and gas prices showed that the best misspecified model for AEGAS-SKT and EGAS-T 

is EGAS-SKT. 
 

Keywords - Misspecification, Volatility Persistence, Monte Carlo, Generalized Autoregressive Score 
 

I. INTRODUCTION 
  

       The Generalized Autoregressive Score (GAS) class is a variant of Generalized Autoregressive Conditional 

Heteroscedasticity (GARCH) model of [1]developed for capturing jumps/outliers effects in the returns series. 

Following [2], the classical GARCH model is not robust to capturing these abnormalities; hence the GAS class 

variants were proposed in [2], [3]. 

The driving mechanism of the GAS models and its variant is the scaled score of the likelihood function, and this 

makes the model class unique among other earlier proposed volatility models. It combines the ability to capture 

asymmetry with occasional jumps detection. The GAS model encompasses other well-known models such as 

the Generalized Autoregressive Conditional Heteroscedasticity (GARCH), the Autoregressive Conditional 

Duration (ACD), the Autoregressive Conditional Intensity (ACI), and the single source of error models. In 

addition, the GAS specification provides a wide range of new observation driven models. Examples include 

observation driven analogues of unobserved components time series models, multivariate point process models 

with time-varying parameters and pooling restrictions, new models for time-varying copula functions, and 

models for time-varying higher order moments. Based on these appealing properties of this new model, we were 

therefore motivated in investigating further the model class. 

The literatures [4], [5] define volatility and volatility clustering in stocks, and following these definitions, 

several parametric volatility models have been developed. The first is the Autoregressive Conditional 

Heteroscedasticity (ARCH) model earlier proposed in[6] and the generalized version as GARCH model, has 

gained many applications in empirical financial time series literature. (see[1], [7]). These literatures have 

extended to studying the asymmetric behaviour and jumps in stocks and other asset prices. Different asymmetric 

robust volatility models have also been applied. The jump behaviour of stocks has recently been studied, and 

nonparametric approaches to detecting jumps have been applied (see[8]). Jump robust volatility model is 

introduced in[2], [3]. There, the authors proposed the Generalized Autoregressive Score (GAS) models and two 

variants, the Exponential GAS (EGAS) and Asymmetric Exponential GAS (AEGAS) models for predicting the 

conditional volatility with occasional jumps. As a result of newness of this model, there are fewer applications 

so far, though small sample properties have been investigated in[2], [9], [10], [11], there is need to study the 

property of this model class using simulation approach, with emphasis on the fitness ability and returns 

distributions. The fitness ability is achieved by the estimates of information criterion and the tail effects 

achieved by the estimates of the kurtosis.  

The aim of this paper is to investigate misspecification of GAS models and its variants using Monte Carlo 

simulation approach. The work is extended to real life crude oil and natural gas prices. Literature has shown that 

these financial time series data display series of jumps over the historical years (see[12], [13]). Hence, they 

serve as good applicable examples in this paper.  
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The rest of the paper is structured as follows: Section 2 reviews literature on the volatility modelling and model 

misspecification. Section 3 presents the volatility models as well as misspecification testing approach. Section 4 

presents the Monte Carlo experiment and results, while Section 5 renders the concluding remarks. 
 

II. REVIEW OF LITERATURE 
 

       A framework for the construction and analysis of misspecification tests for GARCH models was developed 

in[14]and new asymptotically valid and locally optimal tests of asymmetry and nonlinearity were also proposed. 

It was argued that the asymmetry test of[15] and nonlinearity test of[16] are neither asymptotically valid (since 

they ignore asymptotically non-negligible estimation effects) nor locally optimal (since they ignore the recursive 

nature of the conditional variance structure). The framework of[14]encompasses conditional mean specification 

estimated by the Ordinary Least Squares (OLS), Nonlinear Least Squares (NLS) or Quasi Maximum Likelihood 

(QML) method, and that the GARCH misspecification tests can be asymptotically sensitive to unconsidered 

misspecification of the conditional mean. The Monte Carlo results indicate that the new tests are very powerful 

when compared with the previous tests proposed by[15], [16].  

