Distance Transformation

G.Suresh Singh^{#1} Sunitha Grace Zacharia^{#2}

^{#1} Professor, Department of Mathematics, University of Kerala.
Department of Mathematics, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, India
^{#2} Lecturer, Department of Mathematics, Catholicate College, Pathanamthitta, Kerala, India

Abstract

In this paper, we define the transformation of a graph Gbased on distance between the non-adjacent vertices, motivated by the methodology assess the biological coherence of a gene network.

Keywords- Distance Transformation, Identity Transformation, Linear Transformation

I.INTRODUCTION

The first transformation was defined by Alexander Kelmans, hence known as Kelmans transformation [2]. In [1], Francisco Gomez-Vela, coherence is calculated by converting data into distance matrices. If the minimum distance between two genes is greater than γ , then no path between the genes will be assumed. In this paper, we define a transformation related to shortest path and called T_{γ} transformation. T_{γ} transformation is defined as, there exist a mapping $T_{\gamma}: G \to G^*$ which satisfies following conditions;

 $i) | V(G) | = |V(G^*)|$

ii) u^* and v^* are adjacent in G^* if either u and v are adjacent in G or $d(u, v) = \gamma$. We study properties of T_{γ} transformation of certain graphs. For basic definitions of Graph Theory we use [3].

II. ON T_{γ} TRANSFORMATION

A. Definition 1.1.

Let G be a (p,q) graph. A graph G^* is said to be T_{γ} transformation of G, if there exist a mapping $T_{\gamma}: G \to G^*$ such that

i) $|V(G)| = |V(G^*)|$

ii) Edge set of G^* consists of edges of G together with (u^*, v^*) , where u and v are not adjacent in G, and $d(u, v) = \gamma$, for all $u, v \in V(G)$.

Example.

Consider the graph G given in the figure 1. In G, v_1 and v_4 are not adjacent, but $d(v_1, v_4) = 3$. In T_3 transformation of G, v_1^* and v_4^* are adjacent. Like that v_2 and v_5 are not adjacent in G, but $d(v_2, v_5) = 3$, in T_3 transformation v_2^* and v_5^* are adjacent and so on.

If $T_{\gamma}(G) = G$, then the transformation is said to be an identity transformation.

C. Definition 1.3.

If $T_{\gamma}(G) = K_p$, then the transformation is said to be complete.

D. Definition 1.4.

If $T_{\gamma}(G) \cong G + e$, where $\notin E(G)$ then the transformation is said to be linear.

E. Theorem 1.5.

 $T_{\gamma}(C_p) \cong C_p + p$ chords, if $\gamma = 2, p \ge 5$. Proof. Let C_p be a cycle with p vertices and $\gamma = 2$

Let v_1, v_2, \dots, v_p be the vertices of a cycle C_p

1.Case 1. p is even:

Let (v_i, v_j) be any arbitrary vertices of C_p . If $d(v_i, v_j) = 2$, then (v_i^*, v_j^*) is an edge in $T_2(C_p)$. That is (v_i^*, v_j^*) is adjacent in $T_2(C_p)$, if $|i - j| \equiv 0 \mod 2$. For each vertex v_i^* there exist exactly two vertices v_j^* and v_k^* where $d(v_i^*, v_j^*) = d(v_i^*, v_k^*) = 2$. Since v_i is a vertex in cycle, $d(v_i) = 2$. Therefore $d(v_i^*) = d(v_i) + 2 = 4$, which implies T_2 transformation of cycle is 4-regular, if p is even. Total number of edges added in $T_2(C_p)$ is p. Therefore in $T_2(C_p)$, p is even, we can add p edges which are not in C_p .

2. Case 2. p is odd:

 (v_i^*, v_j^*) is adjacent in T_2 transformation, if $|i - j| \equiv 0 \mod 2$ and $|i - j| \equiv 1 \mod 2$. For each vertex v_i^* there exist exactly two vertices at distance 2. Therefore $d(v_i^*) = d(v_i) + 2 = 4$, which implies T_2 transformation of cycle is 4 - regular, if p is odd. Total number of edges added is $\frac{p+1}{2} + \frac{p-1}{2} = p$. Therefore in $T_2(C_p)$, we can add p edges which are not in C_p . Thus T_2 transformation of C_p is a 4-regular graph and $T_2(C_p) = C_p + p$ chords, if $p \ge 5$.

F. Observation 1.6. 1. T₂ (C₄) ≅ K₄.
2. T₂(C₄) ≅ C₄ + 2 chords.

3. T₂(G) \cong G⁽²⁾

G. Theorem 1.7.

Let C_p be a cycle with p vertices. Then

i) $T_{\frac{p}{2}}(C_p) \cong C_p + \frac{p}{2}$ chords, p is even. *ii*) $T_{\frac{p-1}{2}}(C_p) \cong C_p + p$ chords, p is odd.

Proof. Let v_1, v_2, \ldots, v_p be the vertices of a C_p .

i) $\gamma = \frac{p}{2}$, *p* is even.

