Idempotents of M_2 ($Z_{15}[x]$)

Ms Poonam^{#1}, Ms Shilpa Aggrwal^{#2} #1Department of Mathematics, Govt. College, Hisar #2Department of Mathematics, K.U. Kurukshetra

Abstract

In this article we will discuss the idempotents of $M_2(Z_{15}[x])$

Key Words - *Idempotents, polynomials, trace etc.*

I. INTRODUCTION

Idempotents in ring theory plays a vital role in the ring theory. Here, we will find the idempotents in matrix ring $M_2(Z_{15}[x])$ where $Z_{15}[x]$ is the poly nominal ring over the ring Z_{15} . For any ring R, I (R) will denote for set of all idempotents in R. For any positive integer n, $M_n\left(R\right)$ will denote the ring of n×n matrices over a ring R.

For a 2×2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ over a commutative ring R, determinate of A is ad-bc and trace of A is a+d.

Let R be a ring. An element a ε R is said to be idempotent in R if $a^2 = a$ **Definition:**

Theorem 1 If R is a commutative ring then I(R[x]) = I(R)

Theorem 2 Any non=trivial idempotent is $M_2(Z_{15}[x])$ is one of the following form

1
$$\begin{bmatrix} a(x) & b(x) \\ c(x) & 1 - a(x) \end{bmatrix}$$
, where $a(x)(1-a(x)) - b(x) c(x) = 0$

3
$$\begin{vmatrix} 6a(x) & 6b(x) \\ 6c(x) & 6(1-a(x)) \end{vmatrix}$$
, where $a(x)(1-a(x)) - b(x) c(x) = 5f(x)$

4
$$\begin{bmatrix} 5a(x) & 5b(x) \\ 5c(x) & 5(5-a(x)) \end{bmatrix}$$
, where $a(x)(5-a(x)) - b(x) c(x) = 3g(x)$

5
$$\begin{bmatrix} 2+5a(x) & 5b(x) \\ 5c(x) & 2-5a(x) \end{bmatrix}$$
, where $(2+5a(x))(2-5a(x))-25b(x)$ $c(x)=6$

6
$$\begin{bmatrix} 1 + 5a(x) & 5b(x) \\ 5c(x) & 6 - 5a(x) \end{bmatrix}$$
, where $(1+5a(x))(6-5a(x)) - 25b(x)c(x) = 6$

Where a(x), b(x),c(x), f(x), g(x) are polynomial in $Z_{15}[x]$.

As the idempotents in $Z_{15}[x]$ are the idempotents in Z_{15} . Therefore the idempotents in $Z_{15}[x]$ are 0, 1, 6, 10 let $A = \begin{bmatrix} a(x) & b(x) \\ c(x) & d(x) \end{bmatrix}$ be a non trivial idempotent of $M_2(Z_{15}[x])$. For our convenience, we will take a(x) = a, b(x) = b, c(x) = c, d(x) = d

Now a is idempotent, so $a^2+bc=a$, b(a+d)=b, c(a+d)=c and $bc+d^2=d$. Also determinant of A is an idempotent in Z_{15} so the determinant of A is 0 or 1 or 6 or 10.

If determinant of A is 1 Then $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, a trivial idempotent in $M_2(Z_{15}[x])$. Hence the determinant of A is 0 or 6 or 10. Also, trace of A is in Z_{15} i.e. a+d $\in Z_{15}$.

Case 1 : Determinant of A is 0 i.e. ad-bc = 0

Since A is an idempotent

Therefore, $a^2+bc+bc+d^2 = a^2+2bc+d^2 = a^2+2ad+d^2 = (a+d)$

Thus (a+d) is an idempotent in $Z_{15}[x]$. Thus (a+d) is either 0 or 1 or 6 of 10.

If a+d=0,then we get A to be a zero matrix, which is trivial idempotent in $M_2(Z_{15}[x])$.

If a+d=1 then d=1-a and hence ad-bc=0 gives a²+bc=a, (a+d) b=b. Also (a+d) c=c and bc+d²=1-a. Thus A²

$$= \begin{bmatrix} a & b \\ c & 1-a \end{bmatrix}$$
 Thus in this case, matrix A=
$$\begin{bmatrix} a(x) & b(x) \\ c(x) & 1-a(x) \end{bmatrix}$$
, where a(x), b(x),

 $c(x) \in Z_{15}[x]$ such that $a(x)\{1-a(x)\} = b(x) c(x)$.

If a+d=6 gives d=6-a and hence ad-bc = 0 gives a²+bc=6a and so, 5a=0. Also (a+d) b=b implies 5b=0 and (a+d)c=c implies 5c=0

Therefore, a=6a'(x), b=6b'(x) and c=6c'(x), where a'(x), b'(x), c'(x) are polynomial in $Z_{15}[^x]$.