The properties of the GARCH (1,1) model and the assumptions on the parameter space under which the process 

is stationary was studied in depth in[17]. In particular, the ergodicity and strong stationarity for the conditional 

variance (squared volatility) of the process was proved. He showed under which conditions higher order 

moments of the GARCH (1,1) process exist and concluded that GARCH processes are heavy tailed. The impact 

of misspecification on the innovations in fitting GARCH (1,1) models through a Monte Carlo approach was 

investigated and showed that an incorrect specification of the innovations together with the reduction of the 

parameter space to the weak stationarity region, could give rise to a spurious Integrated GARCH (IGARCH) 

effect[18]. They also analysed the impact of misspecification on forecasted volatilities, showing that innovations 

with light tails can lead to a remarkable over-estimation of volatilities. The real size and power of the likelihood 

ratio and the Lagrange Multiplier (LM) misspecification tests when periodic long memory GARCH models are 

involved were analysed in[19]. The performance of these tests was studied by means of Monte Carlo 

simulations with respect to the class of generalized long memory GARCH models, and by means of a Monte 

Carlo analysis the real size and power of these tests were derived, evidencing their reliability apart from some 

special and limited cases. The test performances were however influenced by the sample length with about a 

thousand observations needed to obtain reliable conclusions. 

On GAS modelling and its variants specification, the dynamic properties of Generalized Autoregressive Score 

(GAS) models were characterized by identifying the regions of the parameter space that implied stationarity and 

ergodicity of the corresponding nonlinear time series process[20]. They showed how these regions are affected 

by the choice of parameterization and scaling, which are key factors for the class of GAS models compared to 

other observation driven models. 

As a follow-up by[11], the observation driven time series models used the scaled score of the likelihood 

function as the mechanism for updating the parameters over time. This approach provides a unified and 

consistent framework for introducing time varying parameters in a wide class of non-linear models. They 

developed a framework for time varying parameters which is based on the score function of the predictive 

model density at time t and concluded that by scaling the score function appropriately, standard observation 

driven models such as Generalized Autoregressive Conditional Heteroscedasticity (GARCH), Autoregressive 

Conditional Duration (ACD) and Autoregressive Conditional Intensity (ACI) models can be recovered. 

A novel GAS model for predicting volume of shares (relative to the daily total), inspired by empirical 

regularities of the observed series (intra-daily periodicity pattern, residual serial dependence) was proposed 

in[21]. An application of the proposed GAS model to New York Stock Exchange (NYSE) ticketers confirmed 

the suitability of the proposed model in capturing the features of intra-daily dynamics of volume shares. 

A new observation-driven time-varying parameter framework to model the financial return and realized variance 

jointly was proposed in[22]. The latent dynamic factor was updated by the scaled local density score as a 

function of past daily return and realized variance. The proposed GAS variant adapted quickly to drastic 

volatility changes by incorporating realized measures of volatility based on high frequency data and they 

demonstrated the promising performance of the proposed model by applying it to a number of equity returns, 

even during the 2008 financial crisis. 

The consistency and asymptotic normality of the Maximum Likelihood Estimators (MLE) for a class of time 

series models driven by score function of the predictive likelihood was studied in[23]. They formulated 

primitive conditions, and asymptotic normality under correct specification and under misspecification of the 

GAS models. 

The theoretic optimality properties of the score function of the predictive likelihood as a device to update 

parameters in GAS models was investigated in[24]. Their results provided a new theoretical justification for the 

class of GAS models, which covers the GARCH model as a special case. Their main contribution was to show 

that only parameter updates based on the score always reduce the local Kullback-Leibler divergence between the 

true conditional density and the model implied conditional density and they found out that it holds irrespective 
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of the severity of the model misspecification. They concluded that updates based on the score function 

minimized the local Kullback-Leibler divergence between the true conditional data density and the model 

implied conditional density. 

