$\pi g \gamma^*$ closed Sets in Intuitionistic Fuzzy Topological Spaces

K. Sakthivel¹ and M. Manikandan²

¹Assistant Professor of Mathematics, Government Arts College, Udumalpet, Tamilnadu, India

Abstract

This paper is devoted to the study of intuitionistic fuzzy topological spaces. In this paper $\pi g \gamma^*$ closed sets and $\pi g \gamma^*$ open sets in intuitionistic fuzzy topological spaces are introduced. Also we have analyzed some properties of $\pi g \gamma^*$ closed sets and $\pi g \gamma^*$ open sets in intuitionistic fuzzy topological spaces

Key words and phrases - *Intuitionistic fuzzy topology, intuitionistic fuzzy* $\pi g \gamma^*$ *closed sets, intuitionistic fuzzy* $\pi g \gamma^*$ *open sets.*

I. INTRODUCTION

The concept of intuitionistic fuzzy sets was introduced by Atanassov[1]. Coker [3] introduced intuitionistic fuzzy topological spaces using the notion of intuitionistic fuzzy sets. In this paper we have introduced intuitionistic fuzzy $\pi g \gamma^*$ closed sets and intuitionistic fuzzy $\pi g \gamma^*$ open sets.

II. PRELIMINARIES

Definition 2.1: [1] Let X be a non empty fixed set. An *intuitionistic fuzzy set* (IFS in short) A in X is an object having the form $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle / x \in X \}$ where the functions μ_A (x): $X \to [0,1]$ and $\nu_A(x)$: $X \to [0,1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $\nu_A(x)$) of each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$. Denote by IFS(X), the set of all intuitionistic fuzzy sets in X.

Definition 2.2: [1] Let A and B be IFSs of the form $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle / x \in X \}$ and $B = \{ \langle x, \mu_B(x), \nu_B(x) \rangle / x \in X \}$. Then

- (a) $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$
- (b) A = B if and only if $A \subseteq B$ and $B \subseteq A$
- (c) $A^c = \{ \langle x, v_A(x), \mu_A(x) \rangle / x \in X \}$
- (d) $A \cap B = \{ \langle x, \mu_A(x) \wedge \mu_B(x), \nu_A(x) \vee \nu_B(x) \rangle / x \in X \}$
- (e) A U B = { $\langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle / x \in X$ }

For the sake of simplicity, we shall use the notation $A = \langle x, (\mu_A, \mu_B), (\nu_A, \nu_B) \rangle$ instead of $A = \langle x, (A/\mu_A, B/\mu_B), (A/\nu_A, B/\nu_B) \rangle$.

The intuitionistic fuzzy sets $0_{\sim} = \{ \langle x, 0, 1 \rangle / x \in X \}$ and $1_{\sim} = \{ \langle x, 1, 0 \rangle / x \in X \}$ are respectively the empty set and the whole set of X.

Definition 2.3: [3] An *intuitionistic fuzzy topology* (IFT in short) on X is a family τ of IFSs in X satisfying the following axioms.

- (i) $0_{\sim}, 1_{\sim} \in \tau$
- $(ii) \ G_1 \cap G_2 \in \tau, \ \ \text{for any} \ G_1, G_2 \in \tau$

²Research scholar of Mathematics, Government Arts College, Udumalpet, Tamilnadu, India

(iii) \cup $G_i \in \tau$ for any family $\{G_i / i \in J\} \subseteq \tau$.

In this case the pair (X, τ) is called an *intuitionistic fuzzy topological space* (IFTS in short) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS in short) in X.

The complement A^c of an IFOS A in an IFTS (X, τ) is called an intuitionistic fuzzy closed set (IFCS in short) in X.

Definition 2.4: [3] Let (X, τ) be an IFTS and $A = \langle x, \mu_A, \nu_A \rangle$ be an IFS in X. Then the intuitionistic fuzzy interior and an intuitionistic fuzzy closure are defined by $\operatorname{int}(A) = \bigcup \{ G / G \text{ is an IFOS in } X \text{ and } G \subseteq A \},$ $\operatorname{cl}(A) = \bigcap \{ K / K \text{ is an IFCS in } X \text{ and } A \subseteq K \}.$

Note that for any IFS A in (X, τ) , we have $cl(A^c) = (int(A))^c$ and $int(A^c) = (cl(A))^c$.

Definition 2.5: [6] An IFS $A = \langle x, \mu_A, \nu_A \rangle$ in an IFTS (X, τ) is said to be an *intuitionistic fuzzy semi closed set* (IFSCS in short) if $int(cl(A)) \subseteq A$.

Definition 2.6: [6] An IFS $A = \langle x, \mu_A, \nu_A \rangle$ in an IFTS (X, τ) is said to be an *intuitionistic fuzzy semi open set* (IFSOS in short) if $A \subseteq cl(int(A))$. Every IFOS in (X, τ) is an IFSOS in X.

Definition 2.7: [13] An IFS A of an IFTS (X, τ) is an

- (i) intuitionistic fuzzy pre closed set (IFPCS in short) if $cl(int(A)) \subseteq A$,
- (ii) intuitionistic fuzzy pre open set (IFPOS in short) if $A \subseteq int(cl(A))$.

Definition 2.8: [13] An IFS A of an IFTS (X, τ) is an

- (i) intuitionistic fuzzy α -open set (IF α OS in short) if $A \subseteq int(cl(int(A)))$,
- (ii) intuitionistic fuzzy α -closed set (IF α CS in short) if $cl(int(cl(A)) \subseteq A$.

