On $(4, k)$ - Regular Fuzzy Graphs

B.Shanmugaraj ${ }^{\# 1}$ G.chandrasekar ${ }^{\# 2}$ S.Meena Devi ${ }^{\# 3}$
Department of Mathematics
Sri Kaliswari College, Sivakasi,

Abstract

In this paper, we define d_{4}-degree and total $d_{4^{-}}$degree of vertex in fuzzy graphs. Further we study $(4, k)$ regularity and totally (4, k)- regularity of fuzzy graphs and the relation between ($4, K$)- regularity and totally $(4, k)$ regularity.

Keywords: Regular fuzzy graphs, total degree, totally regular fuzzy graph, d_{4} degree of a vertex in graphs.

I. INTRODUCTION

In 1965, Lofti A.Zadeh[3] introduced the concept of a fuzzy subset of a set as a method for representing the phenomena of uncertainty in real life situation. Azriel Rosenfeld introduced fuzzy graphs in 1975[3], which is growing fast and has numerous applications in various fields. Nagoor Gani and Radha [2] introduced regular fuzzy graphs, total degree and totally regular fuzzy graphs. Alison Northup [1] studied some properties on (2, k)- regular graphs in her bachelor thesis. N.R Santhi Maheswari and C. Sekar introduced d_{2} of a vertex in graphs [4] and ($3, \mathrm{k}$)regular fuzzy graphs[5] are introduced S. Meena Devi and M. Andal. In this paper, we define d_{4} - degree of a vertex in fuzzy graphs and total d_{4}-degree total d_{4} - degree of vertex in fuzzy graphs and introduce $(4, \mathrm{k})$ - regular fuzzy graphs, totally ($4, \mathrm{k}$)-regular fuzzy graphs.

We present some known definitions and results for a ready reference to go through the work presented in this paper.

II. PRELIMINARIES

Definition 2.1: For a given graph G, the d_{4}-degree of a vertex v in G, denoted by $d_{4}(v)$ means number of vertices at a distance two away from v .

Definition 2.2: A graph G is said to be $(4, \mathrm{k})-$ regular $\left(\mathrm{d}_{4}-\mathrm{regular}\right)$ if $\mathrm{d}_{4}(\mathrm{v})=\mathrm{k}$, for all v in G .
We observe that $(4, k)$ - regular and d_{4}-regular graphs are same.
Definition 2.3: A fuzzy graph denoted by $\mathrm{G}:(\sigma, \mu)$ on graph $\mathrm{G}^{*}:(\mathrm{V}, \mathrm{E})$ is a pair of functions (σ, μ) where σ : $\mathrm{V} \rightarrow[0,1]$ is a fuzzy subset of a non empty set V and $\mu: \mathrm{V} \times \mathrm{V} \rightarrow[0,1]$ is a symmetric fuzzy relation on σ such that for all u, v in V the relation $\mu(\mathrm{u}, \mathrm{v})=\mu(\mathrm{uv}) \leq \sigma(\mathrm{u}) \Lambda \sigma(\mathrm{v})$ is satisfied.

A fuzzy graph G is complete if $\mu(\mathrm{u}, \mathrm{v})=\mu(\mathrm{uv})=\sigma(\mathrm{u}) \Lambda \sigma(\mathrm{v})$ for all $\mathrm{u}, \mathrm{v} \in \mathrm{V}$, where uv denotes the edge between u and v.

Definition 2.4: Let $\mathrm{G}:(\sigma, \mu)$ be a fuzzy graph. The degree of a vertex u is $d_{G}(u)=\sum_{u \neq v} \mu(u v)$ for uvE E and $\mu(u v)=0$, for uv not in E ; this is equivalent to $\mathrm{d}_{\mathrm{G}}(\mathrm{u})=\sum_{\text {uveE }} \mu(\mathrm{uv})$.

