Soft β W-Hausdorff Spaces

K. Anusuya ${ }^{\# 1}$, M.A. Ramya ${ }^{* 2}$, Dr. A. Kalaichelvi ${ }^{\# 3}$
\#l Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
*2 Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
\#3 Professor, Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India

Abstract

In this paper the concept of soft βW-Hausdorffness in soft topological spaces is introduced.
Keywords: Soft set, soft β-open set, Soft topological space, Soft βW-Hausdorff space.

I.INTRODUCTION

Most of the real life problems have various uncertainties. A number of theories have been proposed for dealing with uncertainties in an efficient way. In 1999, Molodstov[4] initiated a novel concept of soft set theory, which is completely a new approach for modeling vagueness and uncertainty. In 2011, Shabir and Naz[6] defined soft topological spaces and studied separation axioms. In section II of this paper, preliminary definitions regarding soft sets and soft topological spaces are given. In section III of this paper, the concept of soft $\beta \mathrm{W}$-Hausdorffness in soft topological spaces is introduced and studied.

Throughout this paper, X denotes initial universe and E denotes the set of parameters for the universe X .

II. PRELIMINARY DEFINITIONS

Definition: 2.1 [4]

Let X be an initial universe and E be a set of parameters. Let $P(X)$ denotes the power set of X and A be a nonempty subset of E . A pair (F, A) denoted by F_{A} is called a soft set over X , where F is a mapping given by $F: A \rightarrow P(X)$.The family of all soft sets over X with respect to the parameter set E is denoted by $\operatorname{SS}(X)_{E}$.

Definition 2.2 [3]

Let $F_{A}, G_{B} \in \operatorname{SS}(X)_{E}$. Then F_{A} is soft subset of G_{B}, denoted by $F_{A} \widetilde{\simeq} G_{B}$, if
(1) A $\subseteq B$, and
(2) $F(e) \subseteq G(e), \forall e \in A$.

In this case, F_{A} is said to be a soft subset of G_{B} and G_{B} is said to be a soft superset of $F_{A}, G_{B} \cong F_{A}$.

Definition 2.3 [3]

Two soft subsets F_{A} and G_{B} over a common universe X are said to be soft equal if F_{A} is a soft subset of G_{B} and G_{B} is a soft subset of F_{A}.

Definition 2.4 [3]

A soft set (F, A) over X is said to be a NULL soft set denoted by $\widetilde{\phi}$ or ϕ_{A} if for all $e \in A, F(e)=\phi$ (null set).

Definition 2.5 [3]

A soft set (F, A) over X is said to be an absolute soft set denoted by \widetilde{A} or X_{A} if for all e $\in A, F(e)=X$. Clearly we haveX $\mathrm{A}_{\mathrm{A}}=\phi_{\mathrm{A}}$ and $\phi_{\mathrm{A}}=. \mathrm{X}_{\mathrm{A}}$.

Definition 2.6 [3]

The union of two soft sets (F, A) and (G, B) over the common universe X is the soft set (H, C), where $C=A \cup B$ and for all $e \in C$,
$H(e)=\left\{\begin{array}{c}F(e), e \in A-B, \\ G(e), e \in B-A, \\ F(e) \cup G(e), e \in A \cap B\end{array}\right.$

Definition 2.7 [3]

The intersection of two soft sets (F, A) and (G, B) over the common universe X is the soft set (H, C), where $\mathrm{C}=\mathrm{A} \cap \mathrm{B}$ and for all $\mathrm{e} \in \mathrm{C}, \mathrm{H}(\mathrm{e})=\mathrm{F}(\mathrm{e}) \cap \mathrm{G}(\mathrm{e})$.

Definition 2.8 [6]

Let $(\mathrm{X}, \tau, \mathrm{E})$ be a soft topological space, $(\mathrm{F}, \mathrm{E}) \in \mathrm{SS}(\mathrm{X})_{\mathrm{E}}$ and Y be a non- null subset of X . Then the soft subset of (F, E) over Y denoted by $\left(\mathrm{F}_{\mathrm{Y}}, \mathrm{E}\right)$ is defined as follows:
$\mathrm{F}_{\mathrm{Y}}(\mathrm{e})=\mathrm{Y} \cap \mathrm{F}(\mathrm{e}), \forall \mathrm{e} \in \mathrm{E}$
In other words, $\left(\mathrm{F}_{\mathrm{Y}}, \mathrm{E}\right)=\mathrm{Y}_{\mathrm{E}} \cap(\mathrm{F}, \mathrm{E})$.