Definition 2.9:[5] An IFS A of an IFTS (X, τ) is an

- (i) intuitionistic fuzzy γ -open set (IF γ OS in short) if $A \subseteq int(cl(A)) \cup cl(int(A))$,
- (ii) intuitionistic fuzzy γ -closed set (IF γ CS in short) if $cl(int(A)) \cap int(cl(A)) \subseteq A$.

Definition 2.10: [6] An IFS A of an IFTS (X, τ) is an

- (i) intuitionistic fuzzy regular open set (IFROS in short) if A = int(cl(A)),
- (ii) intuitionistic fuzzy regular closed set (IFRCS in short) if A = cl(int(A)).

Definition 2.11: [7] The union of IFROSs is called *intuitionistic fuzzy* π -open set (IF π OS in short) of an IFTS (X, τ). The complement of IF π OS is called *intuitionistic fuzzy* π -closed set (IF π CS in short).

Definition 2.12: [12] An IFS A of an IFTS (X, τ) is an *intuitionistic fuzzy generalized closed* set (IFGCS in short) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in X.

Definition 2.13: [13] An IFS A of an IFTS (X, τ) is an *intuitionistic fuzzy generalized open* set (IFGOS in short) if A^c is an IFGCS in X.

Definition 2.14: [11] Let an IFS A of an IFTS (X, τ) . Then semi closure of A (scl(A)) in short) and semi interior of A (sint(A)) in short) are defined as $scl(A) = \bigcap \{ K \mid K \text{ is an IFSCS in } X \text{ and } A \subseteq K \}$

 $sint(A) = \bigcup \{ K / K \text{ is an IFSOS in } X \text{ and } K \subseteq A \}.$

Definition 2.15: [11] An IFS A of an IFTS (X, τ) is an *intuitionistic fuzzy generalized semi closed set* (IFGSCS in short) if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in X.

Definition 2.16: [11] An IFS A of an IFTS (X, τ) is an *intuitionistic fuzzy generalized semi* open set (IFGSOS in short) if A^c is an IFGSCS in X.

The family of all IFGSCSs (resp. IFGSOSs) of an IFTS (X, τ) is denoted by IFGSC(X)(resp. IFGSO(X)).

Result 2.17: [11] Let A be an IFS in (X, τ) , then

- (i) $scl(A) = A \cup int(cl(A))$
- (ii) $sint(A) = A \cap cl(int(A))$

If A is an IFS of X then $scl(A^c) = (sint(A))^c$

Definition 2.18: [9] Let an IFS A of an IFTS (X, τ) . Then pre closure of A (pcl(A) in short) and pre interior of A (pint(A)) are defined as

 $pcl(A) = \bigcap \{ K / K \text{ is an IFPCS in } X \text{ and } A \subseteq K \}.$

 $pint(A) = \bigcup \{ K / K \text{ is an IFPOS in } X \text{ and } K \subseteq A \}.$

Definition 2.19: [9] An IFS A of an IFTS (X, τ) is an *intuitionistic fuzzy generalized pre closed set* (IFGPCS in short) if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in X. The complement of IFGPCS is called an *intuitionistic fuzzy generalized pre open set* (IFGPOS in short).

Definition 2.20: [9] Let an IFS A of an IFTS (X, τ) . Then alpha closure of A $(\alpha cl(A)$ in short) and alpha interior of A $(\alpha int(A))$ in short) are defined as

 α cl (A) = \cap { K / K is an IF α CS in X and A \subseteq K }.

 α int(A) = $\bigcup \{ K / K \text{ is an IF} \alpha OS \text{ in } X \text{ and } K \subseteq A \}.$

Result 2.21: [9] Let A be an IFS in (X, τ) . Then

- (i) $\alpha cl(A) = A \cup cl(int(cl(A)))$
- (ii) $\alpha int(A) = A \cap int(cl(int(A)))$

Definition 2.22: [9] An IFS A of an IFTS (X, τ) is an *intuitionistic fuzzy alpha generalized* closed set (IF α GCS in short) if α cl(A) \subseteq U whenever A \subseteq U and U is an IFOS in X. The complement of IF α GCS is called an *intuitionistic fuzzy generalized* open set (IF α GOS in short).

Definition 2.23: [8] An IFS A of an IFTS (X, τ) is an *intuitionistic fuzzy* γ^* *generalized closed set* $(IF\gamma^*GCS \text{ in short})$ if $cl(\text{int}(A)) \cap \text{int}(cl(A)) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in (X, τ) . The complement of $IF\gamma^*GCS$ is called an *intuitionistic fuzzy generalized open set* $(IF\alpha GOS \text{ in short})$.

Definition 2.24: [12] Two IFSs are said to be q-coincident (A q B in short) if and only if there exists an element $x \in X$ such that $\mu_A(x) > \nu_B(x)$ or $\nu_A(x) < \mu_B(x)$.

Definition 2.25: [12] For any two IFSs A and B of X, $(A_{\bar{\sigma}}B)$ iff $A \subseteq B^c$.

III. INTUITIONISTIC FUZZY $\pi g \gamma^*$ CLOSED SETS

In this section we introduce intuitionistic fuzzy $\pi g \gamma^*$ closed sets and studied some of its properties.

Definition 3.1: An IFS A in (X, τ) is said to be an *intuitionistic fuzzy* $\pi g \gamma^*$ *closed set* $(IF\pi g \gamma^*CS \text{ in short})$ if $cl(int(A)) \cap int(cl(A)) \subseteq U$ whenever $A \subseteq U$ and U is an $IF\pi OS$ in (X, τ) .