Definition 2.5: The strength of connectedness between two vertices u and v is $\mu \infty(\mathrm{u}, \mathrm{v})=\sup \left\{\mu^{\mathrm{K}}(\mathrm{u}, \mathrm{v}) / \mathrm{k}=\right.$ $1,2,3 \ldots$.$\} where \mu^{K}(\mathrm{u}, \mathrm{v})=\sup \left\{\mu\left(\mathrm{u}, \mathrm{u}_{1}\right) \Lambda \mu\left(\mathrm{u}_{1} \mathbf{u}_{2}\right) \Lambda \ldots \ldots \ldots \ldots \ldots . \Lambda \mu\left(\mathrm{u}_{\mathrm{k}-1} \mathrm{v}\right) / \mathrm{u}, \mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \ldots \mathrm{u}_{\mathrm{k}-1}, \mathrm{v}\right\}$ is a path connecting u and v of length k$\}$.

Definition 2.6: Let $\mathrm{G}:(\sigma, \mu)$ be a fuzzy graph on $\mathrm{G}^{*}:(\mathrm{V}, \mathrm{E})$. If $\mathrm{d}(\mathrm{v})=\mathrm{k}$ for all $\mathrm{v} \in \mathrm{V}$, then G is said to be regular fuzzy graph of degree k .

If each vertex of G has not the same degree k , then G is said to be irregular fuzzy graph.

Definition 2.7: Let $\mathrm{G}:(\sigma, \mu)$ be a fuzzy graph on $\mathrm{G}^{*}:(\mathrm{V}, \mathrm{E})$. The total degree of a vertex u is defined as $\operatorname{td}(\mathrm{u})=\sum \mu(\mathrm{u}, \mathrm{v})+\sigma(\mathrm{u})=\mathrm{d}(\mathrm{u})+\sigma(\mathrm{u}), \mathrm{uv} \in E$.

If each vertex of G has the same total degree k, then G is said to be totally regular fuzzy graph of degree K or k totally regular fuzzy graph.

If each vertex of G has not the same total degree k, then G is said to be totally irregular fuzzy graph.
Definition 2.8: Snark graph is a graph in which every vertex has three neighbours.

Example 2.9:

Figure 1

III. d4 ${ }_{4}$-DEGREE AND TOTAL d_{4}-DEGREE OF A VERTEX IN FUZZY GRAPHS

Definition 3.1: Let $G:(\sigma, \mu)$ be a fuzzy graph .The d_{2}-degree of a vertex u in G is $d_{4}(u)=\sum \mu^{4}(u v)$, where $\sum \mu^{4}(u v)$ $=\sup \left\{\mu\left(\mathrm{uu}_{1}\right) \Lambda \mu\left(\mathrm{u}_{1} \mathrm{u}_{2}\right) \Lambda \mu\left(\mathrm{u}_{2} \mathrm{u}_{3}\right) \Lambda \mu\left(\mathrm{u}_{3} \mathrm{v}\right): \mathrm{u}, \mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \mathrm{v}\right.$ is the shortest path connecting u and v of length 4$\}$. Also $\mu(u v)=0$, for uv not in E .

The minimum d_{4}-degree of G is $\delta_{4}(\mathrm{G})=\Lambda\left\{\mathrm{d}_{4}(\mathrm{v}): \mathrm{v} C \mathrm{~V}\right\}$.
The maximum d_{4}-degree of G is $\Delta_{4}(\mathrm{G})=\mathrm{V}\left\{\mathrm{d}_{4}(\mathrm{v}): \mathrm{v} \in \mathrm{V}\right\}$.
Example 3.2: Consider $G^{*}:(V, E)$, where $V=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5},\right\}$ and $E=\left\{u_{1} u_{2}, u_{2} u_{3}, u_{3} u_{4}, u_{4} u_{5}, u_{5} u_{1}\right\}$. Define G $:(\sigma, \mu)$ by $\sigma\left(\mathrm{u}_{1}\right)=0.3, \sigma\left(\mathrm{u}_{2}\right)=0.4, \sigma\left(\mathrm{u}_{3}\right)=0.5, \sigma\left(\mathrm{u}_{4}\right)=0.6, \sigma\left(\mathrm{u}_{5}\right)=0.7$, and $\mu\left(\mathrm{u}_{1} \mathrm{u}_{2}\right)=0.3, \mu\left(\mathrm{u}_{2} \mathrm{u}_{3}\right)=0.4, \mu\left(\mathrm{u}_{3} \mathrm{u}_{4}\right)=0.3$, $\mu\left(u_{4} u_{5}\right)=0.2, \mu\left(u_{5} u_{1}\right)=0.1$.
u_{1} (0.3)