Definition 2.9 [6]

$\operatorname{Let}(\mathrm{X}, \tau, \mathrm{E})$ be a soft topological space and Y be a non null subset of X . Then $\tau_{Y}=\left\{\left(\mathrm{F}_{\mathrm{Y}}, \mathrm{E}\right):(\mathrm{F}, \mathrm{E}) \in \tau\right\}$ is said to be the relative soft topology on Y and $\left(\mathrm{Y}, \tau_{\mathrm{Y}}, \mathrm{E}\right)$ is called a soft subspace of $(\mathrm{X}, \tau, \mathrm{E})$.

Definition 2.10 [1]

Let $F_{A} \in S S(X)_{E}$ and $G_{B} \in S S(Y)_{K}$. The cartesian product $F_{A} \otimes G_{B}$ is defined by $\left(F_{A} \otimes G_{B}\right)(e, k)=F_{A}(e) \times G_{B}(k), \forall$ $(e, k) \in A \times B$.According to this definition $F_{A} \otimes G_{B}$ is a soft set over $X \times Y$ and its parameter set is $E \times K$.

Definition 2.11 [1]

Let $\left(\mathrm{X}, \tau_{\mathrm{X}}, \mathrm{E}\right)$ and $\left(\mathrm{Y}, \tau_{\mathrm{Y}}, \mathrm{K}\right)$ be two soft topological spaces. The soft product topology $\tau_{\mathrm{X}} \otimes \tau_{\mathrm{Y}}$ over $\mathrm{X} \times \mathrm{Y}$ with respect to $E \times K$ is the soft topology having the collection $\left\{F_{E} \otimes G_{K} / F_{E} \in \tau_{X}, G_{K} \in \tau_{Y}\right\}$ as the basis.

Definition 2.12 [6]

Let $(\mathrm{X}, \tau, \mathrm{E})$ be a soft topological space and $\mathrm{F}_{\mathrm{A}} \in \mathrm{SS}(\mathrm{X})_{\mathrm{E}}$. Then the soft interior of F_{A}, denoted by $\operatorname{int}\left(\mathrm{F}_{\mathrm{A}}\right)$ is defined as the soft union of all soft open subsets of F_{A}.

Definition 2.13 [6]
Let $(\mathrm{X}, \tau, \mathrm{E})$ be a soft topological space and $\mathrm{F}_{\mathrm{A}} \in \mathrm{SS}(\mathrm{X})_{\mathrm{E}}$. Then the soft closure of F_{A}, denoted by $\mathrm{cl}\left(\mathrm{F}_{\mathrm{A}}\right)$ is defined as the soft intersection of all soft closed supersets of F_{A}.

Definition 2.14 [2]

Let $(\mathrm{X}, \tau, \mathrm{E})$ be a soft topological space and $\mathrm{F}_{\mathrm{A}} \in \mathrm{SS}(\mathrm{X})_{\mathrm{E}}$ then F_{A} is called soft β-open set if $\mathrm{F}_{\mathrm{A}} \subseteq \mathrm{cl}\left(\operatorname{int}\left(\mathrm{cl}\left(\mathrm{F}_{\mathrm{A}}\right)\right)\right)$.

III. SOFT $\boldsymbol{\beta} \mathbf{W}$-HAUSDORFF SPACES

Definition 3.1

A Soft topological space ($\mathrm{X}, \tau, \mathrm{E}$) is said to be soft $\boldsymbol{\beta} \mathbf{W}$-Hausdorff space of type $\mathbf{1}$ denoted by $(\mathrm{S} \beta \mathrm{W}-\mathrm{H})_{1}$ if for every $e_{1}, e_{2} \in E, e_{1} \neq e_{2}$ there exists soft β-open setsF F_{A}, G_{B} such that $F_{A}\left(e_{1}\right)=X, G_{B}\left(e_{2}\right)=X$ and $F_{A} \cap G_{B}=\widetilde{\phi}$.

Theorem 3.2

Soft subspace of a $(\mathrm{S} \beta \mathrm{W}-\mathrm{H})_{1}$ space is $(\mathrm{S} \beta \mathrm{W}-\mathrm{H})_{1}$.