Since ad-bc=0, we get 6a'(x)(6-6a'(x)=6b'(x)6c'(x), which is equivalent to a'(x)(a'(x))-b'(x)c'(x)=5f(x) for some polynomial $f(x) \in Z_{15}[x]$

Hence $A = \begin{bmatrix} 6a(x) & 6b(x) \\ 6c(x) & 6(1-a(x)) \end{bmatrix}$, where a(x), b(x), c(x) are polynomial in $Z_{15}[x]$ such that a(x) (1-a(x))-

b(x) c(x) = 5f(x) for some $f(x) t Z_{15}[x]$.

If a+d=10 then d=10-a

Now ad-bc = 0 gives $a^2+bc=10a$. Thus 9a=0

Also (a+d) b=b gives 9b=0 and (a+d) c=c gives 9c=0

Therefore, a=5a'(x), b=5b'(x) and c=5c'(x) and d=5(5-a'(x)), where a'(x), b'(x) and c'(x) are polynominal in $Z_{15}[x]$.

Now since ad-bc = 0, we get 5a(x) 5 (5-a(x)) = 5b(x) (x)-5 c (x). hence, idempotent matrix is $A = \begin{bmatrix} 5a(x) & 5b(x) \\ 5c(x) & 5(5-a(x)) \end{bmatrix}$, where a(x) (5-a(x)) -b(x)c(x) = 3g(x) for some g(x) $\in Z_{15}[x]$.

Case 2: Determinant of A is 6. This means ad-bc=6.

So, we get $a^2+bc+bc+d^2 = a^2+2(ad-6)+d^2 = (a+d)^2+3$.

Trace of matric A is idempotent if a+d=4 or 7 or 9 of 12.

If a+d=4 then ad-bc=6 implies 3a=6 i.e. a=2 or 7 or 12 in $Z_{15}[x]$. i.e. a=2+5a(x) for some polynomial a(x) $\in Z_{15}[x]$.

Also (a+d) b=b gives 3b=0 and (a+d) c=c gives 3c=0

i.e. b=5b(x) and c=5c(x) for some polynomials b(x) and c(x) in $Z_{15}[x]$.

Hence matrix $A = \begin{bmatrix} 2 + 5a(x) & 5b(x) \\ 5c(x) & 2 - 5a(x) \end{bmatrix}$, where a(x), b(x), c(x) are polynomial in $Z_{15}[x]$. such that (2+5a(x))(2-5a(x)) - 25b(x)c(x) = 6

If a+d = 7 then d=7-a

Now ad-bc=6 gives 6a=6 i.e. a can be 1 or 6 or 11 i.e a=1+5a(x) for some $a(x) \in Z_{15}[x]$.

Also b(a+d)=b gives 6b=0 and c(a+d)=c gives 6c=0 a=1+5a(x), b=5b(x), c=5c(x) and d=6-5a(x) for some polynomials a(x), b(x), c(x) in $Z_{15}[x]$.

Hence, matrix $A = \begin{bmatrix} 1+5a(x) & 5b(x) \\ 5c(x) & 6-5a(x) \end{bmatrix}$, where a(x), b(x), c(x) are polynomials in $Z_{15}[x]$ such that (1+5a(x))(6-5a(x))-5b(x) 5c(x)=6.

If a+d=9 then d=9-a

Now ad-bc = 6 gives a^2 +bc = 9a-6 i.e. 4a=3

Thus a = 12. Also b(a+d)=b gives 8b=0 i.e. b=0 and c(a+d)=c gives 8c=0 i.e. c=0

Thus a=12, b=0, c=0 and d=12

Hence matrix $A = \begin{bmatrix} 12 & 0 \\ 0 & 12 \end{bmatrix}$, which is not possible as determinant of A is 9.

If a+d = 12 then d = 12-a

Now ad-bc = 6 gives 11a=6 i.e. a=6

Also b(a+d)=b gives 11b=0 i.e. b=0 and c(a+d)=c gives 11c=0 i.e. c=0

Hence matrix $A = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$

Case 3: Determinate of A is 10 i.e. ad-bc=0

Since A is idempotent, therefore $a^2+bc+bc+d^2=a^2+2(ad-10)+d^2=a^2+2ad+d^2-20=(a+d)^2+10$

Trace of matrix A is idempotent iff a+d=5

If a+d=5 then d=5-a

Now ad-bc=10 gives 4a=10 i.e. a=10.

Also b(a+d)=b gives 4b=0 i.e. b=0 and c(a+d)=c gives 4c=0 i.e. c=0

Thus a=10, b=0, c=0 and d=10

Hence, matrix $A = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$

REFERENCE

- [1] "Contemporary Abstract Algebra" by Joseph A. Gallian. ISBN 1305887859, 9781305887855
 [2] "A Course in Abstract Algebra" by V.K. Khanna & S.K.
 [3] Bhambri, Second Edition, Vikas Publication House Pvt Limmited, 1999,0 "Abstract Algebra" by I.N. Hersterin. ISBN 70698675X, 9780706986754.
- [4] "A first Court in Abstract Algebra" (7th Edition) by J.B. Fraleigh. ISBN 13:9780201763904
 [5] "Abstract Algebra" (3rd Edition) by David S. Dummit, Richard M.Foote,ISBN 9780471433347 10:0471368792