0.3

Figure 2

Here, $\mathrm{d}_{4}\left(\mathrm{u}_{1}\right)=\{0.3 \Lambda 0.4 \Lambda 0.3 \Lambda 0.2\}+\{0.1 \Lambda 0.2 \Lambda 0.3 \Lambda 0.4\}$

$$
=0.2+0.1=0.3
$$

$$
\mathrm{d}_{4}\left(\mathrm{u}_{2}\right)=\{0.4 \Lambda 0.3 \Lambda 0.2 \Lambda 0.1\}+\{0.3 \Lambda 0.1 \Lambda 0.2 \Lambda 0.3\}
$$

$$
=0.1+0.1=0.2 \text {. }
$$

$$
\begin{aligned}
\mathrm{d}_{4}\left(\mathrm{u}_{3}\right) & =\{0.3 \Lambda 0.2 \Lambda 0.1 \Lambda 0.3\}+\{0.4 \Lambda 0.3 \Lambda 0.1 \Lambda 0.2\} \\
& =0.1+0.1=0.2 \\
\mathrm{~d}_{4}\left(\mathrm{u}_{4}\right) & =\{0.2 \Lambda 0.1 \Lambda 0.3 \Lambda 0.4\}+\{0.3 \Lambda 0.4 \Lambda 0.3 \Lambda 0.1\} \\
& =0.1+0.1=0.2 \\
\mathrm{~d}_{4}\left(\mathrm{u}_{5}\right) & =\{0.1 \Lambda 0.4 \Lambda 0.4 \Lambda 0.3\}+\{0.2 \Lambda 0.3 \Lambda 0.4 \Lambda 0.3\} \\
& =0.1+0.2=0.3
\end{aligned}
$$

Example 3.3: Consider $G^{*}:(V, E)$, where $V=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\}$ and $E=\left\{u_{1} u_{2,}, u_{2} u_{3}, u_{3} u_{4}, u_{4} u_{5}, u_{5} u_{6}, u_{6}\right.$ $\left.\mathrm{u}_{1^{\bullet}}\right\}$. Define $\mathrm{G}:(\sigma, \mu)$ by $\sigma\left(\mathrm{u}_{1}\right)=0.7, \sigma\left(\mathrm{u}_{2}\right)=0.8, \sigma\left(\mathrm{u}_{3}\right)=0.9, \sigma\left(\mathrm{u}_{4}\right)=0.8, \sigma\left(\mathrm{u}_{5}\right)=0.7, \sigma\left(\mathrm{u}_{6}\right)=0.6$ and $\mu\left(\mathrm{u}_{1} \mathrm{u}_{2}\right)=0.5, \mu\left(\mathrm{u}_{2} \mathrm{u}_{3}\right)=0.7, \mu\left(\mathrm{u}_{3} \mathrm{u}_{4}\right)=0.6, \mu\left(\mathrm{u}_{4} \mathrm{u}_{5}\right)=0.4, \mu\left(\mathrm{u}_{5} \mathrm{u}_{6}\right)=0.3, \mu\left(\mathrm{u}_{6} \mathrm{u}_{1}\right)=0.2$.

