On (4, k) - Regular Fuzzy Graphs

B.Shanmugaraj^{#1} G.chandrasekar^{#2}S.Meena Devi^{#3} Department of Mathematics Sri Kaliswari College, Sivakasi,

Abstract

In this paper, we define d_4 -degree and total d_4 - degree of vertex in fuzzy graphs. Further we study (4, k)-regularity and totally (4, k)- regularity of fuzzy graphs and the relation between (4,K)- regularity and totally (4, k)-regularity.

Keywords: Regular fuzzy graphs, total degree, totally regular fuzzy graph, d_4 degree of a vertex in graphs.

I. INTRODUCTION

In 1965, Lofti A.Zadeh[3] introduced the concept of a fuzzy subset of a set as a method for representing the phenomena of uncertainty in real life situation. Azriel Rosenfeld introduced fuzzy graphs in 1975[3], which is growing fast and has numerous applications in various fields. Nagoor Gani and Radha [2] introduced regular fuzzy graphs, total degree and totally regular fuzzy graphs. Alison Northup [1] studied some properties on (2, k)- regular graphs in her bachelor thesis. N.R Santhi Maheswari and C. Sekar introduced d_2 of a vertex in graphs [4] and (3, k)-regular fuzzy graphs and total d_4 -degree total d_4 - degree of vertex in fuzzy graphs and introduce (4, k) - regular fuzzy graphs, totally (4, k)-regular fuzzy graphs.

We present some known definitions and results for a ready reference to go through the work presented in this paper.

II. PRELIMINARIES

Definition 2.1: For a given graph G, the d_4 -degree of a vertex v in G, denoted by $d_4(v)$ means number of vertices at a distance two away from v.

Definition 2.2: A graph G is said to be (4, k)- regular $(d_4$ -regular) if $d_4(v)=k$, for all v in G.

We observe that (4, k)- regular and d₄-regular graphs are same.

Definition 2.3: A fuzzy graph denoted by G:(σ, μ) on graph G^{*}:(V, E) is a pair of functions(σ, μ) where σ : V \rightarrow [0,1] is a fuzzy subset of a non empty set V and μ : V \times V \rightarrow [0,1] is a symmetric fuzzy relation on σ such that for all u, v in V the relation μ (u, v)= μ (uv) $\leq \sigma$ (u) A σ (v) is satisfied.

A fuzzy graph G is complete if $\mu(u, v) = \mu(uv) = \sigma(u) \Lambda \sigma(v)$ for all u, v $\in V$, where uv denotes the edge between u and v.

Definition 2.4: Let G: (σ, μ) be a fuzzy graph. The degree of a vertex u is $d_G(u) = \sum_{u \neq v} \mu(uv)$ for $uv \in E$ and $\mu(uv) = 0$, for uv not in E; this is equivalent to $d_G(u) = \sum_{u \neq v} \mu(uv)$.

Definition 2.5: The strength of connectedness between two vertices u and v is $\mu \infty (u,v) = \sup\{\mu^{K}(u, v) / k = 1,2,3,...\}$ where $\mu^{K}(u, v) = \sup\{\mu(u,u_{1}) \Lambda \mu(u_{1}u_{2}) \Lambda ... \Lambda \mu(u_{k-1} v) / u,u_{1},u_{2},..., u_{k-1}, v\}$ is a path connecting u and v of length k}.

Definition 2.6: Let G: (σ, μ) be a fuzzy graph on G^{*}:(V,E). If d(v)= k for all v $\in V$, then G is said to be regular fuzzy graph of degree k.

If each vertex of G has not the same degree k, then G is said to be irregular fuzzy graph.

Definition 2.7: Let G: (σ, μ) be a fuzzy graph on G^{*}:(V, E). The total degree of a vertex u is defined as $td(u) = \sum \mu(u, v) + \sigma(u) = d(u) + \sigma(u)$, $uv \in E$.

If each vertex of G has the same total degree k, then G is said to be totally regular fuzzy graph of degree K or k-totally regular fuzzy graph.

If each vertex of G has not the same total degree k, then G is said to be totally irregular fuzzy graph.

Definition 2.8: Snark graph is a graph in which every vertex has three neighbours.