A new class of flexible Copula models where the evolution of the dependence parameters follows a Markov-

Switching Generalized Autoregressive Score (SGASC) dynamics was developed in[25]. Maximum Likelihood 

Estimation is consistently performed using the Inference Function for Margins (IFM) approach and a version of 

the Expectation-Maximisation (EM) algorithm specifically tailored to this class of models. They used their 

developed SGASC model to estimate the Conditional Value-at-Risk (CoVaR), which is defined as the VaR of a 

given asset conditional on another asset (or portfolio) being in financial distress, and the Conditional Expected 

Shortfall (CoES). Their empirical investigation shows that the proposed SGASC models are able to explain and 

predict the systemic risk contribution of several European countries. Also, they found out that the SGASC 

models outperformed competitors using several CoVaR back testing procedures. 
 

III. THE GAS MODELS AND THEIR VARIANTS 

The GAS model specification was derived from the classical GARCH model of [1]which is given as,
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The jump volatility model as proposed in[2], [3]is given by re-writing GARCH (1,1) as, 
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Now, combining (3) with (4) gives the GAS-Normal (GAS-N) model; combining (3) with (5) gives the GAS-

Student-t (GAS-T) model and combining (3) with (6) gives the GAS-Skewed-Student-t (GAS-SKT) model. 
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The Exponential GARCH (EGARCH) and Asymmetric Exponential GARCH (AEGARCH) types of the GAS 

model were also considered in[3], each with the three distributional assumptions applied. The EGAS model is 

given as, 
2 2
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specified without the leverage effect.1Now, combining (7) with (4) gives the EGAS-Normal (EGAS-N) model; 

combining (7) with (5) gives the EGAS-Student-t (EGAS-T) model and combining (7) with (6) gives the 

EGAS-Skewed-Student-t (EGAS-SKT) model. 

Introducing the leverage effect into (7), we have the AEGAS model, 
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IV. MODEL MISSPECIFICATION TESTS 
 

     Each model under the distributional assumption is evaluated using[26] Information Criterion (AIC), 
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V. MONTE CARLO EXPERIMENT AND RESULT DISCUSSION 
 

     Though the structural and distributional properties of classical GARCH model have been investigated 

theoretically and by simulations but the properties of GAS model and its variants are yet to be established. The 

Monte Carlo (MC) simulations experiment carried out in this work investigated both the fitness performance of 

the models as well as the measure of tail effect of the model residuals. Four Data Generating Processes (DGPs) 

considered are: 
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where 𝜏𝑡−1 = 𝑠𝑖𝑔𝑛 (−𝑧𝑡 )(𝜇𝑡 + 1). For each of the DGP in (12)-(15), a sample of 1000 time series was 

generated after making control for the initialization error, and each generated following Normal, Student-t and 

Skewed Student-t distributions. The sum 𝛼 + 𝛽 is referred to as the persistence of the conditional variance 

process. For financial return series, estimates of  𝛼 and 𝛽 are often in the ranges [0.02, 0.25] and [0.75,0.98], 

respectively with 𝛼 often in the lower part of the interval and 𝛽 in the upper part of the interval, such that the 

persistence is close but rarely exceeding 128. We can then make classification into low, medium and high 

persistence. The parameters of the models were varied and classified in14as low, medium and high volatility 

persistence realizations as given below: 

Low Persistence:  1 1 1 1
, , , , 0 .04 ,0 .05 ,0 .65 ,0 .7 ,0 .01     

 

Medium Persistence:  1 1 1 1
, , , , 0 .04 ,0 .1 ,0 .8 ,0 .9 ,0 .01       

High Persistence:  1 1 1 1
, , , , 0 .04 ,0 .09 ,0 .9 ,0 .99 ,0 .01      where the values of the intercept   and 

asymmetric parameter 
1

  remained constant throughout and these do not affect volatility persistence. The 

value of 
1 1 1

     for the case of GAS(1,1), EGAS(1,1) and AEGAS(1,1) models.  