Proof

Let $(\mathrm{X}, \tau, \mathrm{E})$ be $\mathrm{a}(\mathrm{S} \beta \mathrm{W}-\mathrm{H})_{1}$ space. Let Y be a non null subset of X . Let $\left(\mathrm{Y}, \tau_{\mathrm{Y}}, \mathrm{E}\right)$ be a soft subspace of $(\mathrm{X}, \tau, \mathrm{E})$ where $\tau_{\mathrm{Y}}=\left\{\left(\mathrm{F}_{\mathrm{Y}}, \mathrm{E}\right):(\mathrm{F}, \mathrm{E}) \in \tau\right\}$ is the relative soft topology on Y . Consider $\mathrm{e}_{1}, \mathrm{e}_{2} \in \mathrm{E}, \mathrm{e}_{1} \neq \mathrm{e}_{2}$ there exists soft β-open sets F_{A}, G_{B}, such that $F_{A}\left(e_{1}\right)=X, G_{B}\left(e_{2}\right)=X$ and $F_{A} \cap G_{B}=\widetilde{\phi}$.
$\operatorname{Here}\left(F_{A}\right)_{Y},\left(G_{B}\right)_{Y}$ are soft β-open sets.

$$
\text { Also }\left(\mathrm{F}_{\mathrm{A}}\right)_{\mathrm{Y}}\left(\mathrm{e}_{1}\right)=\mathrm{Y} \cap \mathrm{~F}_{\mathrm{A}}\left(\mathrm{e}_{1}\right)
$$

$$
\begin{aligned}
& =\mathrm{Y} \cap \mathrm{X} \\
& =\mathrm{Y}
\end{aligned}
$$

$$
\begin{aligned}
\left(\mathrm{G}_{\mathrm{B}}\right)_{\mathrm{Y}}\left(\mathrm{e}_{2}\right) & =\mathrm{Y} \cap \mathrm{G}_{\mathrm{B}}\left(\mathrm{e}_{2}\right) \\
& =\mathrm{Y} \cap \mathrm{X} \\
& =\mathrm{Y}
\end{aligned}
$$

$$
\begin{aligned}
\left(\left(\mathrm{F}_{\mathrm{A}}\right)_{\mathrm{Y}} \cap\right. & \left.\left(\mathrm{G}_{\mathrm{B}}\right)_{\mathrm{Y}}\right)(\mathrm{e})=\left(\left(\mathrm{F}_{\mathrm{A}} \cap \mathrm{G}_{\mathrm{B}}\right)_{\mathrm{Y}}\right)(\mathrm{e}) \\
& =\mathrm{Y} \cap\left(\mathrm{~F}_{\mathrm{A}} \cap \mathrm{G}_{\mathrm{B}}\right)(\mathrm{e}) \\
& =\mathrm{Y} \cap \widetilde{\phi}(\mathrm{e}) \\
& =\mathrm{Y} \cap \phi \\
\quad= & \phi
\end{aligned}
$$

$\left(F_{A}\right)_{Y} \cap\left(G_{B}\right)_{Y}=\widetilde{\phi}$
Hence $\left(Y, \tau_{Y}, E\right)$ is $(S \beta W-H)_{1}$

Theorem 3.3

Product of two $(\mathrm{S} \beta \mathrm{W}-\mathrm{H})_{1}$ spaces is $(\mathrm{S} \beta \mathrm{W}-\mathrm{H})_{1}$.

Proof:

Let $\left(\mathrm{X}, \tau_{\mathrm{X}}, \mathrm{E}\right)$ and $\left(\mathrm{Y}, \tau_{\mathrm{Y}}, \mathrm{K}\right)$ be two $(\mathrm{S} \beta \mathrm{W}-\mathrm{H})_{1}$ spaces. Consider two distinct points $\left(\mathrm{e}_{1}, \mathrm{k}_{1}\right),\left(\mathrm{e}_{2}, \mathrm{k}_{2}\right) \in \mathrm{E} \times \mathrm{K}$.
Either $\mathrm{e}_{1} \neq \mathrm{e}_{2}$ or $\mathrm{k}_{1} \neq \mathrm{k}_{2}$.
Assume $e_{1} \neq e_{2}$. Since $\left(X, \tau_{X}, E\right)$ is $(S \beta W-H)_{1}$, there exist soft β-open sets F_{A}, G_{B} such that $F_{A}\left(e_{1}\right)=X, G_{B}\left(e_{2}\right)=X$ and $F_{A} \cap G_{B}=\widetilde{\phi}$.
Here $F_{A} \otimes Y_{K}, G_{B} \otimes Y_{K}$ aresoft β-open sets
$\left(F_{A} \otimes Y_{K}\right)\left(e_{1}, k_{1}\right)=F_{A}\left(e_{1}\right) \times Y_{K}\left(k_{1}\right)$