Example 2.9:

III. d₄-DEGREE AND TOTAL d₄-DEGREE OF A VERTEX IN FUZZY GRAPHS

Definition 3.1: Let G: (σ, μ) be a fuzzy graph .The d₂-degree of a vertex u in G is d₄(u) = $\sum \mu^4(uv)$, where $\sum \mu^4(uv)$ = sup{ $\mu(uu_1) \land \mu(u_1u_2) \land \mu(u_2u_3) \land \mu(u_3v)$: u, u₁, u₂, u₃, v is the shortest path connecting u and v of length 4}. Also $\mu(uv) = 0$, for uv not in E.

The minimum d₄-degree of G is $\delta_4(G) = \Lambda \{ d_4(v) : v \in V \}$.

The maximum d_4 -degree of G is $\Delta_4(G) = \bigvee \{ d_4(v) : v \in V \}$.

Example 3.2: Consider G^* : (V, E), where V={ u_1, u_2, u_3, u_4, u_5 } and E={ $u_1u_2, u_2, u_3, u_3u_4, u_4, u_5, u_5, u_1^{-}$ }. Define G: (σ, μ) by $\sigma(u_1) = 0.3$, $\sigma(u_2) = 0.4$, $\sigma(u_3) = 0.5$, $\sigma(u_4) = 0.6$, $\sigma(u_5) = 0.7$, and $\mu(u_1u_2) = 0.3$, $\mu(u_2u_3) = 0.4$, $\mu(u_3u_4) = 0.3$, $\mu(u_4u_5) = 0.2$, $\mu(u_5u_1) = 0.1$.

Here, $d_4(u_1) = \{ 0.3 \land 0.4 \land 0.3 \land 0.2 \} + \{ 0.1 \land 0.2 \land 0.3 \land 0.4 \}$ = 0.2 + 0.1 = 0.3. $d_4(u_2) = \{ 0.4 \land 0.3 \land 0.2 \land 0.1 \} + \{ 0.3 \land 0.1 \land 0.2 \land 0.3 \}$ = 0.1 + 0.1 = 0.2. $d_4(u_3) = \{ 0.3 \land 0.2 \land 0.1 \land 0.3 \} + \{ 0.4 \land 0.3 \land 0.1 \land 0.2 \}$ = 0.1 + 0.1 = 0.2. $d_4(u_4) = \{ 0.2 \land 0.1 \land 0.3 \land 0.4 \} + \{ 0.3 \land 0.4 \land 0.3 \land 0.1 \}$ = 0.1 + 0.1 = 0.2. $d_4(u_5) = \{ 0.1 \land 0.4 \land 0.4 \land 0.3 \} + \{ 0.2 \land 0.3 \land 0.4 \land 0.3 \}$

= 0.1 + 0.2 = 0.3.

Example 3.3: Consider G^* : (V, E), where V={ $u_1, u_2, u_3, u_4, u_5, u_6$ } and E={ $u_1u_2, u_2, u_3, u_3u_4, u_4, u_5, u_5, u_6, u_6, u_1^{-}$ }. Define G :(σ, μ) by $\sigma(u_1)=0.7$, $\sigma(u_2)=0.8$, $\sigma(u_3)=0.9$, $\sigma(u_4)=0.8$, $\sigma(u_5)=0.7$, $\sigma(u_6)=0.6$ and $\mu(u_1u_2)=0.5$, $\mu(u_2u_3)=0.7$, $\mu(u_3u_4)=0.6$, $\mu(u_4u_5)=0.4$, $\mu(u_5u_6)=0.3$, $\mu(u_6u_1)=0.2$.

 $d_4(u_1) = \sup\{ \ 0.5 \ \Lambda \ 0.7 \ \Lambda \ 0.6 \ \Lambda \ 0.4, \ 0.2 \ \Lambda \ 0.3 \ \Lambda \ 0.4 \ \Lambda \ 0.6 \}$

 $= \sup \{0.4, 0.2\} = 0.4$

Here, $d_4(u_2) = \sup\{ 0.7 \land 0.6 \land 0.4 \land 0.3, 0.5 \land 0.2 \land 0.3 \land 0.4 \}$