$$
\mathrm{u}_{4}(0.8)
$$

$\mathrm{d}_{4}\left(\mathrm{u}_{1}\right)=\sup \{0.5 \Lambda 0.7 \Lambda 0.6 \Lambda 0.4,0.2 \Lambda 0.3 \Lambda 0.4 \Lambda 0.6\}$

$$
=\sup \{0.4,0.2\} \quad=0.4
$$

Here, $\mathrm{d}_{4}\left(\mathrm{u}_{2}\right)=\sup \{0.7 \Lambda 0.6 \Lambda 0.4 \Lambda 0.3,0.5 \Lambda 0.2 \Lambda 0.3 \Lambda 0.4\}$

$$
\begin{aligned}
& =\sup \{0.3,0.2\}=0.3 \\
\mathrm{~d}_{4}\left(\mathrm{u}_{3}\right) & =\sup \{0.6 \Lambda 0.4 \Lambda 0.3 \Lambda 0.2,0.7 \Lambda 0.5 \Lambda 0.2 \Lambda 0.3\} \\
& =\sup \{0.2,0.2\}=0.2 \\
\mathrm{~d}_{4}\left(\mathrm{u}_{4}\right) & =\sup \{0.4 \Lambda 0.3 \Lambda 0.2 \Lambda 0.5,0.6 \Lambda 0.7 \Lambda 0.5 \Lambda 0.2\} \\
& =\sup \{0.2,0.2\}=0.2 \\
\mathrm{~d}_{4}\left(\mathrm{u}_{5}\right) & =\sup \{0.3 \Lambda 0.2 \Lambda 0.5 \Lambda 0.7,0.4 \Lambda 0.6 \Lambda 0.7 \Lambda 0.5\} \\
& =\sup \{0.2,0.4\}=0.4 \\
\mathrm{~d}_{4}\left(\mathrm{u}_{6}\right) & =\sup \{0.2 \Lambda 0.5 \Lambda 0.7 \Lambda 0.6,0.3 \Lambda 0.4 \Lambda 0.6 \Lambda 0.7\} \\
& =\sup \{0.2,0.3\}=0.3
\end{aligned}
$$

Definition 3.4: Let $G:(\sigma, \mu)$ be a fuzzy graph on $\mathrm{G}^{*}:(\mathrm{V}, \mathrm{E})$. The total d_{4}-degree of a vertex $\mathrm{u} € \mathrm{~V}$ is defined as $\operatorname{td}_{4}(\mathrm{u})=\sum \mu^{4}(u v)+\sigma(\mathrm{u})=\mathrm{d}_{4}(\mathrm{u})+\sigma(\mathrm{u})$

The minimum td_{4}-degree of G is $\mathrm{t} \delta_{4}(\mathrm{G})=\Lambda\left\{\mathrm{d}_{4}(\mathrm{v}): \mathrm{v} \in \mathrm{V}\right\}$.
The maximum td_{4}-degree of G is $t \Delta_{4}(G)=V\left\{d_{4}(v)\right.$:vEV $\}$.
Example 3.5: Consider $G^{*}:(V, E)$, where $V=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ and $E=\left\{u_{1} u_{2}, u_{2} u_{3}, u_{3} u_{4}, u_{4} u_{5}, u_{5} u_{1}\right\}$. Define G $:(\sigma, \mu)$ by $\sigma\left(\mathrm{u}_{1}\right)=0.5, \sigma\left(\mathrm{u}_{2}\right)=0.6, \sigma\left(\mathrm{u}_{3}\right)=0.5, \sigma\left(\mathrm{u}_{4}\right)=0.6, \sigma\left(\mathrm{u}_{5}\right)=0.5$, and $\mu\left(\mathrm{u}_{1} \mathrm{u}_{2}\right)=0.3, \mu\left(\mathrm{u}_{2} \mathrm{u}_{3}\right)=0.4, \mu\left(\mathrm{u}_{3} \mathrm{u}_{4}\right)=0.3$, $\mu\left(u_{4} u_{5}\right)=0.2, \mu\left(u_{5} u_{1}\right)=0.1$.