The estimates of Akaike Information Criteria (AIC) and Excess Kurtosis from the Monte Carlo Experiments are 

given in table 1-3. The AIC of the DGP is denoted with single asterisk whereas the AIC of the best performed 

misspecified model is denoted with double asterisks. The results presented in table 1 showed that when the DGP 

is GAS-N, at low persistence, the misspecified model is EGAS-N while at both medium and high persistence; 

the misspecified model is GAS-SKT. When the DGP is both GAS-T and GAS-SKT at all persistence levels, the 

misspecified model is EGAS-SKT. Table 2 showed that when the DGP is EGAS-N at both low and medium 

persistence, the misspecified model is GAS-N while at high persistence; the misspecified model is EGAS-SKT. 

When the DGP is EGAS-T at all persistence levels, the misspecified model is EGAS-SKT whereas when the 

DGP is EGAS-SKT at all persistence levels, the misspecified model is GAS-T. In table 3, the results showed 

that when the DGP is AEGAS-N at low persistence, the misspecified model is EGAS-N while at both medium 

and high persistence; the misspecified model is AEGAS-SKT.  When the DGP is both AEGAS-T and AEGAS-

SKT at all persistence levels, the misspecified model is EGAS-SKT. 

The results of this paper also showed that when the probability distribution of the residuals of the DGPs is 

normal, the probability distribution of the misspecified model will be normal since all the excess kurtosis 

observed under the three DGPs, at low, medium and high persistence were either negatively low or positively 

low and close to zero whereas when the probability distribution of the residuals of the DGPs is non-normal 

(skewed), the probability distribution of the residuals will be non-normal(Skewed) since the excess kurtosis 

observed under the three DGPs at low, medium and high persistence were positive and greater than zero. 
 

VI. TABLE1: ESTIMATES OF AIC AND EXCESS KURTOSIS WHEN THE DGP IS GAS 
 

Persistence Assumed 

Distribution 

GAS (1,1) EGAS (1,1) AEGAS (1,1) 

  AIC Ex. Kurt AIC Ex. Kurt AIC Ex. Kurt 

When the DGP is GAS-N 

Low Normal 0.9188* -0.1037 0.9188** -0.1050 0.9196 -0.1223 

Student-t 0.9209 -0.1037 0.9209 -0.1050 0.9217 -0.1224 

Skewed-t 0.9196 -0.1039 0.91967 -0.1051 0.9204  0.1225 

Medium Normal 2.0429* -0.1130 2.0442 -0.0986 2.0445 -0.1222 

Student-t 2.0450 -0.1127 2.0463 -0.0985 2.0466 -0.1220 

Skewed-t 2.0435** -0.1117 2.0447 -0.0941 2.0448 -0.1193 

High Normal 4.6419* -0.0823 4.6422 -0.0842 4.6436 -0.0965 

Student-t 4.6440 -0.0822 4.6443 -0.0842 4.6457 -0.0965 

Skewed-t 4.6419** -0.0846 4.6427 -0.0840 4.6440 -0.0982 

When the DGP is GAS-T 

Low Normal 0.8556 1.8835 0.8770 2.8232 0.8579 2.0572 

Student-t 0.8162* 2.8569 0.8162 2.8616 0.8183 2.8441 

Skewed-t 0.8138** 2.8423 0.8138** 2.8451 0.8158 2.8502 

Medium Normal 1.9687 2.6440 1.9712 2.5112 1.9713 2.6193 

Student-t 1.9059* 2.9442 1.9051 3.0642 1.9070 3.0378 

Skewed-t 1.9034 2.9299 1.9027** 3.0443 1.9046 3.0223 

High Normal 4.2293 2.8318 4.2350 2.7036 4.2359 2.7969 

Student-t 4.1567* 2.9177 4.1563 2.9413 4.1583 2.9316 
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Skewed-t 4.1544 2.8900 4.1540** 2.9077 4.1560 2.9048 