 $= \sup \{0.3, 0.2\} = 0.3$ $d_{4}(u_{3}) = \sup \{0.6 \land 0.4 \land 0.3 \land 0.2, 0.7 \land 0.5 \land 0.2 \land 0.3\}$ $= \sup \{0.2, 0.2\} = 0.2$ $d_{4}(u_{4}) = \sup \{0.4 \land 0.3 \land 0.2 \land 0.5, 0.6 \land 0.7 \land 0.5 \land 0.2\}$ $= \sup \{0.2, 0.2\} = 0.2$ $d_{4}(u_{5}) = \sup \{0.3 \land 0.2 \land 0.5 \land 0.7, 0.4 \land 0.6 \land 0.7 \land 0.5\}$ $= \sup \{0.2, 0.4\} = 0.4$ $d_{4}(u_{6}) = \sup \{0.2 \land 0.5 \land 0.7 \land 0.6, 0.3 \land 0.4 \land 0.6 \land 0.7\}$ $= \sup \{0.2, 0.3\} = 0.3$

Definition 3.4: Let G:(σ , μ) be a fuzzy graph on G^{*}:(V, E). The total d₄-degree of a vertex u \in V is defined as $td_4(u) = \sum \mu^4(uv) + \sigma(u) = d_4(u) + \sigma(u)$

The minimum td₄-degree of G is $t\delta_4(G) = \Lambda \{ d_4(v) : v \in V \}$.

The maximum td₄-degree of G is $t\Delta_4(G) = V\{d_4(v): v \in V\}$.

Example 3.5: Consider G^{*}: (V, E), where V={ u_1, u_2, u_3, u_4, u_5 } and E={ $u_1u_2, u_2, u_3, u_3u_4, u_4, u_5, u_5, u_1$ }. Define G :(σ, μ) by $\sigma(u_1) = 0.5$, $\sigma(u_2) = 0.6$, $\sigma(u_3) = 0.5$, $\sigma(u_4) = 0.6$, $\sigma(u_5) = 0.5$, and $\mu(u_1u_2) = 0.3$, $\mu(u_2u_3) = 0.4$, $\mu(u_3u_4) = 0.3$, $\mu(u_4u_5) = 0.2$, $\mu(u_5u_1) = 0.1$.

Figure 4

Here, $td_4(u_1) = \{ 0.3 \land 0.4 \land 0.3 \land 0.2 \} + \{ 0.1 \land 0.2 \land 0.3 \land 0.4 \} + \sigma(u_1)$

=0.3+0.5=0.8

 $td_4(u_2) = \{ \ 0.4 \ \Lambda \ 0.3 \ \Lambda \ 0.2 \ \Lambda \ 0.1 \} + \{ \ 0.3 \ \Lambda \ 0.1 \ \Lambda \ 0.2 \ \Lambda \ 0.3 \} + \sigma(u_2)$

=0.2+0.6=0.8

 $td_4(u_3) = \{ 0.3 \land 0.2 \land 0.1 \land 0.3 \} + \{ 0.4 \land 0.3 \land 0.1 \land 0.2 \} + \sigma(u_3)$

=0.2+0.5=0.7

 $td_4(u_4) = \{ 0.2 \ \Lambda \ 0.1 \ \Lambda \ 0.3 \ \Lambda \ 0.4 \} + \{ 0.3 \ \Lambda \ 0.4 \ \Lambda \ 0.3 \ \Lambda \ 0.1 \} + \sigma(u_4)$

=0.2+0.6=0.8

 $td_4(u_5) = \{ 0.1 \ \Lambda \ 0.4 \ \Lambda \ 0.4 \ \Lambda \ 0.3 \} + \{ 0.2 \ \Lambda \ 0.3 \ \Lambda \ 0.4 \ \Lambda \ 0.3 \} + \sigma(u_5)$

=0.3+0.5=0.8.

IV. (4, K)-REGULAR AND TOTALLY (4, K)-REGULAR FUZZY GRAPHS

Definition 4.1: Let G: (σ, μ) be a fuzzy graph on G^{*}:(V, E). If d₄(v)= k for all v \in V, then G is said to be (4, k)-regular fuzzy graph.