Figure 4
Here, $\operatorname{td}_{4}\left(\mathrm{u}_{1}\right)=\{0.3 \Lambda 0.4 \Lambda 0.3 \Lambda 0.2\}+\{0.1 \Lambda 0.2 \Lambda 0.3 \Lambda 0.4\}+\sigma\left(\mathrm{u}_{1}\right)$

$$
=0.3+0.5=0.8
$$

$$
\begin{aligned}
\operatorname{td}_{4}\left(\mathrm{u}_{2}\right) & =\{0.4 \Lambda 0.3 \Lambda 0.2 \Lambda 0.1\}+\{0.3 \Lambda 0.1 \Lambda 0.2 \Lambda 0.3\}+\sigma\left(\mathrm{u}_{2}\right) \\
& =0.2+0.6=0.8
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{td}_{4}\left(\mathrm{u}_{3}\right) & =\{0.3 \Lambda 0.2 \Lambda 0.1 \Lambda 0.3\}+\{0.4 \Lambda 0.3 \Lambda 0.1 \Lambda 0.2\}+\sigma\left(\mathrm{u}_{3}\right) \\
= & 0.2+0.5=0.7 \\
\operatorname{td}_{4}\left(\mathrm{u}_{4}\right) & =\{0.2 \Lambda 0.1 \Lambda 0.3 \Lambda 0.4\}+\{0.3 \Lambda 0.4 \Lambda 0.3 \Lambda 0.1\}+\sigma\left(\mathrm{u}_{4}\right) \\
= & 0.2+0.6=0.8 \\
\operatorname{td}_{4}\left(\mathrm{u}_{5}\right) & =\{0.1 \Lambda 0.4 \Lambda 0.4 \Lambda 0.3\}+\{0.2 \Lambda 0.3 \Lambda 0.4 \Lambda 0.3\}+\sigma\left(\mathrm{u}_{5}\right) \\
& =0.3+0.5=0.8
\end{aligned}
$$

IV. (4, K)-REGULAR AND TOTALLY (4, K)-REGULAR FUZZY GRAPHS

Definition 4.1: Let $G:(\sigma, \mu)$ be a fuzzy graph on $G^{*}:(V, E)$. If $d_{4}(v)=k$ for all $v \in V$, then G is said to be $(4, k)-$ regular fuzzy graph .

Example 4.2: Consider $G^{*}:(V, E)$, where $V=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ and $E=\left\{u_{1} u_{2}, u_{2} u_{3}, u_{3} u_{4}, u_{4} u_{5}, u_{5} u_{1}\right\}$. Define G $:(\sigma, \mu)$ by $\sigma\left(\mathrm{u}_{1}\right)=0.3, \sigma\left(\mathrm{u}_{2}\right)=0.4, \sigma\left(\mathrm{u}_{3}\right)=0.5, \sigma\left(\mathrm{u}_{4}\right)=0.6, \sigma\left(\mathrm{u}_{5}\right)=0.7$, and $\mu\left(\mathrm{u}_{1} \mathrm{u}_{2}\right)=0.3, \mu\left(\mathrm{u}_{2} \mathrm{u}_{3}\right)=0.4, \mu\left(\mathrm{u}_{3} \mathrm{u}_{4}\right)=0.3$, $\mu\left(u_{4} u_{5}\right)=0.6, \mu\left(u_{5} u_{1}\right)=0.3$.

Figure 5
Here, $\mathrm{d}_{4}\left(\mathrm{u}_{1}\right)=0.6, \mathrm{~d}_{4}\left(\mathrm{u}_{2}\right)=0.6, \mathrm{~d}_{4}\left(\mathrm{u}_{3}\right)=0.6, \mathrm{~d}_{4}\left(\mathrm{u}_{4}\right)=0.6, \mathrm{~d}_{4}\left(\mathrm{u}_{5}\right)=0.6$.
G is $(4,0.6)$ - regular fuzzy graphs.
Definition 4.3: If each vertex of G has the same total d_{4}-degree k, then G is said to be totally (4 , k)-regular fuzzy graph.

