Distance Transformation

G.Suresh Singh ${ }^{\# 1}$ Sunitha Grace Zacharia ${ }^{\# 2}$
${ }^{\text {\#l }}$ Professor, Department of Mathematics, University of Kerala.
Department of Mathematics, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, India
\#2 Lecturer, Department of Mathematics,Catholicate College, Pathanamthitta, Kerala, India

Abstract

In this paper, we define the transformation of a graph Gbased on distance between the non-adjacent vertices, motivated by the methodology asses the biological coherence of a gene network.

Keywords- Distance Transformation, Identity Transformation, Linear Transformation

I.INTRODUCTION

The first transformation was defined by Alexander Kelmans, hence known as Kelmans transformation [2]. In [1], Francisco Gomez-Vela, coherence is calculated by converting data into distance matrices. If the minimum distance between two genes is greater than γ, then no path between the genes will be assumed. In this paper, we define a transformation related to shortest path and called T_{γ} transformation. T_{γ} transformation is defined as, there exist a mapping $T_{\gamma}: G \rightarrow G^{*}$ which satisfies following conditions;

$$
\text { i) }|V(G)|=\left|V\left(G^{*}\right)\right|
$$

ii) u^{*} and v^{*} are adjacent in G^{*} if either u and v are adjacent in G or $d(u, v)=\gamma$. We study properties of T_{γ} transformation of certain graphs. For basic definitions of Graph Theory we use [3].

II. ON T_{γ} TRANSFORMATION

A. Definition 1.1.

Let G be a (p, q) graph. A graph G^{*} is said to be T_{γ} transformation of G, if there exist a mapping $T_{\gamma}: G \rightarrow$ G^{*} such that
i) $|V(G)|=\left|V\left(G^{*}\right)\right|$
ii) Edge set of G^{*} consists of edges of G together with $\left(u^{*}, v^{*}\right)$, where u and v are not adjacent in G, and $d(u, v)=\gamma$, for all $u, v \in V(G)$.

Example.

Figure. 1

Consider the graph G given in the figure 1. In G, v_{1} and v_{4} are not adjacent, but $d\left(v_{1}, v_{4}\right)=3$. In T_{3} transformation of $G, v_{1}{ }^{*}$ and $v_{4}{ }^{*}$ are adjacent. Like that v_{2} and v_{5} are not adjacent in G, but $d\left(v_{2}, v_{5}\right)=3$, in T_{3} transformation $v_{2}{ }^{*}$ and $v_{5}{ }^{*}$ are adjacent and so on.
B. Definition 1.2.

If $T_{\gamma}(G)=G$, then the transformation is said to be an identity transformation.
C. Definition 1.3.

If $T_{\gamma}(G)=K_{p}$, then the transformation is said to be complete.
D. Definitionl.4.

If $T_{\gamma}(G) \cong G+e$, wheree $\notin E(G)$ then the transformation is said to be linear.
E. Theorem 1.5.
$T_{\gamma}\left(C_{p}\right) \cong C_{p}+p$ chords, if $\gamma=2, p \geq 5$.
Proof. Let C_{p} be a cycle with p vertices and $\gamma=2$
Let $v_{1}, v_{2}, \ldots v_{p}$ be the vertices of a cycle C_{p}

1.Case 1. p is even:

Let $\left(v_{i}, v_{j}\right)$ be any arbitrary vertices of C_{p}. If $d\left(v_{i}, v_{j}\right)=2$, then $\left(v_{i}{ }^{*}, v_{j}{ }^{*}\right)$ is an edge in $T_{2}\left(C_{p}\right)$.That is $\left(v_{i}{ }^{*}, v_{j}{ }^{*}\right)$ is adjacent in $T_{2}\left(C_{p}\right)$, if $|i-j| \equiv 0 \bmod 2$. For each vertex $v_{i}{ }^{*}$ there exist exactly two vertices $v_{j}{ }^{*}$ and $v_{k}{ }^{*}$ where $d\left(v_{i}{ }^{*}, v_{j}{ }^{*}\right)=d\left(v_{i}{ }^{*}, v_{k}{ }^{*}\right)=2$. Since v_{i} is a vertex in cycle, $d\left(v_{i}\right)=2$. Therefore $d\left(v_{i}{ }^{*}\right)=d\left(v_{i}\right)+2=4$, which implies T_{2} transformation of cycle is 4-regular, if p is even. Total number of edges added in $T_{2}\left(C_{p}\right)$ is p. Therefore in $T_{2}\left(C_{p}\right), p$ is even, we can add p edges which are not in C_{p}.
2. Case 2. p is odd:
$\left(v_{i}{ }^{*}, v_{j}{ }^{*}\right)$ is adjacent in T_{2} transformation, if $|i-j| \equiv 0 \bmod 2$ and $|i-j| \equiv 1 \bmod 2$. For each vertex $v_{i}{ }^{*}$ there exist exactly two vertices at distance 2 . Therefore $d\left(v_{i}^{*}\right)=d\left(v_{i}\right)+2=4$, which implies T_{2} transformation of cycle is 4 - regular, if p is odd. Total number of edges added is $\frac{p+1}{2}+\frac{p-1}{2}=p$.Therefore in $T_{2}\left(C_{p}\right)$, we can add p edges which are not in C_{p}. Thus T_{2} transformation of C_{p} is a 4-regular graph and $T_{2}\left(C_{p}\right)=C_{p}+p$ chords, if $p \geq 5$.
F. Observation 1.6.