Example 3.2: Let $X = \{a, b\}$ and let $\tau = \{0_{\sim}, T, 1_{\sim}\}$ is an IFT on X, where $T = \langle x, (0.8, 0.4), (0.2, 0.3) \rangle$. Then the IFS $A = \langle x, (0.2, 0.1), (0.8, 0.8) \rangle$ is an IF $\pi g \gamma^* CS$ in (X, τ) .

Theorem 3.3: Every IFCS is an IF $\pi g \gamma^*$ CS but not conversely.

Proof: Let $A \subseteq U$ and U is an $IF\pi OS$ in (X, τ) . Since $cl(int(A)) \cap int(cl(A)) \subseteq cl(A)$ and A is an IFCS, $cl(int(A)) \cap int(cl(A)) \subseteq cl(A) = A \subseteq U$. Therefore A is an $IF\pi g \gamma^* CS$ in X.

Example 3.4: Let $X = \{ a, b \}$ and let $\tau = \{0_{\sim}, T, 1_{\sim}\}$ where $T = \langle x, (0.4, 0.3), (0.6, 0.6) \rangle$. Then the IFS $A = \langle x, (0.5, 0.3), (0.5, 0.6) \rangle$ is an IF $\pi g \gamma^*$ CS but not an IFCS in X.

Theorem 3.5: Every IF α CS is an IF $\pi g \gamma^*$ CS but not conversely.

Proof: Let $A \subseteq U$ and U is an $IF\pi OS$ in (X, τ) . That is U is IFOS in X. By hypothesis $cl(int(A)) \cap int(cl(A)) \subseteq cl(int(cl(A))) \cap cl(int(cl(A))) \subseteq A \cap A \subseteq U$. Hence $cl(int(A)) \cap int(cl(A)) \subset U$. Therefore A is an $IF\pi g \gamma^* CS$ in X.

Example 3.6: Let $X = \{a, b\}$ and let $\tau = \{0_-, T_1, T_2, 1_-\}$, where $T_1 = \langle x, (0.4, 0.2), (0.6, 0.7) \rangle$, $T_2 = \langle x, (0.8, 0.8), (0.2, 0.2) \rangle$. Then the IFS $A = \langle x, (0.4, 0.4), (0.5, 0.5) \rangle$ is an IF $\pi g \gamma^* CS$ but not an IF αCS in X.

Theorem 3.7: Every IFSCS is an IF $\pi g \gamma^*$ CS but not conversely.

Proof: Let $A \subseteq U$ and U is an $IF\pi OS$ in (X, τ) . By hypothesis $cl(int(A)) \cap int(cl(A)) \subseteq cl(int(A)) \cap A \subseteq U$. Hence $cl(int(A)) \cap int(cl(A)) \subseteq U$. Therefore A is an $IF\pi g \gamma^* CS$ in X.

Example 3.8: Let $X = \{a, b\}$ and let $\tau = \{0_-, T, 1_-\}$, where $T = \langle x, (0.3, 0.4), (0.6, 0.6) \rangle$. Then the IFS $A = \langle x, (0.3, 0.3), (0.7, 0.6) \rangle$ is an IF $\pi g \gamma^* CS$ but not an IFSCS in X.

Theorem 3.9: Every IFPCS is an IF $\pi g \gamma^*$ CS but not conversely.

Proof: Let $A \subseteq U$ and U is an IF π OS in (X, τ) . By hypothesis $cl(int(A)) \cap int(cl(A)) \subseteq int(cl(A)) \subseteq A \subseteq U$. Hence $cl(int(A)) \cap int(cl(A)) \subseteq U$. Therefore A is an IF $\pi g \gamma^* CS$ in X.

Example 3.10: Let $X = \{a, b\}$ and let $\tau = \{0_{\sim}, T_1, T_2, 1_{\sim}\}$, where $T_1 = \langle x, (0.3, 0.3), (0.4, 0.6) \rangle$, $T_2 = \langle x, (0.7, 0.8), (0.3, 0.2) \rangle$. Then the IFS $A = \langle x, (0.4, 0.4), (0.5, 0.5) \rangle$ is an IF $\pi g \gamma^* CS$ but not an IFPCS in X.

Theorem 3.11: Every IFGCS is an IF $\pi g \gamma^*$ CS but its converse may not be true.

Proof: Let IFS A is an IFGCS in (X, τ) . Let $A \subseteq U$ and U is an IF π OS in X. That is U is IFOS in X. By hypothesis $cl(A) \subseteq U$. clearly $cl(int(A)) \cap int(cl(A)) \subseteq cl(A) \subseteq U$. Which implies $cl(int(A)) \cap int(cl(A)) \subseteq U$ whenever $A \subseteq U$ and U is an IF π OS. Therefore A is an IF π g γ *CS in X.

Example 3.12: Let $X = \{a, b\}$ and let $\tau = \{0., T, 1.\}$ is an IFT on X, where $T = \langle x, (0.2, 0.8), (0.3, 0.1) \rangle$. Then the IFS $A = \langle x, (0.1, 0), (0.4, 0.9) \rangle$ is an IF $\pi g \gamma^* CS$ but not an IFGCS in X.

Theorem 3.13: Every IFGSCS is an IF $\pi g \gamma^*$ CS but its converse may not be true.

Proof: Let $A \subseteq U$ and U is an IF π OS in (X, τ) . That is U is IFOS in X. By hypothesis $scl(A) \subseteq U$. That is $A \cup (int(cl(A)) \subseteq U$. Which implies $int(cl(A)) \subseteq U$. Therefore $cl(int(A)) \cap int(cl(A)) \subseteq U$. Hence A is an IF $\pi g \gamma^* CS$ in X.