Example 4.4: Consider $G^{*}:(V, E)$, where $V=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ and $E=\left\{u_{1} u_{2}, u_{2} u_{3}, u_{3} u_{4}, u_{4} u_{5}, u_{5} u_{1}\right\}$. Define G $:(\sigma, \mu)$ by $\sigma\left(\mathrm{u}_{1}\right)=0.3, \sigma\left(\mathrm{u}_{2}\right)=0.3, \sigma\left(\mathrm{u}_{3}\right)=0.3, \sigma\left(\mathrm{u}_{4}\right)=0.3, \sigma\left(\mathrm{u}_{5}\right)=0.3$, and $\mu\left(\mathrm{u}_{1} \mathrm{u}_{2}\right)=0.1, \mu\left(\mathrm{u}_{2} \mathrm{u}_{3}\right)=0.1, \mu\left(\mathrm{u}_{3} \mathrm{u}_{4}\right)=0.1$, $\mu\left(u_{4} u_{5}\right)=0.1, \mu\left(u_{5} u_{1}\right)=0.1$.

Figure 6

Here, $\operatorname{td}_{4}\left(\mathrm{u}_{1}\right)=0.5, \operatorname{td}_{4}\left(\mathrm{u}_{2}\right)=0.5, \mathrm{td}_{4}\left(\mathrm{u}_{3}\right)=0.5, \operatorname{td}_{4}\left(\mathrm{u}_{4}\right)=0.5, \operatorname{td}_{4}\left(\mathrm{u}_{5}\right)=0.5$.
G is totally regular fuzzy graph.
Example 4.5: Consider $G^{*}:(V, E)$, where $V=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{7}, u_{8}, u_{9}, u_{10}\right\}$ and $E=\left\{u_{1} u_{2}, u_{2} u_{3}, u_{3} u_{4}, u_{4} u_{5}, u_{5} u_{6}\right.$, $\left.\mathrm{u}_{6} \mathrm{u}_{7}, \mathrm{u}_{7} \mathrm{u}_{8}, \mathrm{u}_{8} \mathrm{u}_{9}, \mathrm{u}_{9} \mathrm{u}_{10}, \mathrm{u}_{10} \mathrm{u}_{6}, \mathrm{u}_{1} \mathrm{u}_{7}, \mathrm{u}_{2} \mathrm{u}_{8}, \mathrm{u}_{3} \mathrm{u}_{9}, \mathrm{u}_{4} \mathrm{u}_{10}\right\}$. Define $\mathrm{G}:(\sigma, \mu)$ by $\sigma\left(\mathrm{u}_{1}\right)=0.3, \sigma\left(\mathrm{u}_{2}\right)=0.3, \sigma\left(\mathrm{u}_{3}\right)=0.3, \sigma\left(\mathrm{u}_{4}\right)=$ $0.3, \sigma\left(\mathrm{u}_{5}\right)=0.3, \sigma\left(\mathrm{u}_{6}\right)=0.3, \sigma\left(\mathrm{u}_{7}\right)=0.3, \sigma\left(\mathrm{u}_{8}\right)=0.3, \sigma\left(\mathrm{u}_{9}\right)=0.3, \sigma\left(\mathrm{u}_{10}\right)=0.3$, and $\mu\left(\mathrm{u}_{1} \mathrm{u}_{2}\right)=0.2, \mu\left(\mathrm{u}_{2} \mathrm{u}_{3}\right)=0.2, \mu\left(\mathrm{u}_{3} \mathrm{u}_{4}\right)=$ $0.2, \mu\left(\mathrm{u}_{4} \mathrm{u}_{5}\right)=0.2, \mu\left(\mathrm{u}_{5} \mathrm{u}_{6}\right)=0.2, \mu\left(\mathrm{u}_{6} \mathrm{u}_{7}\right)=0.2, \mu\left(\mathrm{u}_{7} \mathrm{u}_{8}\right)=0.2, \mu\left(\mathrm{u}_{8} \mathrm{u}_{9}\right)=0.2, \mu\left(\mathrm{u}_{9} \mathrm{u}_{10}\right)=0.2, \mu\left(\mathrm{u}_{10} \mathrm{u}_{6}\right)=0.2, \mu\left(\mathrm{u}_{1} \mathrm{u}_{7}\right)=$ $0.2, \mu\left(u_{2} u_{8}\right)=0.2, \mu\left(u_{3} u_{9}\right)=0.2, \mu\left(u_{4} u_{10}\right)=0.2, \mu\left(u_{5} u_{1}\right)=0.2$,