When the DGP is GAS-SKT 

Low Normal 0.8549 2.1361 0.8757 2.8379 0.8563 2.0975 

Student-t 0.8152 2.8729 0.8152 2.8779 0.8172 2.8602 

Skewed-t 0.8136* 2.8587 0.8136** 2.8619 0.8156 2.8648 

Medium Normal 1.9671 2.6423 1.9695 2.3060 1.9697 2.6130 

Student-t 1.9045 2.9597 1.9038 3.0833 1.9055 3.0518 

Skewed-t 1.9029* 2.9296 1.9022** 3.0684 1.9040 3.0406 

High Normal 4.2243 2.8137 4.2299 2.6793 4.2309 2.7637 

Student-t 4.1522 2.9233 4.1518 2.9502 4.1538 2.9349 

Skewed-t 4.1508* 2.9017 4.1503** 2.9230 4.1523 2.9129 

 

VII. TABLE 2: ESTIMATES OF AIC AND EXCESS KURTOSIS WHEN THE DGP IS EGAS 
 

Persistence Assumed 

Distribution 

GAS (1,1) EGAS (1,1) AEGAS (1,1) 

  AIC Ex. Kurt AIC Ex. Kurt AIC Ex. Kurt 

When the DGP is EGAS-N 

Low Normal 3.0716** -0.1031 3.0715* -0.1060 3.0724 -0.1224 

Student-t 3.0737 -0.1030 3.0736 -0.1060 3.0745 -0.1224 

Skewed-t 3.0723 -0.1031 3.0724 -0.1060 3.0732 -0.1235 

Medium Normal 3.4071** -0.1096 3.4073* -0.1039 3.4079 -0.1225 

Student-t 3.4092 -0.1092 3.4094 -0.1036 3.4101 -0.1222 

Skewed-t 3.4079 -0.1081 3.4079 -0.0992 3.4085 -0.1193 

High Normal 7.5633 -0.0312 7.5604* -0.0656 10.6596  

Student-t 7.5653 -0.0309 7.5626 -0.0650 7.9513  

Skewed-t 7.5632 -0.0326 7.5609** -0.0631 7.5621 -0.0815 

When the DGP is EGAS-T 

Low Normal 3.0064 2.0375 3.0290 2.8148 3.0307 2.8140 

Student-t 2.9683 2.8509 2.9683* 2.8567 2.9703 2.8565 

Skewed-t 2.9660 2.8720 2.9659** 2.8397 2.9679 2.8396 

Medium Normal 3.3255 2.5689 3.3264 2.5350 3.3284 2.5430 

Student-t 3.2632 2.8334 3.2620* 2.9804 3.2639 2.9615 

Skewed-t 3.2606 2.8154 3.2595** 2.9545 3.2615 2.9402 

High Normal 7.1818 2.9987 7.1894 2.8448 7.1901 2.9567 

Student-t 7.1077 3.0177 7.1071* 3.0287 7.1091 3.0260 

Skewed-t 7.1053 2.9927 7.1046** 2.9956 7.1066 3.0010 

When the DGP is EGAS-SKT 

Low Normal 3.0065 2.1177 3.0277 2.8290 3.0099 2.0210 

Student-t 2.9673 2.8666 2.9673 2.8728 2.9692 2.8731 

Skewed-t 2.9659** 2.8878 2.9657* 2.8562 2.9677 2.8563 

Medium Normal 3.3237 2.5641 3.3246 2.5281 3.3266 2.5330 

Student-t 3.2618 2.8451 3.2606 2.9962 3.2624 2.9722 

Skewed-t 3.2601** 2.8315 3.2590* 2.9758 3.2609 2.9558 

High Normal 7.1765 2.9816 7.1840 2.8182 7.1849 2.9215 

Student-t 7.1029 3.0230 7.1023 3.0373 7.1043 3.0278 

Skewed-t 7.1014** 3.0043 7.1007* 3.0109 7.1027 3.0076 

 

VIII. TABLE 3: ESTIMATES OF AIC AND EXCESS KURTOSIS WHEN THE DGP IS 

AEGAS 
Persistence 

 

Assumed 

Distribution 

GAS (1,1) EGAS (1,1) AEGAS (1,1) 

