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Abstract

This paper is devoted to the study of intuitionistic fuzzy topological spaces. In this
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I. INTRODUCTION

The concept of intuitionistic fuzzy sets was introduced by Atanassov[1]. Coker
[3] introduced intuitionistic fuzzy topological spaces using the notion of intuitionistic
fuzzy sets. In this paper we have introduced intuitionistic fuzzy mgy*closed sets and
intuitionistic fuzzy mgy*open sets.

I1. PRELIMINARIES

Definition 2.1: [1] Let X be a non empty fixed set. An intuitionistic fuzzy set (IFS in short)
A'in Xis an object having the form A = { ( x, pa(x), va(X) ) /x € X }

where the functions pa (X): X — [0,1] and va(X): X — [0,1] denote the degree of
membership (namely pa(X)) and the degree of hon-membership (namely va(X)) of each
element x € X to the set A, respectively, and 0 < pa (x) + va(x) < 1 for each x € X.
Denote by IFS(X), the set of all intuitionistic fuzzy sets in X.

Definition 2.2: [1] Let A and B be IFSs of the form A = { {( X, pa(x), va(X) ) / X € X }
and B = { {x, ug(x), vg(X) )/ x € X }. Then

(@) A cBifand only if pa(x) < pg (x) and va(x) > vg(X) for all x € X

(b) A=Bifandonlyif AcBandBc A

(© A"={(x vaXx),pa(X))/ x e X}

(d) ANB={{x, paX) A ps(x), va(X) v vg(X) ) / x € X }

(&) AUB={(x paX) v us(x), va(X) Ave(X)) /x e X}

For the sake of simplicity, we shall use the notation A = { x, (ua, ts ), (Va, vg) ) instead of
A =({x, (A/ua, B/ug), (A/va, B/vg) ) .

The intuitionistic fuzzy sets 0- = {(x,0,1)/x e X}and 1-.={(x,1,0)/x e X} are
respectively the empty set and the whole set of X.

Definition 2.3: [3] An intuitionistic fuzzy topology (IFT in short) on X is a family t of IFSs
in X satisfying the following axioms.

(i) 0,1 e

(i) Gi1N Gyet, forany G, Gy et
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(iii) U Gj e 1 for any family { G;/ ieJ}ct.
In this case the pair (X, 1) is called an intuitionistic fuzzy topological space (IFTS in short)
and any IFS in t is known as an intuitionistic fuzzy open set (IFOS in short) in X.

The complement A° of an IFOS A in an IFTS (X, 1) is called an intuitionistic fuzzy
closed set (IFCS in short) in X.

Definition 2.4: [3] Let (X, 1) be an IFTS and A = ( X, pa, va ) be an IFS in X. Then the
intuitionistic fuzzy interior and an intuitionistic fuzzy closure are defined by

int(A)= U{G/GisanIFOSinXandGc A},

cl(A) =n{K/KisanIFCSin Xand Ac K}

Note that for any IFS A in (X, 1), we have cl(A®) = (int(A))° and int(A°) = (cl(A))".

Definition 2.5: [6] An IFS A = ( x, pa, va ) in an IFTS (X, 1) is said to be an
intuitionistic fuzzy semi closed set (IFSCS in short) if int(cl(A)) < A.

Definition 2.6: [6] An IFS A = ( x, pa, va ) in an IFTS (X, 1) is said to be an
intuitionistic fuzzy semi open set (IFSOS in short) if A c cl(int(A)).
Every IFOS in (X, t) is an IFSOS in X.

Definition 2.7: [13] An IFS A of an IFTS (X, 1) is an
(i) intuitionistic fuzzy pre closed set (IFPCS in short) if cl(int(A)) c A,
(i) ntuitionistic fuzzy pre open set (IFPOS in short) if A c int(cl(A)).

Definition 2.8: [13] AnIFS A of an IFTS (X, 1) is an
(i) intuitionistic fuzzy a-open set (IFaOS in short) if Ac int(cl(int(A))),
(i) intuitionistic fuzzy a-closed set (IFaCS in short) if cl(int(cl(A)) < A.

Definition 2.9:[5] An IFS A of an IFTS (X, ) is an
(i) intuitionistic fuzzyy-open set (IFyOS in short) if A c int(cl(A)) U cl(int(A)),
(i) intuitionistic fuzzyy-closed set (IFyCS in short) if cl(int(A)) n int(cl(A)) < A.

Definition 2.10: [6] AnIFS A of an IFTS (X, 1) is an
(i) intuitionistic fuzzy reqular open set (IFROS in short) if A = int(cl(A)),
(i) intuitionistic fuzzy reqular closed set (IFRCS in short) if A = cl(int(A)).

Definition 2.11: [7] The union of IFROSs is called intuitionistic fuzzy m-open set (IFTOS
in short) of an IFTS (X, 7). The complement of IFOS is called intuitionistic fuzzy T -closed
set (IFCS in short).

Definition 2.12: [12] An IFS A of an IFTS (X, 1) is an intuitionistic fuzzy generalized closed
set (IFGCS in short) if cl(A) < U whenever A c U and U is an IFOS in X.

Definition 2.13: [13] An IFS A of an IFTS (X, 1) is an intuitionistic fuzzy generalized open
set (IFGOS in short) if A®is an IFGCS in X.