Here $\operatorname{td}_{4}\left(\mathrm{u}_{1}\right)=\sup \{0.2 \wedge 0.2 \wedge 0.2 \wedge 0.2,0.2 \wedge 0.2 \wedge 0.2 \wedge 0.2,0.2 \wedge 0.2 \wedge 0.2 \wedge 0.2,0.2 \wedge 0.2 \wedge 0.2 \wedge 0.2\}+\sigma\left(\mathrm{u}_{1}\right)$

$$
=\sup \{0.2,0.2,0.2,0,2\}+0.3
$$

$$
=0.5
$$

$\operatorname{td}_{4}\left(\mathrm{u}_{2}\right)=0.5, \mathrm{td}_{4}\left(\mathrm{u}_{3}\right)=0.5, \mathrm{td}_{4}\left(\mathrm{u}_{4}\right)=0.5, \operatorname{td}_{4}\left(\mathrm{u}_{5}\right)=0.5, \operatorname{td}_{4}\left(\mathrm{u}_{6}\right)=0.5, \operatorname{td}_{4}\left(\mathrm{u}_{7}\right)=0.5$,
$\operatorname{td}_{4}\left(\mathrm{u}_{8}\right)=0.5, \mathrm{td}_{4}\left(\mathrm{u}_{9}\right)=0.5, \mathrm{td}_{4}\left(\mathrm{u}_{10}\right)=0.5$.
G is totally regular graph.
Example 4.6: Non regular fuzzy graphs which is $(4, k)$ - regular.
In example 4.2 , we have G is $(4,0.6)$ regular fuzzy graph but not regular graph.
Theorem 4.7: Let $\mathrm{G}:(\sigma, \mu)$ be a fuzzy graph on $\mathrm{G}^{*}:(\mathrm{V}, \mathrm{E})$. Then σ is constant function iff the following conditions are equivalent:
(1) $\mathrm{G}:(\sigma, \mu)$ is $(4, \mathrm{k})$ - regular fuzzy graph.
(2) $\mathrm{G}:(\sigma, \mu)$ is totally $(4, \mathrm{k}+\mathrm{c})$ - regular fuzzy graph.

Proof: Suppose that σ is constant function.
Let $\sigma(u)=\mathrm{c}$, constant for all $\mathrm{u} \in \mathrm{V}$.

Assume that $\mathrm{G}:(\sigma, \mu)$ is a $(4, \mathrm{k})$ - regular fuzzy graph.
Then $d_{4}(u)=k$ for all $u \in V$.
So $t_{4} d(u)=d_{4}(u)+\sigma(u)$ for all $u \in V$.
$\Rightarrow \operatorname{td}_{4}(u)=K+c$ for all $u C V$.
Hence $\mathrm{G}:(\sigma, \mu)$ is totally $(4, \mathrm{k}+\mathrm{c})$ - regular fuzzy graph.
Thus, $(1) \Longrightarrow(2)$ is proved.
Suppose G: (σ, μ) is totally $(4, \mathrm{k}+\mathrm{c})$-regular fuzzy graph.
Then $\operatorname{td}_{4}(u)=k+c$ for all $u \in V$.
$\Rightarrow d_{4}(u)+\sigma(u)=k+c$ for all $u \in V$.
$\Rightarrow \mathrm{d}_{4}(\mathrm{u})+c=\mathrm{k}+\mathrm{c}$ for all $\mathrm{u} \in \mathrm{V}$.
$\Rightarrow d_{4}(u)=k$ for all $u \in V$.
Hence $\mathrm{G}:(\sigma, \mu)$ is a $(4, \mathrm{k})$ - regular fuzzy graph.
Thus, (2) $\Rightarrow(1)$ is proved.
Hence (1) and (2) are equivalent.
Conversely it is assume that (1) and (2) are equivalent.
Suppose that σ is not constant function.
Then $\sigma(\mathrm{u}) \neq \sigma(\mathrm{w})$, for at least one pair $\mathrm{u}, \mathrm{w} \in \mathrm{V}$. Let $\mathrm{G}:(\sigma, \mu)$ be a $(4, \mathrm{k})$ - regular fuzzy graph. Then , $\mathrm{d}_{4}(\mathrm{u})=\mathrm{d}_{4}(\mathrm{w})=\mathrm{k}$