$$
=\mathrm{X} \times \mathrm{Y}
$$

$\left(\mathrm{G}_{\mathrm{B}} \otimes \mathrm{Y}_{\mathrm{K}}\right)\left(\mathrm{e}_{2}, \mathrm{k}_{2}\right)=\mathrm{G}_{\mathrm{B}}\left(\mathrm{e}_{2}\right) \times \mathrm{Y}_{\mathrm{K}}\left(\mathrm{k}_{2}\right)$
$=X \times Y$
If for any $(e, k) \in(E \times K),\left(F_{A} \otimes Y_{K}\right)(e, k) \neq \phi$

$$
\begin{aligned}
& \Rightarrow \mathrm{F}_{\mathrm{A}}(\mathrm{e}) \times \mathrm{Y}_{\mathrm{K}}(\mathrm{k}) \neq \phi \\
& \Rightarrow \mathrm{F}_{\mathrm{A}}(\mathrm{e}) \times \mathrm{Y} \neq \phi \\
& \Rightarrow \mathrm{F}_{\mathrm{A}}(\mathrm{e}) \neq \phi \\
& \Rightarrow \mathrm{G}_{\mathrm{B}}(\mathrm{e})=\phi \\
& \Rightarrow \mathrm{G}_{\mathrm{B}}(\mathrm{e}) \times \mathrm{Y}_{\mathrm{K}}(\mathrm{k})=\phi \\
& \Rightarrow\left(\mathrm{G}_{\mathrm{B}} \otimes \mathrm{Y}_{\mathrm{K}}\right)(\mathrm{e}, \mathrm{k})=\phi \\
& \quad \Rightarrow\left(\mathrm{F}_{\mathrm{A}} \otimes \mathrm{Y}_{\mathrm{K}}\right) \cap\left(\mathrm{G}_{\mathrm{B}} \otimes \mathrm{Y}_{\mathrm{K}}\right)=\widetilde{\phi}
\end{aligned}
$$

$$
\Rightarrow \mathrm{G}_{\mathrm{B}}(\mathrm{e})=\phi \quad\left(\text { since } \mathrm{F}_{\mathrm{A}} \cap \mathrm{G}_{\mathrm{B}}=\widetilde{\phi} \Rightarrow \mathrm{F}_{\mathrm{A}}(\mathrm{e}) \cap \mathrm{G}_{\mathrm{B}}(\mathrm{e})=\phi\right)
$$

Assume $\mathrm{k}_{1} \neq \mathrm{k}_{2}$. Since $\left(\mathrm{Y}, \tau_{\mathrm{Y}}, \mathrm{K}\right)$ is $(\mathrm{S} \beta \mathrm{W}-\mathrm{H})_{1}$, there exist soft β-open sets $\mathrm{F}_{\mathrm{A}}, \mathrm{G}_{\mathrm{B}}$, such that $\mathrm{F}_{\mathrm{A}}\left(\mathrm{k}_{1}\right)=\mathrm{Y}, \mathrm{G}_{\mathrm{B}}\left(\mathrm{k}_{2}\right)$ $=Y$ and $F_{A} \cap G_{B}=\widetilde{\phi}$.
Here $X_{E} \otimes F_{A}, X_{E} \otimes G_{B}$ aresoft β-open sets
$\left(\mathrm{X}_{\mathrm{E}} \otimes \mathrm{F}_{\mathrm{A}}\right)\left(\mathrm{e}_{1}, \mathrm{k}_{1}\right)=\mathrm{X}_{\mathrm{E}}\left(\mathrm{e}_{1}\right) \times \mathrm{F}_{\mathrm{A}}\left(\mathrm{k}_{1}\right)$
$=X \times Y$
$\left(\mathrm{X}_{\mathrm{E}} \otimes \mathrm{G}_{\mathrm{B}}\right)\left(\mathrm{e}_{2}, \mathrm{k}_{2}\right)=\mathrm{X}_{\mathrm{E}}\left(\mathrm{e}_{2}\right) \times \mathrm{G}_{\mathrm{B}}\left(\mathrm{k}_{2}\right)$
$=\mathrm{X} \times \mathrm{Y}$
If for any $(e, k) \in E \times K,\left(X_{E} \otimes F_{A}\right)(e, k) \neq \phi$
$\Rightarrow X_{\mathrm{E}}(\mathrm{e}) \times \mathrm{F}_{\mathrm{A}}(\mathrm{k}) \neq \phi$
$\Rightarrow \mathrm{X} \times \mathrm{F}_{\mathrm{A}}(\mathrm{k}) \neq \phi$