1. $\mathrm{T}_{2}\left(C_{4}\right) \cong K_{4}$.
2. $T_{2}\left(C_{4}\right) \cong C_{4}+2$ chords.
3. $\mathrm{T}_{2}(G) \cong G^{(2)}$

G. Theorem 1.7.

Let C_{p} be a cycle with p vertices. Then
i) $T_{\frac{p}{2}}\left(C_{p}\right) \cong C_{p}+\frac{p}{2}$ chords, p is even.
ii) $T_{\frac{p-1}{2}}\left(C_{p}\right) \cong C_{p}+p$ chords, p is odd.

Proof. Let $v_{1}, v_{2}, \ldots \ldots v_{p}$ be the vertices of a C_{p}.
i) $\gamma=\frac{p}{2}, p$ is even.

For each vertex v_{i} in C_{p}, there is exactly one vertex is at a distance $\frac{p}{2}$. That is $d\left(v_{1}, v_{\frac{p}{2}+1}\right)=\frac{p}{2}$, $d\left(v_{2}, v_{\frac{p}{2}+2}\right)=\frac{p}{2}$ etc. In general, $\left(v_{i}{ }^{*}, v_{j}{ }^{*}\right)$ is adjacent in $T_{\frac{p}{2}}\left(C_{p}\right)$, if $|i-j| \equiv 0 \bmod \frac{p}{2}$. Therefore in $T_{\frac{p}{2}}\left(C_{p}\right)$ each vertex is adjacent with exactly one vertex and $d\left(v_{i}{ }^{*}\right)=2+1=3$. Total number of edgesadded is $\frac{p}{2}$. Therefore $T_{\frac{p}{2}}\left(C_{p}\right)$ is 3-regular and $T_{\frac{p}{2}}\left(C_{p}\right) \cong C_{p}+\frac{p}{2}$ chords, when p is even.
ii) $\gamma=\frac{p-1}{2}, p$ is odd.

In $T_{\frac{p-1}{2}}$ transformation of $C_{p}\left(v_{i}^{*}, v_{j}^{*}\right)$ is adjacent if $|i-j| \equiv 0 \bmod \frac{p+1}{2}$ and $|i-j| \equiv 0 \bmod \frac{p-1}{2}$. That is each vertex $v_{i}{ }^{*}$ isadjacent with 2 vertices in $\frac{T_{\frac{p-1}{2}}}{}\left(C_{p}\right)$.Therefore degree of each vertex $v_{i}{ }^{*}=$ $2+2=4$. Total number of edges added is p. Therefore $T_{\frac{p-1}{2}}\left(C_{p}\right)$ is 4-regular and $T_{\frac{p-1}{2}}\left(C_{p}\right) \cong C_{p}+$ p chords, where p is odd.

Example. (p is even) Consider the graph C_{8} as shown in the figure 40. $d\left(v_{1}, v_{5}\right)=d\left(v_{2}, v_{6}\right)=d\left(v_{3}, v_{7}\right)=$ $d\left(v_{4}, v_{8}\right) 4$. In $\mathrm{T}_{4}\left(C_{8}\right),\left(v_{1}{ }^{*}, v_{5}{ }^{*}\right),\left(v_{2}{ }^{*}, v_{6}{ }^{*}\right),\left(v_{3}{ }^{*}, v_{7}{ }^{*}\right),\left(v_{4}{ }^{*}, v_{8}{ }^{*}\right)$ are edges. Each vertex in $T_{4}\left(C_{8}\right)$ has degree 3. Therefore $T_{4}\left(C_{8}\right)$ is 3-regular and $T_{4}(G)=G+4$ chords.