Example 4.2: Consider G^{*}: (V, E), where V={ u_1, u_2, u_3, u_4, u_5 } and E={ $u_1u_2, u_2, u_3, u_3u_4, u_4, u_5, u_5, u_1^{-}$ }. Define G :(σ, μ) by $\sigma(u_1) = 0.3$, $\sigma(u_2) = 0.4$, $\sigma(u_3) = 0.5$, $\sigma(u_4) = 0.6$, $\sigma(u_5) = 0.7$, and $\mu(u_1u_2) = 0.3$, $\mu(u_2u_3) = 0.4$, $\mu(u_3u_4) = 0.3$, $\mu(u_4u_5) = 0.6$, $\mu(u_5u_1) = 0.3$.

Here, $d_4(u_1)=0.6$, $d_4(u_2)=0.6$, $d_4(u_3)=0.6$, $d_4(u_4)=0.6$, $d_4(u_5)=0.6$.

G is (4, 0.6) - regular fuzzy graphs.

Definition 4.3: If each vertex of G has the same total d_4 -degree k, then G is said to be totally (4, k)-regular fuzzy graph.

Example 4.4: Consider G^* : (V, E), where V={ u_1, u_2, u_3, u_4, u_5 } and E={ $u_1u_2, u_2, u_3, u_3u_4, u_4, u_5, u_5, u_1^{\circ}$ }. Define G :(σ, μ) by $\sigma(u_1) = 0.3$, $\sigma(u_2) = 0.3$, $\sigma(u_3) = 0.3$, $\sigma(u_4) = 0.3$, $\sigma(u_5) = 0.3$, and $\mu(u_1u_2) = 0.1$, $\mu(u_2u_3) = 0.1$, $\mu(u_3u_4) = 0.1$, $\mu(u_4u_5) = 0.1$, $\mu(u_5u_1) = 0.1$.

Figure 6

Here, $td_4(u_1)=0.5$, $td_4(u_2)=0.5$, $td_4(u_3)=0.5$, $td_4(u_4)=0.5$, $td_4(u_5)=0.5$.

G is totally regular fuzzy graph.

Example 4.5: Consider G^* : (V, E), where V={ $u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8, u_9, u_{10}$ } and E={ $u_1u_2, u_2u_3, u_3u_4, u_4u_5, u_5u_6, u_6u_7, u_7u_8, u_8u_9, u_9u_{10}, u_{10}u_6, u_{10}u_7, u_2u_8, u_3u_9, u_4u_{10}$ }. Define G :(σ, μ) by $\sigma(u_1) = 0.3$, $\sigma(u_2) = 0.3$, $\sigma(u_3) = 0.3$, $\sigma(u_4) = 0.3$, $\sigma(u_5) = 0.3$, $\sigma(u_6) = 0.3$, $\sigma(u_7) = 0.3$, $\sigma(u_8) = 0.3$, $\sigma(u_9) = 0.3$, $\sigma(u_{10}) = 0.3$, and $\mu(u_1u_2) = 0.2$, $\mu(u_2u_3) = 0.2$, $\mu(u_3u_4) = 0.2$, $\mu(u_4u_5) = 0.2$, $\mu(u_5u_6) = 0.2$, $\mu(u_6u_7) = 0.2$, $\mu(u_7u_8) = 0.2$, $\mu(u_8u_9) = 0.2$, $\mu(u_9u_{10}) = 0.2$, $\mu(u_1u_6) = 0.2$, $\mu(u_1u_7) = 0.2$, $\mu(u_2u_8) = 0.2$, $\mu(u_3u_9) = 0.2$, $\mu(u_5u_9) = 0.2$,

Here $td_4(u_1) = sup\{0.2 \land 0.2 \land 0$

 $= \sup\{0.2, 0.2, 0.2, 0.2\} + 0.3$

= 0.5

 $td_4(u_2) = 0.5, \, td_4(u_3) = 0.5, \, td_4(u_4) = 0.5, \, td_4(u_5) = 0.5, \, td_4(u_6) = 0.5, \, td_4(u_7) = 0.5, \, td_5(u_7) = 0.5, \, td_7(u_7) =$

 $td_4(u_8) = 0.5, td_4(u_9) = 0.5, td_4(u_{10}) = 0.5.$

G is totally regular graph.

Example 4.6: Non regular fuzzy graphs which is (4, k) - regular.

In example 4.2, we have G is (4, 0.6) regular fuzzy graph but not regular graph.

Theorem 4.7: Let G: (σ, μ) be a fuzzy graph on G^{*}: (V,E). Then σ is constant function iff the following conditions are equivalent:

(1) G: (σ, μ) is (4, k)- regular fuzzy graph.