$$
\begin{aligned}
& \quad \Rightarrow \mathrm{F}_{\mathrm{A}}(\mathrm{k}) \neq \phi \\
& \Rightarrow \mathrm{G}_{\mathrm{B}}(\mathrm{k})=\phi \quad\left(\text { Since } \mathrm{F}_{\mathrm{A}} \cap \mathrm{G}_{\mathrm{B}}=\widetilde{\phi} \Rightarrow \mathrm{F}_{\mathrm{A}}(\mathrm{k}) \cap \mathrm{G}_{\mathrm{B}}(\mathrm{k})=\phi\right) \\
& \Rightarrow \mathrm{X}_{\mathrm{E}}(\mathrm{e}) \times \mathrm{G}_{\mathrm{B}}(\mathrm{k})=\phi \\
& \quad \Rightarrow\left(\mathrm{X}_{\mathrm{E}} \otimes \mathrm{G}_{\mathrm{B}}\right)(\mathrm{e}, \mathrm{k})=\phi \\
& \quad \Rightarrow\left(\mathrm{X}_{\mathrm{E}} \otimes \mathrm{~F}_{\mathrm{A}}\right) \cap\left(\mathrm{X}_{\mathrm{E}} \otimes \mathrm{G}_{\mathrm{B}}\right)=\widetilde{\phi}
\end{aligned}
$$

$$
\text { Hence }\left(\mathrm{X} \times \mathrm{Y}, \tau_{\mathrm{X}} \otimes \tau_{\mathrm{Y}}, \mathrm{E} \times \mathrm{K}\right) \text { is }(\mathrm{S} \beta \mathrm{~W}-\mathrm{H})_{1} .
$$

Definition 3.4

A soft topological space ($\mathrm{X}, \tau, \mathrm{E}$) is said to be soft $\boldsymbol{\beta W}$-Hausdorff space of type 2 denoted by $(S \beta W-H)_{2}$ if for every $e_{1}, e_{2} \in E, e_{1} \neq e_{2}$ there exists soft β-open sets F_{E}, G_{E}, such that $F_{E}\left(e_{1}\right)=X, G_{E}\left(e_{2}\right)=X$ and $\mathrm{F}_{\mathrm{E}} \cap \mathrm{G}_{\mathrm{E}}=\widetilde{\phi}$

Theorem 3.5

Soft subspace of $\mathrm{a}(\mathrm{S} \beta \mathrm{W}-\mathrm{H})_{2}$ space is $(\mathrm{S} \beta \mathrm{W}-\mathrm{H})_{2}$.

Proof

Let $(\mathrm{X}, \tau, \mathrm{E})$ be a $(\mathrm{S} \beta \mathrm{W}-\mathrm{H})_{2}$ space. Let Y be a non-null subset of X . Let $\left(\mathrm{Y}, \tau_{\mathrm{Y}}, \mathrm{E}\right)$ be a soft subspace of $(\mathrm{X}, \tau$, $E)$ where $\tau_{Y}=\left\{\left(F_{Y}, E\right):(F, E) \in \tau\right\}$ is the relative soft topology on Y. Consider $e_{1}, e_{2} \in E, e_{1} \neq e_{2}$ there exist soft β open sets F_{E}, G_{E}, such that $F_{E}\left(e_{1}\right)=X, G_{E}\left(e_{2}\right)=X$ and $F_{E} \cap G_{E}=\widetilde{\phi}$.
Here $\left(\left(\mathrm{F}_{\mathrm{E}}\right)_{\mathrm{Y}}, \mathrm{E}\right),\left(\left(\mathrm{G}_{\mathrm{E}}\right)_{\mathrm{Y}}, \mathrm{E}\right)$ aresoft β-open sets.
Also $\left(\mathrm{F}_{\mathrm{E}}\right)_{\mathrm{Y}}\left(\mathrm{e}_{1}\right)=\mathrm{Y} \cap \mathrm{F}_{\mathrm{E}}\left(\mathrm{e}_{1}\right)$
$=\mathrm{Y} \cap \mathrm{X}$
$=\mathrm{Y}$
$\left(\mathrm{G}_{\mathrm{E}}\right)_{\mathrm{Y}}\left(\mathrm{e}_{2}\right)=\mathrm{Y} \cap \mathrm{G}_{\mathrm{E}}\left(\mathrm{e}_{2}\right)$