C_{8}

$T_{4}\left(C_{8}\right)$

Figure. 2

H. Theorem 1.8.

If $\Delta(G)=p-1$, then $\mathrm{T}_{2}(G) \cong K_{p}$.
Proof. Let $v_{1}, v_{2}, \ldots . . v_{p}$ be the vertices of a graph G. If $\Delta(G)=p-1$, there exists at least one vertex has degree $p-1$ and hence diameter of $G=2$. It follows that the distance between any two non-adjacent vertices is 2. In T_{2} transformation, $\left(u^{*}, v^{*}\right)$ is an edge where $(u, v) \notin E(G)$. It is true for all u and v in G.Therefore $T_{2}(G) \cong K_{p}$.

I.Theorem 1.9.

Let G be a (p, q) graph with diameter d.
Then $\mathrm{T}_{2}(G) \cup \mathrm{T}_{3}(G) \ldots \cup \mathrm{T}_{\mathrm{d}}(G) \cong K_{p}$
Proof. Let G be a (p, q) graph with diameter d, which implies max $d(u, v)=d$. Let v_{i} and v_{j} be any two arbitrary vertices in G, where $d\left(v_{i}, v_{j}\right)=2$. In $T_{2}(G), v_{i}{ }^{*}$ and $v_{j}{ }^{*}$ are adjacent. Similarly, for $T_{3}(G)$, all $v_{i}{ }^{*}$, and $v_{j}{ }^{*}$ are adjacent if $d\left(v_{i}, v_{j}\right)=3$ etc., in $\mathrm{T}_{\mathrm{d}}(G)$, all $\left(v_{i}{ }^{*}, v_{j}{ }^{*}\right)$ are adjacent if $d\left(v_{i}, v_{j}\right)=d$. Therefore, in $\mathrm{T}_{2}(G) \cup \mathrm{T}_{3}(G) \ldots \cup \mathrm{T}_{\mathrm{d}}(G)$, every pair of vertices are adjacent, and so $\mathrm{T}_{2}(G) \cup \mathrm{T}_{3}(G) \ldots \cup \mathrm{T}_{\mathrm{d}}(G) \cong K_{p}$.

I. Theorem 1.10.

Let P_{n} be a path with n vertices. The following holds.
i) γ transformation of a path is linear, if $\gamma=n-1$.
ii) $T_{\gamma}\left(P_{n}\right)=P_{n}+(n-2)$ chords, if $\gamma=2$.

Proof. i Let P_{n} be a path with vertices $v_{1}, v_{2}, \ldots \ldots v_{n}$. Consider the vertex v_{1}, clearly $d\left(v_{1}, v_{n}\right)=n-1$. There are no other vertices v_{i}, v_{j} in P_{n} having $d\left(v_{i}, v_{j}\right)=n-1$. That is $T_{n-1}\left(P_{n}\right)=P_{n}+\left(v_{1}{ }^{*}, v_{n}{ }^{*}\right)$.Therefore $T_{n-1}\left(P_{n}\right)=P_{n}+1$ chord, i.e., $T_{\gamma}\left(P_{n}\right)$ is linear, when $\gamma=n-1$.
ii) Consider for $\gamma=2 . \operatorname{In} P_{n}, d\left(v_{1}, v_{3}\right)=d\left(v_{2}, v_{4}\right)=d\left(v_{3}, v_{5}\right)=d\left(v_{4}, v_{6}\right) \ldots d\left(v_{n-3}, v_{n-1}\right)=d\left(v_{n-2}, v_{n}\right)=2$. That is $d\left(v_{i}, v_{j}\right)=2$, if $|i-j| \equiv 0 \bmod 2$. Therefore $n-2$ pair of non-adjacent vertices have distance 2 in P_{n}. Therefore $T_{\gamma}\left(P_{n}\right)=P_{n}+n-2$ chords, for $\gamma=2$.

III. CONCLUSION

In this paper we studied the transformation of certain graphs. $\operatorname{In} T_{\gamma}(G)$ the distance between two non-adjacent vertices is less than γ. Using the properties of $T_{\gamma}(G)$, we can study the gene network coherences.

REFERENCES

[1] Francisco Gomez - Vela, Using Graph Theory to analyse gene network coherence, EMBnet. Journal 18.B.
[2] Peter Csikvari, Applications of the Kelmans Transformation extremality of threshold graph, Paper - Peter Csikvari, The Electronic journal of Combinatorics, 18(2011), p 182
[3] Suresh Singh G, Graph Theory, PHl Learning Private Limited, 2010.