(2) G: (σ , μ) is totally (4, k+c)- regular fuzzy graph.

Proof: Suppose that σ is constant function.

Let $\sigma(u)$ =c, constant for all $u \in V$.

Assume that G: (σ, μ) is a (4, k)- regular fuzzy graph.

Then $d_4(u) = k$ for all $u \in V$.

So $t_4d(u) = d_4(u) + \sigma(u)$ for all $u \in V$.

 \Rightarrow td₄ (u)= K+c for all u \in V.

Hence G: (σ, μ) is totally (4, k+c)- regular fuzzy graph.

Thus, $(1) \Longrightarrow (2)$ is proved.

Suppose G: (σ, μ) is totally (4, k+c)-regular fuzzy graph.

Then $td_4(u) = k + c$ for all $u \in V$.

 \Rightarrow d₄(u)+ σ (u)=k+c for all u \in V.

 \Rightarrow d₄(u)+ *c* =k+c for all u \in V.

 \Rightarrow d₄(u)=k for all u \in V.

Hence G: (σ, μ) is a (4, k)- regular fuzzy graph.

Thus, $(2) \Longrightarrow (1)$ is proved.

Hence (1) and (2) are equivalent.

Conversely it is assume that (1) and (2) are equivalent.

Suppose that σ is not constant function.

Then $\sigma(u) \neq \sigma(w)$, for at least one pair u, w $\in V$. Let G: (σ, μ) be a (4,k)- regular fuzzy graph. Then , $d_4(u) = d_4(w) = k$

So, $td_4(u) = d_4(u) + \sigma(u) = k + \sigma(u)$ and $td_4(w) = d_4(w) + \sigma(w) = k + \sigma(w)$.

Since $\sigma(\mathbf{u}) \neq \sigma(\mathbf{w})$ implies $\mathbf{K} + \sigma(\mathbf{u}) \neq \mathbf{K} + \sigma(\mathbf{w})$

 \Rightarrow td₄(u) \neq td₄(w).

So, G: (σ, μ) is not totally (4, k)- regular fuzzy graph, Which is contradiction to our assumption.

Let G: (σ, μ) be a totally (4, k)-regular fuzzy graph.

Then, $td_4(u) = td_4(w)$.

 \Rightarrow d₄(u)+ σ (u)= d₄(w)+ σ (w).

 \Rightarrow d₄(u)- d₄(w)= σ (w)- σ (u) \neq 0.

 \Rightarrow d₄(u) \neq d₄(w).

So, G: (σ, μ) is not (4, k)- regular fuzzy graph, Which is contradiction to our assumption.

Hence σ is constant function.

Theorem 4.8: If a fuzzy graph G: (σ, μ) is both (4,k)- regular and totally (4, k)-regular then σ is constant function.

Proof: Let G be (4, k₁)-regular and totally (4, k₂)-regular fuzzy graph.

Then $d_4(u) = k_1$ and $td_4(u) = k_2$ for all $u \in V$.

Now, $td_4(u)=k_2$, for all $u \in V$.

 \Rightarrow d₄(u)+ σ (u)= k₂, for all u \in V.

 \Rightarrow k₁+ σ (u)= k₂, for all u \in V.

 $\implies \sigma(\mathbf{u}) = \mathbf{k}_2 - \mathbf{k}_1$, for all uCV.

Hence σ is constant function.

REFERENCES

- [1] Alison Northup, A study of semi-regular graphs, Bachelor thesis, Stetson University (2002)
- [2] A.Nagoor Gani and K. Radha, On Regular Fuzzy Graphs, Journal of physical sciences, 12(2008), 33-40.
- [3] A.Rosenfelt, Fuzzy Graphs, In: L.A.Zadeh, K.S.Fu, M.Shimura, Eds, Fuzzy sets and their applications, Academic press(1975),77-95.
- [4] N.R.Santhi Maheswari and C.Sekar, On (r,2,r(r-1))-regular fuzzy graphs International Journal of Mathematics and Soft Computing, 2(2)(2012), 25-33.
- [5] S.Meena Devi and M.Andal, On (3,k)-Regular Fuzzy Graphs, International Journal of Science and Research, ISSN:2319-7064.