Example 3.14: Let $X = \{ a, b \}$ and let $\tau = \{0_{-}, T, 1_{-}\}$ is an IFT on X, where $T = \langle x, (0.4, 0.5), (0.3, 0.2) \rangle$. Then the IFS $A = \langle x, (0.3, 0.3), (0.6, 0.6) \rangle$ is an IF $\pi g \gamma^* CS$ in X but not an IFGSCS in X.

Theorem 3.15: Every IF π CS is an IF $\pi g \gamma^*$ CS in (X, τ) but not conversely in general.

Proof: Let A be an IF π CS in (X, τ) . Since every IF π CS is an IFCS, A is an IF $\pi g \gamma^*$ CS in (X, τ) .

Example 3.16: Let $X = \{a, b\}$ and $T = \langle x, (0.5, 0.5), (0.5, 0.6) \rangle$. Then $\tau = \{0_{\sim}, T, 1_{\sim}\}$ is an IFT on X. Here the IFS $A = \langle x, (0.5, 0.5), (0.5, 0.4) \rangle$ is an IF $\pi g \gamma^* CS$ but not an IF πCS in (X, τ) .

Theorem 3.17: Every IF $\pi g \gamma^* CS$ is an IFGPCS but its converse may not be true.

Proof: Let $A \subseteq U$ and U is an $IF\pi OS$ in (X, τ) . That is U is IFOS in X. By hypothesis $pcl(A) \subseteq U$. Which implies $int(cl(A)) \subseteq U$. That is $cl(int(A)) \cap int(cl(A)) \subseteq U$. Therefore A is an $IF\pi g \gamma^* CS$ in X.

Example 3.18: Let $X = \{ a, b \}$ and $T = \langle x, (0.1, 0.8), (0.5, 0.1) \rangle$ and let $\tau = \{0_{\sim}, T, 1_{\sim}\}$ is an IFT on X. the IFS $A = \langle x, (0.1, 0.3), (0.8, 0.7) \rangle$ is an IF $\pi g \gamma^* CS$ but not an IFGPCS in X.

Theorem 3.19: Every IF γ CS is an IF $\pi g \gamma^*$ CS in (X, τ) but not conversely in general.

Proof: Let A be an IF γ CS in (X, τ) . Let $A \subseteq U$ and U be an IF π OS in (X, τ) . Now $cl(int(A)) \cap int(cl(A)) \subset A \subset U$ by hypothesis. Hence A is an IF $\pi g \gamma^*$ CS in (X, τ) .

Example 3.20: Let $X = \{a, b\}$, $T_1 = \langle x, (0.5, 0.6), (0.5, 0.4) \rangle$ and $T_2 = \langle x, (0.2, 0.2), (0.8, 0.8) \rangle$. Then $\tau = \{0_{\sim}, T_1, T_2, 1_{\sim}\}$ is an IFT on X. Here the IFS $A = \langle x, (0.4, 0.6), (0.6, 0.4) \rangle$ is an IF γ *GCS but not an IF γ CS in (X, τ) , as $cl(int(A)) \cap int(cl(A)) = \langle x, (0.5, 0.4), (0.5, 0.6) \rangle \nsubseteq A$.

Theorem 3.21: Every IF $\pi g \gamma^* CS$ is an IF $\gamma^* GCS$ in X. But not conversely in general.

Proof: Let $A \subseteq U$ and U is an IF π OS in (X, τ) . That is U is IFOS in X. By hypothesis γ cl $(A) \subseteq U$. Which implies cl $(int(A)) \cap int(cl(A)) \subseteq U$. Therefore A is an IF $\pi g \gamma$ *CS in X.

Example 3.22: Let $X = \{ a, b \}$ and $T = \langle x, (0.6, 0.6), (0.4, 0.3) \rangle$ and let $\tau = \{0_{\sim}, T, 1_{\sim}\}$ is an IFT on X. the IFS $A = \langle x, (0.4, 0.4), (0.6, 0.5) \rangle$ is an IF $\pi g \gamma^* CS$. Since $cl(int(A)) \cap int(cl(A)) \nsubseteq U$ is IFOS in X, A is not an IF $\gamma^* GCS$ in X.

The following diagram implications are true:

Theorem 3.23 : Let (X, τ) be an IFTS. Then for every $A \in IF\pi g \gamma^* C(X)$ and for every $B \in IFS(X)$, $A \subseteq B \subseteq cl(int(A)) \Rightarrow B \in IF\pi g \gamma^* C(X)$.

Proof: Let $B \subseteq U$ and U be an $IF\pi OS$ in X. Since $A \subseteq B$, $A \subseteq U$. Also $B \subseteq cl(int(A))$, $cl(int(B)) \subseteq cl(int(A))$. Also $int(cl(B)) \subseteq int(cl(A))$. Therefore $cl(int(B)) \cap int(cl(B)) \subseteq cl(int(A)) \subseteq U$, by hypothesis. Hence $B \in IF\pi g \gamma^* C(X)$.

Theorem 3.24: If A is both an IFOS and an IF $\pi g \gamma^* CS$ in (X, τ) then A is an IF γCS in (X, τ) .

Proof: Since A is an IF π OS and A \subseteq A, by hypothesis int(cl(A)) \cap cl(int(A)) \subseteq A. Hence A is an IF γ CS in (X, τ).

Theorem 3.25: If A is both an IFOS and an IF $\pi g \gamma^* CS$ in (X, τ) then A is an IF βCS in (X, τ) .

Proof: Let A be an IF π OS and an IF π g γ *CS in X. Then int(cl(A)) \cap cl(int(A)) \subseteq A, as A \subseteq A. Clearly int(cl(int(A))) = int(cl(int(A))) \cap cl(int(A)) \cap cl(i

Theorem 3.26: If A is an IF π OS and an IF $\pi g \gamma^*$ CS in (X, τ) , then A is an IFSCS in (X, τ) .