  AIC Ex. Kurt AIC Ex. Kurt AIC Ex. Kurt 

When the DGP is AEGAS-N 

Low Normal 3.0742 -0.0887 3.0741** -0.0923 3.0735* -0.1219 

Student-t 3.0763 -0.0885 3.0762 -0.0922 3.0755 -0.1219 

Skewed-t 3.0749 -0.0883 3.0750 -0.0917 3.0742 -0.1227 

Medium Normal 3.4122 -0.0908 3.4123 -0.0858 3.4111* -0.1207 

Student-t 3.4143 -0.0902 3.4144 -0.0854 3.4131 -0.1206 

Skewed-t 3.4131 -0.0887 3.4131 -0.0802 3.4116** -0.1173 

High Normal 7.5943 -0.0026 7.5913 -0.0403 7.5905* -0.0796 

Student-t 7.5964 -0.0020 7.5934 -0.0398 7.5926 -0.0792 

Skewed-t 7.5944 -0.0027 7.5921 -0.0359 7.5907** -0.0783 

When the DGP is AEGAS-T 

Low Normal 3.0084 1.9840 3.0313 2.7744 3.0328 2.7737 

Student-t 2.9712 2.8144 2.9712 2.8210 2.9731* 2.8206 
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Skewed-t 2.9690 2.8388 2.9688** 2.8038 2.9707 2.8046 

Medium Normal 3.3335 2.5298 3.3344 2.4956 3.3360 2.5245 

Student-t 3.2718 2.7969 3.2706 2.9464 3.2726* 2.9556 

Skewed-t 3.2693 2.7784 3.2682** 2.9205 3.2701 2.9350 

High Normal 7.2642 2.9172 7.2728 2.9724 7.2712 2.8943 

Student-t 7.1909 2.9826 7.1904 2.9847 7.1920* 3.0194 

Skewed-t 7.1888 2.9548 7.1881** 2.9488 7.1896 2.9926 

When the DGP is AEGAS-SKT 

Low Normal 3.0051 1.8743 3.0298 2.7902 3.0313 2.7880 

Student-t 2.9699 2.8313 2.9698 2.8382 2.9718 2.8363 

Skewed-t 2.9685 2.8564 2.9683** 2.8216 2.9703* 2.8206 

Medium Normal 3.3310 2.5266 3.3320 2.4903 3.3336 2.5154 

Student-t 3.2698 2.8101 3.2685 2.9639 3.2705 2.9673 

Skewed-t 3.2681 2.7963 3.2670** 2.9437 3.2689* 2.9510 

High Normal 7.2529 2.8990 7.2614 2.6980 7.2599 2.8580 

Student-t 7.1804 2.9903 7.1799 2.9965 7.1816 3.0210 

Skewed-t 7.1791 2.9700 7.1784** 2.9685 7.1800* 2.9990 

* DGP ** Best performed misspecified model 

 
 IX. RESULTS OF CRUDE OIL AND GAS PRICES 

 

        We apply both daily crude oil and Gas prices to test the effect of misspecification of volatility models. The 

crude oil prices are the European Brent prices (US dollars/barrel) while the gas prices are the Henry Hub 

Natural gas spot prices (US Dollars per Million Btu), both obtained from the website of US Energy Information 

Administrations (http://www.eia.gov/). The oil prices span between 20 May 1987 and 29 September 2014 while 

the natural gas series span between 07 January 1997 and 09 March 2015. 

The plot of the crude oil prices is given in Figure 5.1. We observe stability in the prices of crude oil from 1987 

to 1999 with a major spike in 1990. We observe a gradual increase in the prices of crude oil from 2000 to 2008 

with the prices of crude oil getting to its peak in 2008. We also observe a fall in 2008 and a gradual increase in 

the prices of crude oil from 2008 to 2011 and the prices were stable from 2011 to 2015. 