For each vertex v_i in C_p , there is exactly one vertex is at a distance $\frac{p}{2}$. That is $d(v_1, v_{\frac{p}{2}+1}) = \frac{p}{2}$, $d(v_2, v_{\frac{p}{2}+2}) = \frac{p}{2}$ etc. In general, (v_i^*, v_j^*) is adjacent in $T_{\frac{p}{2}}(C_p)$, if $|i - j| \equiv 0 \mod \frac{p}{2}$. Therefore in $T_{\frac{p}{2}}(C_p)$ each vertex is adjacent with exactly one vertex and $d(v_i^*) = 2 + 1 = 3$. Total number of edgesadded is $\frac{p}{2}$. Therefore $T_{\frac{p}{2}}(C_p)$ is 3-regular and $T_{\frac{p}{2}}(C_p) \cong C_p + \frac{p}{2}$ chords, when p is even.

ii)
$$\gamma = \frac{p-1}{2}$$
, *p* is odd.

In $T_{\frac{p-1}{2}}$ transformation of $C_p(v_i^*, v_j^*)$ is adjacent if $|i - j| \equiv 0 \mod \frac{p+1}{2}$ and $|i - j| \equiv 0 \mod \frac{p-1}{2}$. That is each vertex v_i^* is adjacent with 2 vertices in $T_{\frac{p-1}{2}}(C_p)$. Therefore degree of each vertex $v_i^* = 2 + 2 = 4$. Total number of edges added is p. Therefore $T_{\frac{p-1}{2}}(C_p)$ is 4-regular and $T_{\frac{p-1}{2}}(C_p) \cong C_p + p$ chords, where p is odd. Example. (*p* is even) Consider the graph C_8 as shown in the figure 40. $d(v_1, v_5) = d(v_2, v_6) = d(v_3, v_7) = d(v_4, v_8)4$. In $T_4(C_8)$, (v_1^*, v_5^*) , (v_2^*, v_6^*) , (v_3^*, v_7^*) , (v_4^*, v_8^*) are edges. Each vertex in $T_4(C_8)$ has degree 3. Therefore $T_4(C_8)$ is 3-regular and $T_4(G) = G + 4$ chords.

If $\Delta(G) = p - 1$, then $T_2(G) \cong K_p$.

Proof. Let v_1, v_2, \dots, v_p be the vertices of a graph *G*. If $\Delta(G) = p - 1$, there exists at least one vertex has degree p - 1 and hence diameter of G = 2. It follows that the distance between any two non-adjacent vertices is 2. In T_2 transformation, (u^*, v^*) is an edge where $(u, v) \notin E(G)$. It is true for all u and v in *G*. Therefore $T_2(G) \cong K_p$.

I.Theorem 1.9.

Let G be a (p,q) graph with diameter d.

Then $T_2(G) \cup T_3(G) \dots \cup T_d(G) \cong K_p$

Proof. Let *G* be a (p,q) graph with diameter *d*, which implies max d(u,v) = d. Let v_i and v_j be any two arbitrary vertices in *G*, where $d(v_i, v_j) = 2$. In $T_2(G)$, v_i^* and v_j^* are adjacent. Similarly, for $T_3(G)$, all v_i^* , and v_j^* are adjacent if $d(v_i, v_j) = 3$ etc., in $T_d(G)$, all (v_i^*, v_j^*) are adjacent if $d(v_i, v_j) = d$. Therefore, in $T_2(G) \cup T_3(G) \dots \cup T_d(G)$, every pair of vertices are adjacent, and so $T_2(G) \cup T_3(G) \dots \cup T_d(G) \cong K_p$.

I. Theorem 1.10.

Let P_n be a path with *n* vertices. The following holds.

- *i*) γ transformation of a path is linear, if $\gamma = n 1$.
- *ii*) $T_{\gamma}(P_n) = P_n + (n-2)$ chords, if $\gamma = 2$.

Proof. *i*) Let P_n be a path with vertices v_1, v_2, \ldots, v_n . Consider the vertex v_1 , clearly $d(v_1, v_n) = n - 1$. There are no other vertices v_i, v_j in P_n having $d(v_i, v_j) = n - 1$. That is $T_{n-1}(P_n) = P_n + (v_1^*, v_n^*)$. Therefore $T_{n-1}(P_n) = P_n + 1$ chord, i.e., $T_{\gamma}(P_n)$ is linear, when $\gamma = n - 1$.

ii) Consider
$$T_{\gamma}(P_n)$$
 for
 $\gamma = 2.\text{In}P_n, d(v_1, v_3) = d(v_2, v_4) = d(v_3, v_5) = d(v_4, v_6)...d(v_{n-3}, v_{n-1}) = d(v_{n-2}, v_n) = 2$. That
is $d(v_i, v_j) = 2$, if $|i - j| \equiv 0 \mod 2$. Therefore $n - 2$ pair of non-adjacent vertices have distance 2 in P_n .
Therefore $T_{\gamma}(P_n) = P_n + n - 2$ chords, for $\gamma = 2$.

III. CONCLUSION

In this paper we studied the transformation of certain graphs. $InT_{\gamma}(G)$ the distance between two non-adjacent vertices is less than γ . Using the properties of $T_{\gamma}(G)$, we can study the gene network coherences.

REFERENCES

- [1] Francisco Gomez Vela, Using Graph Theory to analyse gene network coherence, EMBnet. Journal 18.B.
- [2] Peter Csikvari, Applications of the Kelmans Transformation extremality of threshold graph, Paper Peter Csikvari, The Electronic journal of Combinatorics, 18(2011), p 182
- [3] Suresh Singh G, Graph Theory, PHI Learning Private Limited, 2010.