Proof: Let A be an IF π OS and an IF $\pi g \gamma$ *CS in X. That is A is an IFOS in X. Then int(cl(A)) \cap cl(int(A)) \subseteq A, as A \subseteq A. Clearly int(cl(A)) = cl(A) \cap int(cl(A)) = cl(int(A)) \cap int(cl(A)) \subseteq A. This implies int(cl(A)) \subseteq A. Hence A is an IFSCS in (X, τ).

Theorem 3.27: For an IFS A in (X, τ) , A is both an IFOS and an IF $\pi g \gamma^* CS$ in X, then A is an IFROS in X.

Proof: Let A be an IF π OS and an IF $\pi g \gamma^*$ CS in X. That A is a IFOS in X. Then $\operatorname{int}(\operatorname{cl}(A)) = \operatorname{int}(\operatorname{cl}(A)) \cap \operatorname{cl}(A) = \operatorname{int}(\operatorname{cl}(A)) \cap \operatorname{cl}(\operatorname{int}(A)) \subseteq A$. Since A is an IFOS, it is an IFPOS and A $\subseteq \operatorname{int}(\operatorname{cl}(A))$. Therefore A = $\operatorname{int}(\operatorname{cl}(A))$ and A is an IFROS in X.

Theorem 3.28: If an IFS A of an IFTS (X, τ) is an intuitionistic fuzzy nowhere dense, then A is an IF $\pi g \gamma^*$ CS in X.

Proof: If A is an intuitionistic fuzzy nowhere dense, then by Definition, $\operatorname{int}(\operatorname{cl}(A)) = 0_{\sim}$ Let $A \subseteq U$ where U is an IF π OS in X. Then $\operatorname{cl}(\operatorname{int}(A)) \cap \operatorname{int}(\operatorname{cl}(A)) = \operatorname{cl}(\operatorname{int}(A)) \cap 0_{\sim} = 0_{\sim}$ $\subseteq U$ and hence A is an IF $\pi g \gamma^*$ CS in X.

Theorem 3.29: Let $A \subseteq Y \subseteq X$ and suppose that A is an $IF\pi g \gamma^* CS$ in X then A is an $IF\pi g \gamma^* CS$ relative to Y.

Proof: Given that $A \subseteq Y \subseteq X$ and A is an $IF\pi g \gamma^* CS$ in X. Now let $A \subseteq Y \cap U$ where U is an $IF\pi OS$ in X. Since A is an $IF\pi g \gamma^* CS$ in X, $A \subseteq U$ implies $cl(int(A)) \cap int(cl(A)) \subseteq U$. It follows that $Y \cap [cl(int(A)) \cap int(cl(A))] = cl_y(int_y(A)) \cap int_y(cl_y(A)) \subseteq Y \cap U = U$. Thus A is an $IF\pi g \gamma^* CS$ relative to Y.

Theorem 3.30: Let $F \subseteq A \subseteq X$ where A is an IF π OS and an IF $\pi g \gamma$ *CS in X. Then F is an IF $\pi g \gamma$ *CS in A if and only if F is an IF $\pi g \gamma$ *CS in X.

Proof: Necessity: Let U be an $IF\pi OS$ in X and $F \subseteq U$. Also let F be an $IF\pi g\gamma *CS$ in A. Then clearly $F \subseteq A \cap U$ and $A \cap U$ is an $IF\pi OS$ in A. Hence $int_A(cl_A(F)) \cap cl_A(int_A(F)) \subseteq A \cap U$ and by theorem, A is an $IF\gamma CS$. Therefore $int(cl(A)) \cap cl(int(A)) \subseteq A$. Now $int(cl(F)) \cap cl(int(F)) \subseteq \{int(cl(F)) \cap cl(int(F))\} \cap A = int_A (cl_A(F)) \cap cl_A (int_A(F)) \subseteq A \cap U \subseteq U$. That is $int(cl(F)) \cap cl(int(F)) \subseteq U$, whenever $F \subseteq U$. Hence F is an $IF\pi g\gamma *CS$ in X.

Sufficiency: Let V be an IF π OS in A such that F \subseteq V. Since A is an IF π OS in X, V is an IF π OS in X. Therefore int(cl(F)) \cap cl(int(F)) \subseteq V as F is an IF $\pi g \gamma^*$ CS in X. Thus, int_A (cl_A(F)) \cap cl_A (int_A(F)) = {int(cl(F)) \cap cl(int(F))} \cap A \subseteq V \cap A \subseteq V. Hence F is an IF $\pi g \gamma^*$ CS in A.

Remark 3.31: The intersection of any two IF $\pi g \gamma^*$ CSs need not be an IF $\pi g \gamma^*$ CS in (X, τ) in general.

Example 3.32: Let $X = \{a, b\}$, $T_1 = \langle x, (0.4, 0.2), (0.6, 0.8) \rangle$ and $T_2 = \langle x, (0.4, 0.4), (0.5, 0.5) \rangle$. Then $\tau = \{0_{\sim}, T_1, T_2, 1_{\sim}\}$ is an IFT on X. Here the IFSs $A = \langle x, (0.4, 0.5), (0.5, 0.4) \rangle$ and $B = \langle x, (0.5, 0.2), (0.4, 0.6) \rangle$ are IF $\pi g \gamma^* CSs$ in (X, τ) but $A \cap B = \langle x, (0.4, 0.2), (0.5, 0.6) \rangle$ is not an IF $\pi g \gamma^* CSs$ in (X, τ)

Theorem 3.33: An IFS A of an IFTS (X, τ) is an IF $\pi g \gamma^* CS$ if and only if $A_{\bar{q}} F \Rightarrow (\operatorname{int}(\operatorname{cl}(A)) \cap \operatorname{cl}(\operatorname{int}(A)))_{\bar{q}} F$ for every IF $\pi CS F$ of X.