 

X. FIGURE 5.1: TIME PLOT OF CRUDE OIL PRICES (US DOLLAR/BARREL) 

        The plot of the natural gas prices is given in Figure 5.2. We observe major spike in the prices of natural gas 

in 2001, 2003, 2005, 2008, 2010 and 2014. We observe fall in prices of natural gas after each spike and stability 

of prices of natural gas before the next spike.  
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XI. FIGURE 5.2: TIME PLOT OF GAS PRICES (US DOLLAR/BTU) 

 The estimates of Akaike Information Criteria (AIC) and Excess Kurtosis from the model estimation 

using crude oil and natural gas prices are presented in table 4. The results showed that the specified model for 

the crude oil prices is AEGAS-SKT while the misspecified model is EGAS-SKT. The specified model for the 

natural gas prices is EGAS-T while the misspecified model is EGAS-SKT. 

We observed positive estimates of excess kurtosis throughout Table 4 which are all greater than zero. This 

implies that the estimated residuals for the specified models deviate from normal distribution and they have 

fatter tails than the normal distribution.  
 

XII. TABLE 4: MISSPECIFICATION TESTS FOR MODELS FOR CRUDE OIL AND NATURAL GAS 

PRICES 
Estimated Model Distribution 

Assumed 

Crude Oil Prices Natural Gas Prices 

  AIC Ex. Kurt AIC Ex. Kurt 

GAS Normal -6.6929 1.9429 -5.4666 8.7822 

 T -6.7451 2.4417 -5.5458 8.6593 

 Skewed-t -6.7463 2.4535 -5.5455 8.6125 

EGAS Normal -6.6916 1.9525 -5.4147 10.506 

 T -6.7465 2.3753 -5.5516* 8.6237 

 Skewed-t -6.7476** 2.3888 -5.5513** 8.5867 

AEGAS Normal -6.6918 1.9381 -5.4229 11.931 

 T -6.7471 2.4110 -5.5512 8.3575 

 Skewed-t -6.7482* 2.4264 -5.5509 8.3358 

* Specified model ** Best performed misspecified model 
 

XIII. CONCLUSION 
 

       This paper has investigated the misspecification of GAS models and its variants using Monte Carlo 

simulation approach. The work was extended to real life situation by using the daily prices of crude oil and 

natural gas prices. The estimation involved investigating the misspecification of GAS models and their variants 

assuming normal, student-t and Skewed Student-t probability distributions for the GARCH variants. Model 

selection performance was then investigated using information criteria and tail coefficient (kurtosis). We 

therefore present the results for studying the misspecification of the GAS variantsand residual tail behaviour as 

summarized in table 5 and table 6 respectively. 
 

Xiv. Table 5: summary of fitness performance of the misspecified models 
DGP Best Performed Misspecified Model 

Low Persistence Medium Persistence High Persistence 

GAS-N EGAS-N GAS-SKT GAS-SKT 

GAS-T GAS-SKT & EGAS-SKT EGAS-SKT EGAS-SKT 

GAS-SKT EGAS-SKT EGAS-SKT EGAS-SKT 

EGAS-N GAS-N GAS-N EGAS-SKT 

EGAS-T EGAS-SKT EGAS-SKT EGAS-SKT 

EGAS-SKT GAS-SKT GAS-SKT GAS-SKT 
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AEGAS-N EGAS-N AEGAS-SKT AEGAS-SKT 

AEGAS-T EGAS-SKT EGAS-SKT EGAS-SKT 

AEGAS-SKT EGAS-SKT EGAS-SKT EGAS-SKT 

 
XV. TABLE 6: Summary Of The Probability Distribution Of The Residuals (Tail Behavior) 

DGP Tail Behavior 

GAS-N Normal 

GAS-T Skewed 

GAS-SKT Skewed 

EGAS-N Normal 

EGAS-T Skewed 

EGAS-SKT Skewed 

AEGAS-N Normal 

AEGAS-T Skewed 

AEGAS-SKT Skewed 

The crude oil and gas prices were used to confirm the results of the Monte Carlo experiment. The specified 

models for the crude oil and gas prices are AEGAS-SKT and EGAS T respectively while the misspecified 

model for both the crude oil and gas prices is EGAS-SKT. This result agrees with the outcome of the Monte 

Carlo experiment as noted in table 5, that is, the misspecification model for both AEGAS-SKT and EGAS-T is 

EGAS-SKT. 
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