$$
=\mathrm{Y} \cap \mathrm{X}
$$

$$
=\mathrm{Y}
$$

$$
\begin{aligned}
&\left(\left(\mathrm{F}_{\mathrm{E}}\right)_{\mathrm{Y}} \cap\left(\mathrm{G}_{\mathrm{E}}\right)_{\mathrm{Y}}\right)(\mathrm{e})=\left(\left(\mathrm{F}_{\mathrm{E}} \cap \mathrm{G}_{\mathrm{E}}\right)_{\mathrm{Y}}\right)(\mathrm{e}) \\
&=\mathrm{Y} \cap\left(\mathrm{~F}_{\mathrm{E}} \cap \mathrm{G}_{\mathrm{E}}\right)(\mathrm{e}) \\
&=\mathrm{Y} \cap \widetilde{\phi}(\mathrm{e}) \\
&=\mathrm{Y} \cap \phi \\
&=\phi \\
&\left(\mathrm{F}_{\mathrm{A}}\right)_{\mathrm{Y}} \cap\left(\mathrm{G}_{\mathrm{B}}\right)_{\mathrm{Y}}= \widetilde{\phi} \\
& \text { Hence }\left(\mathrm{Y}, \tau_{\mathrm{Y}}, \mathrm{E}\right) \text { is }(\mathrm{S} \beta \mathrm{~W}-\mathrm{H})_{2} .
\end{aligned}
$$

Theorem 3.6

Product of two $(\mathrm{S} \beta \mathrm{W}-\mathrm{H})_{2}$ spaces is $(\mathrm{S} \beta \mathrm{W}-\mathrm{H})_{2}$.

Proof

Let $\left(\mathrm{X}, \tau_{\mathrm{X}}, \mathrm{E}\right)$ and $\left(\mathrm{Y}, \tau_{\mathrm{Y}}, \mathrm{K}\right)$ be two $(\mathrm{S} \beta \mathrm{W}-\mathrm{H})_{2}$ spaces. Consider two distinct points
$\left(e_{1}, k_{1}\right),\left(e_{2}, k_{2}\right) \in E \times K$.
Either $\mathrm{e}_{1} \neq \mathrm{e}_{2}$ or $\mathrm{k}_{1} \neq \mathrm{k}_{2}$.
Assume $e_{1} \neq e_{2}$. Since $\left(X, \tau_{X}, E\right)$ is $(S \beta W-H)_{2}$, there exist soft β-open setsF F_{E}, G_{E}, such that $F_{E}\left(e_{1}\right)=X, G_{E}\left(e_{2}\right)=X$ and $F_{E} \cap G_{E}=\widetilde{\phi}$.
Here $\mathrm{F}_{\mathrm{E}} \otimes \mathrm{Y}_{\mathrm{K}}, \mathrm{G}_{\mathrm{E}} \otimes \mathrm{Y}_{\mathrm{K}}$ aresoft β-open sets
$\left(\mathrm{F}_{\mathrm{E}} \otimes \mathrm{Y}_{\mathrm{K}}\right)\left(\mathrm{e}_{1}, \mathrm{k}_{1}\right)=\mathrm{F}_{\mathrm{E}}\left(\mathrm{e}_{1}\right) \times \mathrm{Y}_{\mathrm{K}}\left(\mathrm{k}_{1}\right)$