Proof: Necessity: Let F be an IF π CS in X and $A_{\overline{q}}$ F, then $A \subseteq F^c$, by Definition, F^c is an IF π OS. Then int(cl(A)) \cap cl(int(A)) \subseteq F^c, by hypothesis. Hence by Definition, (int(cl(A)) \cap cl(int(A))) $_{\overline{q}}$ F.

Sufficiency: Let U be an IF π OS such that $A \subseteq U$. Then U^c is an IF π CS and $A \subseteq (U^c)^c$. By hypothesis, $A_{\overline{q}} U^c \Rightarrow (\operatorname{int}(\operatorname{cl}(A)) \cap \operatorname{cl}(\operatorname{int}(A)))_{\overline{q}} U^c$. Hence $\operatorname{int}(\operatorname{cl}(A)) \cap \operatorname{cl}(\operatorname{int}(A)) \subseteq U^c$. Therefore $\operatorname{int}(\operatorname{cl}(A)) \cap \operatorname{cl}(\operatorname{int}(A)) \subseteq U$ and A is an IF $\pi g \gamma *$ CS in X.

IV. INTUITIONISTIC FUZZY $\pi g \gamma^*$ OPEN SETS

In this section we have introduced intuitionistic fuzzy $\pi g \gamma^*$ open sets and studied some of its properties.

Definition 4.1: An IFS A is said to be an *intuitionistic fuzzy* $\pi g \gamma^*$ open set (IF $\pi g \gamma^*$ OS in short) in (X, τ) if the complement A^c is an IF $\pi g \gamma^*$ CS in X. The family of all IF IF $\pi g \gamma^*$ OSs of an IFTS (X, τ) is denoted by IF $\pi g \gamma^*$ C(X).

Theorem 4.2: For any IFTS (X, τ) , we have the following:

- Every IFOS is an IF $\pi g \gamma$ *OS,
- Every IF α OS is an IF $\pi g \gamma$ *OS,
- Every IFROS is an IF $\pi g \gamma *$ OS,
- Every IFPOS is an IF $\pi g \gamma$ *OS,
- Every IF γ OS is an IF $\pi g \gamma$ *OS
- Every IF π OS is an IF $\pi g \gamma^*$ OS. But the converses are not true in general.

Proof: Straight forward

Example 4.3: Let $X = \{ a, b \}$ and let $\tau = \{0., T, 1.\}$ where $T = \langle x, (0.4, 0.3), (0.6, 0.6) \rangle$. Then the IFS $A = \langle x, (0.5, 0.6), (0.6, 0.3) \rangle$ is an IF $\pi g \gamma^*$ OS but not an IFOS in X.

Example 4.4: Let $X = \{a, b\}$ and let $\tau = \{0_{-}, T_1, T_2, 1_{-}\}$, where $T_1 = \langle x, (0.4, 0.2), (0.6, 0.7) \rangle$, $T_2 = \langle x, (0.7, 0.8), (0.2, 0.2) \rangle$. Then the IFS $A = \langle x, (0.5, 0.5), (0.3, 0.4) \rangle$ is an IF $\pi g \gamma^*$ OS but not an IF α OS in X.

Example 4.5: Let $X = \{a, b\}$ and let $\tau = \{0_-, T, 1_-\}$, where $T = \langle x, (0.3, 0.4), (0.6, 0.6) \rangle$. Then the IFS $A = \langle x, (0.7, 0.6), (0.3, 0.4) \rangle$ is an IF $\pi g \gamma^*$ OS but not an IFSOS in X.

Example 4.6: Let $X = \{a, b\}$ and let $\tau = \{0_-, T_1, T_2, 1_-\}$, where $T_1 = \langle x, (0.3, 0.3), (0.4, 0.6) \rangle$, $T_2 = \langle x, (0.7, 0.8), (0.3, 0.2) \rangle$. Then the IFS $A = \langle x, (0.5, 0.5), (0.4, 0.4) \rangle$ is an IF $\pi g \gamma^*$ OS but not an IFPOS in X.

Example 4.7: Let $X = \{a, b\}$, $T_1 = \langle x, (0.5, 0.6), (0.5, 0.4) \rangle$ and $T_2 = \langle x, (0.2, 0.2), (0.8, 0.8) \rangle$. Then $\tau = \{0_-, T_1, T_2, 1_-\}$ is an IFT on X. Here the IFS A = $\langle x, (0.6, 0.4), (0.4, 0.6) \rangle$ is an IF γ *GOS but not an IF γ OS in (X, τ) .

Example 4.8: Let $X = \{a, b\}$ and $T = \langle x, (0.5, 0.5), (0.5, 0.6) \rangle$. Then $\tau = \{0_{\sim}, T, 1_{\sim}\}$ is an IFT on X. Here the IFS $A = \langle x, (0.5, 0.4), (0.5, 0.5) \rangle$ is an IF $\pi g \gamma^*$ OS but not an IF π OS in (X, τ) .

Theorem 4.9: For any IFTS (X, τ) , we have the following:

- Every IFGOS is an IF $\pi g \gamma^*$ OS,
- Every IFGSOS is an IF $\pi g \gamma$ *OS,
- Every IFGPOS is an IF $\pi g \gamma$ *OS,
- Every IF $\pi g \gamma$ *OS is an IF γ *GOS. But the converses are not true in general.