So, $\operatorname{td}_{4}(u)=d_{4}(u)+\sigma(u)=k+\sigma(u)$ and $\operatorname{td}_{4}(w)=d_{4}(w)+\sigma(w)=k+\sigma(w)$.
Since $\sigma(\mathrm{u}) \neq \sigma(\mathrm{w})$ implies $\mathrm{K}+\sigma(\mathrm{u}) \neq K+\sigma(\mathrm{w})$
$\Rightarrow \operatorname{td}_{4}(u) \neq \operatorname{td}_{4}(\mathrm{w})$.
So, $\mathrm{G}:(\sigma, \mu)$ is not totally $(4, \mathrm{k})$ - regular fuzzy graph, Which is contradiction to our assumption.
Let $\mathrm{G}:(\sigma, \mu)$ be a totally $(4, \mathrm{k})$-regular fuzzy graph.
Then, $\operatorname{td}_{4}(u)=\operatorname{td}_{4}(w)$.
$\Rightarrow \mathrm{d}_{4}(\mathrm{u})+\sigma(\mathrm{u})=\mathrm{d}_{4}(\mathrm{w})+\sigma(\mathrm{w})$.
$\Rightarrow \mathrm{d}_{4}(\mathrm{u})-\mathrm{d}_{4}(\mathrm{w})=\sigma(\mathrm{w})-\sigma(\mathrm{u}) \neq 0$.
$\Rightarrow \mathrm{d}_{4}(\mathrm{u}) \neq \mathrm{d}_{4}(\mathrm{w})$.
So, $\mathrm{G}:(\sigma, \mu)$ is not $(4, \mathrm{k})$ - regular fuzzy graph, Which is contradiction to our assumption.
Hence σ is constant function.
Theorem 4.8: If a fuzzy graph $\mathrm{G}:(\sigma, \mu)$ is both $(4, \mathrm{k})$ - regular and totally $(4, \mathrm{k})$-regular then σ is constant function.

Proof: Let G be (4, k_{1})-regular and totally (4, k_{2})-regular fuzzy graph.
Then $d_{4}(u)=k_{1}$ and $\operatorname{td}_{4}(u)=k_{2}$ for all $u \in V$.
Now, $\operatorname{td}_{4}(u)=k_{2}$, for all $u \in V$.
$\Rightarrow d_{4}(u)+\sigma(u)=k_{2}$, for all $u \in V$.
$\Rightarrow \mathrm{k}_{1}+\sigma(\mathrm{u})=\mathrm{k}_{2}$, for all $\mathrm{u} \in \mathrm{V}$.
$\Rightarrow \sigma(\mathrm{u})=\mathrm{k}_{2}-\mathrm{k}_{1}$, for all $\mathrm{u} C \mathrm{~V}$.
Hence σ is constant function.

REFERENCES

[1] Alison Northup, A study of semi-regular graphs, Bachelor thesis, Stetson University (2002)
[2] A.Nagoor Gani and K. Radha, On Regular Fuzzy Graphs, Journal of physical sciences, 12(2008), 33-40.
[3] A.Rosenfelt, Fuzzy Graphs, In: L.A.Zadeh, K.S.Fu, M.Shimura, Eds, Fuzzy sets and their applications, Academic press(1975),77-95.
[4] N.R.Santhi Maheswari and C.Sekar, On (r,2,r(r-1))-regular fuzzy graphs International Journal of Mathematics and Soft Computing, 2(2)(2012), 25-33.
[5] S.Meena Devi and M.Andal, On (3,k)-Regular Fuzzy Graphs, International Journal of Science and Research,ISSN:2319-7064.