$$
=\mathrm{X} \times \mathrm{Y}
$$

$\left(\mathrm{G}_{\mathrm{E}} \otimes \mathrm{Y}_{\mathrm{K}}\right) \underset{\left(\mathrm{e}_{2}, \mathrm{k}_{2}\right)}{=\mathrm{X} \times \mathrm{Y}}=\mathrm{G}_{\mathrm{E}}\left(\mathrm{e}_{2}\right) \times \mathrm{Y}_{\mathrm{K}}\left(\mathrm{k}_{2}\right)$
If for any $(\mathrm{e}, \mathrm{k}) \in(\mathrm{E} \times \mathrm{K}),\left(\mathrm{F}_{\mathrm{E}} \otimes \mathrm{Y}_{\mathrm{K}}\right)(\mathrm{e}, \mathrm{k}) \neq \phi$

$$
\begin{aligned}
& \Rightarrow \mathrm{F}_{\mathrm{E}}(\mathrm{e}) \times \mathrm{Y}_{\mathrm{K}}(\mathrm{k}) \neq \phi \\
& \Rightarrow \mathrm{F}_{\mathrm{E}}(\mathrm{e}) \times \mathrm{Y} \neq \phi
\end{aligned}
$$

```
\(\Rightarrow \mathrm{F}_{\mathrm{E}}(\mathrm{e}) \neq \phi\)
\(\Rightarrow \mathrm{G}_{\mathrm{E}}(\mathrm{e})=\phi \quad\left(\right.\) Since \(\left.\mathrm{F}_{\mathrm{E}} \cap \mathrm{G}_{\mathrm{E}}=\widetilde{\phi} \Rightarrow \mathrm{F}_{\mathrm{A}}(\mathrm{e}) \cap \mathrm{G}_{\mathrm{E}}(\mathrm{e})=\phi\right)\)
\(\Rightarrow \mathrm{G}_{\mathrm{E}}(\mathrm{e}) \times \mathrm{Y}_{\mathrm{K}}(\mathrm{k})=\phi\)
\(\Rightarrow\left(\mathrm{G}_{\mathrm{E}} \otimes \mathrm{Y}_{\mathrm{K}}\right)(\mathrm{e}, \mathrm{k})=\phi\)
\(\Rightarrow\left(\mathrm{F}_{\mathrm{E}} \otimes \mathrm{Y}_{\mathrm{K}}\right) \cap\left(\mathrm{G}_{\mathrm{E}} \otimes \mathrm{Y}_{\mathrm{K}}\right)=\widetilde{\phi}\)
Similarly, one can prove the case when \(\mathrm{k}_{1} \neq \mathrm{k}_{2}\).
Hence \(\left(\mathrm{X} \times \mathrm{Y}, \tau_{\mathrm{X}} \otimes \tau_{\mathrm{Y}}, \mathrm{E} \times \mathrm{K}\right)\) is \((\mathrm{S} \beta \mathrm{W}-\mathrm{H})_{2}\).
```


IV. CONCLUSION

In this paper the concept of Soft $\beta \mathrm{W}$-Hausdorff spaces is introduced and some basic properties regarding this concept are proved.

REFERENCES

[1] K.V. Babitha and J.J.Sunil, "Soft set relations and functions", Comput. Math. Appl. 60(2010) 1840-1848.
[2] S. A. El- Sheikh and A. M. Abd-e-Latif, "Characterization of soft b-open sets in soft topological spaces", New Theory, 2(2015), 8-18.
[3] P.K.Maji, R.Biswas and A.R.Roy, "Soft Set Theory", Computers and Mathematics with Applications, vol.45, no.4-5, pp.555-562, 2003.
[4] D.Molodstov, "Soft Set Theory - First Results", Computers and Mathematics with Applications, vol.37, no.4-5, pp.1931, 1999.
[5] D. Sasikala, V.M. Vijayalakshmi, A. Kalaichelvi, "W-Hausdorffness in Soft Bitopological Spaces", International Journal of Mathematics Trends and Technology, vol.43, no.3, pp 242-245, March 2017.
[6] M.Shabir and M.Naz, "On Soft Topological Spaces", Computers and Mathematics with Applications, vol.61,no.7,pp.1786-1799, 2011.
[7] P. Sruthi, V.M. Vijayalakshmi, A. Kalaichelvi, "Soft W-Hausdorff Spaces", International Journal of Mathematics Trends and Technology, vol.43, no.1,pp 16-19, March 2017.
[8] V.M. Vijayalakshmi, A. Kalaichelvi, "Fuzzy Soft W-Hausdorff Spaces", International Journal of Mathematics Trends and Technology, vol.41, no.5, pp 417-421, January 2017.