Proof: Straight forward

Example 4.10: Let $X = \{ a, b \}$ and let $\tau = \{0_{\sim}, T, 1_{\sim}\}$ is an IFT on X, where $T = \langle x, (0.2, 0.8), (0.3, 0.1) \rangle$. Then the IFS $A = \langle x, (0.4, 0.9), (0.1, 0) \rangle$ is an IF $\pi g \gamma^*$ OS but not an IFGOS in X.

Example 4.11: Let $X = \{a, b\}$ and let $\tau = \{0_{-}, T, 1_{-}\}$ is an IFT on X, where $T = \langle x, (0.4, 0.5), (0.3, 0.2) \rangle$. Then the IFS $A = \langle x, (0.6, 0.6), (0.3, 0.3) \rangle$ is an IF $\pi g \gamma^*$ OS in X but not an IFGSOS in X.

Example 4.12: Let $X = \{ a, b \}$ and $T = \langle x, (0.1, 0.8), (0.5, 0.1) \rangle$ and let $\tau = \{0_{\sim}, T, 1_{\sim}\}$ is an IFT on X. the IFS $A = \langle x, (0.8, 0.7), (0.1, 0.3) \rangle$ is an IF $\pi g \gamma * OS$ but not an IFGPOS in X.

Example 4.13: Let $X = \{ a, b \}$ and $T = \langle x, (0.6, 0.6), (0.4, 0.3) \rangle$ and let $\tau = \{0_-, T, 1_-\}$ is an IFT on X. the IFS $A = \langle x, (0.4, 0.4), (0.6, 0.5) \rangle$ is an IF $\pi g \gamma^* CS$. Since $cl(int(A)) \cap int(cl(A)) \nsubseteq U$ is IFOS in X , A is not an IF $\gamma^* GCS$ in X.

Theorem 4.14: Let (X, τ) be an IFTS. Then for every IFS A and for every $B \in IFRC(X)$, $B \subseteq A \subseteq cl(int(B)) \cap int(cl(B))$ implies A is an $IF\pi g \gamma^* CS$ in X.

Proof: Let B be an IFRCS in X. Then B = cl(int(B)). By hypothesis, $A \subseteq (cl(int(B)) \cap int(cl(B))) = B \cap int(cl(B)) \subseteq int(cl(B)) \subseteq int(cl(A))$ as $B \subseteq A$. Therefore A is an IFPOS and by Proposition, A is an IF $\pi g \gamma^*$ OS in X.

V. APPLICATIONS OF INTUITIONISTIC FUZZY $\pi g \gamma^*$ CLOSED SETS

In this section we provide some applications of intuitionistic fuzzy $\pi g \gamma^*$ closed sets.

Definition 5.1: An IFTS (X, τ) is said to be an intuitionistic fuzzy $\pi \gamma^* T_{1/2}$ (in short IF $\pi \gamma^* T_{1/2}$) space if every IF $\pi g \gamma^* CS$ in X is an IF γCS in X.

Definition 5.2: An IFTS (X, τ) is said to be an intuitionistic fuzzy $\pi \gamma^* c T_{1/2}$ (in short IF $\pi \gamma^* c T_{1/2}$) space if every IF $\pi g \gamma^* CS$ in X is an IFCS in X.

Definition 5.3: An IFTS (X, τ) is an intuitionistic fuzzy $\pi \gamma^* p T_{1/2}$ (IF $\gamma^* p T_{1/2}$) space if every IF $\pi g \gamma^*$ CS is an IFPCS in X.

Example 5.4: Let $X = \{a, b\}$, $T_1 = \langle x, (0.4, 0.5), (0.6, 0.5) \rangle$ and $T_2 = \langle x, (0.6, 0.5), (0.4, 0.5), (0.6, 0.5) \rangle$ 0.5). Then $\tau = \{0_{\sim}, T_1, T_2, 1_{\sim}\}$ is an IFT on X. Hence is an IF $\gamma * pT_{1/2}$ space.

Definition 5.5: An IFTS (X, τ) is an intuitionistic fuzzy $\pi \gamma^* g T_{1/2}$ (IF $\gamma^* g T_{1/2}$) space if every IF $\pi g \gamma^*$ CS is an IFGCS in X.

Theorem 5.6: Every IF $\pi \gamma^* p T_{1/2}$ space is an IF $\pi \gamma^* T_{1/2}$ space.

Proof: Let (X, τ) be an IF $\pi \gamma * pT_{1/2}$ space and let A be an IF $\pi g \gamma * CS$ in X. By hypothesis A is an IFPCS in X. Since every IFPCS is an IF γ CS, A is an IF γ CS in X. Hence (X, τ) is an IF $\pi \gamma * T_{1/2}$ space.

Theorem 5.7: Every IF $\pi \gamma * cT_{1/2}$ space is an IF $\pi \gamma * gT_{1/2}$ space.

Proof: Let (X, τ) be an IF $\pi \gamma^* cT_{1/2}$ space and let A be an IF $\pi g \gamma^* cS$ in X. By hypothesis A is an IFCS in X. Since every IFCS is an IFGCS, A is an IFGCS in X. Hence (X, τ) is an IF $\pi \gamma * gT_{1/2}$ space.

Theorem 5.8: Every IF $\pi \gamma * cT_{1/2}$ space is an IF $\pi \gamma * T_{1/2}$ space.

Proof: Let (X, τ) be an IF $\pi \gamma * cT_{1/2}$ space and let A be an IF $\pi g \gamma * CS$ in X. By hypothesis A is an IFCS in X. Since every IFCS is an IF γ CS, A is an IF γ CS in X. Hence (X, τ) is an IF $\pi\gamma^*$ T_{1/2} space.

Theorem 5.9: Every IF $\pi \gamma^* cT_{1/2}$ space is an IF $\pi \gamma^* pT_{1/2}$ space but not conversely in general.

Proof: Let (X, τ) be an IF $\pi \gamma * cT_{1/2}$ space and let A be an IF $\pi \gamma * GCS$ in X. By hypothesis A is an IFCS in X. Since every IFCS is an IFPCS, A is an IFPCS in X. Hence (X, τ) is an IF π γ*pT_{1/2} space.

Example 5.10: Let $X = \{a, b\}, T_1 = \langle x, (0.5, 0.5), (0.5, 0.6) \rangle$ and $T_2 = \langle x, (0.5, 0.6), (0.5, 0.6), (0.5, 0.6) \rangle$ 0.5). Then $\tau = \{0_{\sim}, T_1, T_2, 1_{\sim}\}$ is an IFT on X. Here (X, τ) is an IF $\pi \gamma * pT_{1/2}$ space but not an IF $\pi\gamma^*cT_{1/2}$ space, since the IFS A = $\langle x, (0.5, 0.8), (0.4, 0.2) \rangle$ is an IF $\pi\gamma^*GCS$ but not an IFCS in X.

Theorem 5.11: An IFTS (X, τ) is an $IF\pi\gamma^*T_{1/2}$ space if and only if $IF\gamma O(X) =$ IF $\pi g \gamma * O(X)$.

Proof: Necessity: Let A be an IF $\pi g \gamma^* OS$ in (X, τ) , then A^c is an IF $\pi g \gamma^* CS$ in (X, τ) . By hypothesis, A^c is an IF γ CS in (X, τ) . Therefore A is an IF γ OS in (X, τ) . Hence IF γ O(X) =IF $\pi g \gamma * O(X)$.

Sufficiency: Let A be an IF $\pi g \gamma^* CS$ in (X, τ) . Then A^c is an IF $\pi g \gamma^* CS$ in (X, τ) . By hypothesis A^c is an IF γ OS in (X, τ) and therefore A is an IF γ CS in (X, τ) . Hence (X, τ) is an IF $\pi\gamma^*T_{1/2}$ space.

Theorem 5.12: An IFTS (X, τ) is an IF $\pi \gamma^* cT_{1/2}$ space if and only if IF $\pi g \gamma^* O(X) =$ IFO(X).

Proof: Necessity: Let A be an IF $\pi g \gamma^*$ OS in (X, τ) , then A^c is an IF $\pi g \gamma^*$ CS in (X, τ) . By hypothesis A^c is an IFCS in (X, τ) . Hence A is an IFOS in (X, τ) . Thus $IF\pi\gamma^*O(X) =$ IFO(X).

Sufficiency: Let A be an IF $\pi g \gamma^* CS$ in (X, τ) . Then A^c is an IF $\pi g \gamma^* CS$ in (X, τ) . By hypothesis A^c is an IFOS in (X, τ) . Therefore A is an IFCS in (X, τ) . Hence (X, τ) is an IF $\pi \gamma^* cT_{1/2}$ space.

REFERENCES

- [1] Atanassov. K., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
- [2] Bin Shahna A. S., "On fuzzy strong semi continuity and fuzzy and fuzzy precontinuity", Fuzzy Sets and Systems, 44(1991), 303-308.
- [3] Coker. D., An introduction to fuzzy topological space, Fuzzy sets and systems, 88(1997), 81-89.
- [4] Coker, D., and Demirci, M., "On Intuitionistic Fuzzy Points", Notes on intuitionistic fuzzy sets 1(1995),
- [5] Hanafy, I. M., "Intuitionistic Fuzzy γ-Continuity", Canad. Math. Bull. 52(2009), 544–554.
- [6] Joung Kon Jeon, Young Bae Jun, and Jin Han Park, Intuitionistic fuzzy alpha continuity and intuitionistic fuzzy pre continuity, International Journal of Mathematics and Mathematical Sciences, 19 (2005), 3091-3101.
- [7] Maragathavalli, S and Ramesh, K., Intuitionistic Fuzzy π Generalized Semi Closed sets, Advances in Theoretical and Applied Sciences, 1(2012), 33-42.
- [8] Riya V. M and Jayanthi D, Generalized Closed γ* On Intuitionistic Fuzzy Sets, Advances in Fuzzy Mathematics. 12 (2017), 389-410.
- [9] Sakthivel, K., Intuitionistic Fuzzy Alpha Generalized Continuous Mappings and Intuitionistic AlphaGeneralized Irresolute Mappings, Applied Mathematical Sciences., 4(2010), 1831 1842.
- [10] Santhi, R and Jayanthi, D., Intuitionistic fuzzy generalized semi-pre closed sets, Tripura math. Soc. 1(2009), 61-72.
- [11] Santhi, R. and Sakthivel, K., Intuitionistic fuzzy generalized semicontinuous mappings, Advances in Theoretical and Applied Mathematics, 5 (2009), 73-82.
- [12] Thakur, S.S. and Rekha Chaturvedi, Regular generalized closed sets in intuitionistic fuzzy topological spaces, Universitatea Din Bacau, Studii Si Cercetari Stiintifice, Seria: Matematica, 16 (2006), 257-272.
- [13] Young Bae Jun and Seok- Zun Song, Intuitionistic fuzzy semi-pre open sets and Intuitionistic semi-pre continuos mappings, jour. of Appl. Math and computing, 19(2005), 467-474.
- [14] Zadeh. L. A., Fuzzy sets, Information and control, 8(1965), 338-353.