Definition 2.14: [11] Let an IFS A of an IFTS (X, t). Then semi closure of A (scl(A) in
short) and semi interior of A (sint(A)) in short) are defined as

scl (A) = N{K/KisanIFSCSinXand Ac K}

sint(A) = U{K/Kisan IFSOSin X and K c A}.

Definition 2.15: [11] An IFS A of an IFTS (X, t) is an intuitionistic fuzzy generalized semi
closed set (IFGSCS in short) if scl(A) < U whenever Ac U and U is an IFOS in X.
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Definition 2.16: [11] An IFS A of an IFTS (X, 1) is an intuitionistic fuzzy generalized semi
open set (IFGSOS in short) if A®is an IFGSCS in X.

The family of all IFGSCSs (resp. IFGSOSs) of an IFTS (X, 1) is denoted by
IFGSC(X)(resp. IFGSO(X)).

Result 2.17: [11] Let A be an IFS in (X, 1), then
(i) scl(A) = A U int(cl(A))
(ii) sint(A) = A n cl(int(A))
If A'is an IFS of X then scl(A%) = (sint(A))°

Definition 2.18: [9] Let an IFS A of an IFTS (X, t). Then pre closure of A (pcl(A) in
short) and pre interior of A (pint(A)) are defined as

pcl (A)= N{K/Kisan IFPCSin Xand Ac K}

pint(A) = U{ K/Kisan IFPOS in X and K c A}.

Definition 2.19: [9] An IFS A of an IFTS (X, 1) is an intuitionistic fuzzy generalized pre
closed set (IFGPCS in short) if pcl(A) < U whenever A < U and U is an IFOS in X. The
complement of IFGPCS is called an intuitionistic fuzzy generalized pre open set (IFGPOS in
short).

Definition 2.20: [9] Let an IFS A of an IFTS (X, 7). Then alpha closure of A (acl(A) in
short) and alpha interior of A (aint(A)) in short) are defined as

acl (A)= n{K/KisanIFaCSin Xand AcK}.

aint(A) = U{K/Kisan IFaOS in X and K c A}.

Result 2.21: [9] Let A be an IFS in (X, 7). Then
(i) acl(A) = A u cl(int(cl(A)))
(i) aiint(A) = A n int(cl(int(A)))

Definition 2.22: [9] An IFS A of an IFTS (X, 1) is an intuitionistic fuzzy alpha generalized
closed set (IFaGCS in short) if acl(A) < U whenever A c U and U is an IFOS in X. The
complement of IFaGCS is called an intuitionistic fuzzy generalized open set (IFaGOS in
short).

Definition 2.23: [8] An IFS A of an IFTS (X, 1) is an intuitionistic fuzzy y™ generalized
closed set (IFy*GCS in short) if cl(int(A)) N int(cl(A)) < U whenever Ac U and U isan

IFOS in (X, 7). The complement of IFy*GCS is called an intuitionistic fuzzy generalized
open set (IFaGOS in short).

Definition 2.24: [12] Two IFSs are said to be g-coincident (A g B in short) if and only if
there exists an element x € X such that pa (x) > ve(x) or va(x) < pg (X).

Definition 2.25: [12] For any two IFSs A and B of X, (4, B) iff Ac B®.

1. INTUITIONISTIC FUZZY mgy* CLOSED SETS

In this section we introduce intuitionistic fuzzy mgy™ closed sets and studied
some of its properties.

Definition 3.1: An IFS A in (X, 1) is said to be an intuitionistic fuzzy mgy™ closed set
(IFgy*CS in short) if cl(int(A)) n int(cl(A)) < U whenever A c U and U isan IFzOS
in (X, 7).
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Example 3.2: Let X = { a, b } and let t = {0, T, 1.} is an IFT on X, where
T =(x, (0.8, 0.4), (0.2, 0.3) ). Then the IFS A = ( %, (0.2, 0.1), (0.8, 0.8) ) is an
IFTgy*CSin (X, 7).

Theorem 3.3: Every IFCS is an IFgy*CS but not conversely.

Proof: Let A c U and U is an IFzOS in (X, 1). Since cl(int(A)) N int(cl(A)) < cl(A) and
A is an IFCS, cl(int(A)) N int(cl(A)) < cl(A) = A < U. Therefore A is an IFrgy*CS in
X.

Example 3.4: Let X = { a, b } and let T = {0_, T, 1.} where T = { x, (0.4, 0.3),
(0.6, 0.6) ). Then the IFS A = ( x, (0.5, 0.3), (0.5, 0.6) ) is an IFTgy™*CS but not an IFCS
in X.

Theorem 3.5: Every IFaCS is an IFrgy™*CS but not conversely.

Proof: Let A c U and U is an IFxOS in (X, ). That is U is IFOS in X. By hypothesis
cl(int(A)) N int(cl(A)) < cl(int(cl(A))) N cl(int(cl(A))) < A N A < U. Hence cl(int(A)) N
int(cl(A)) < U. Therefore A is an IFtgy*CS in X.

Example 3.6: Let X ={ a,b } and let t = {0-, T1, T,, 1.}, where T; =(X, (0.4, 0.2), (0.6,
0.7) ), T, =(x, (0.8, 0.8), (0.2, 0.2) ). Then the IFS A = (x, (0.4, 0.4), (0.5, 0.5) ) is an
IFTgy*CS but not an IFaCS in X.

Theorem 3.7: Every IFSCS is an IFrgy™*CS but not conversely.

Proof: Let A c U and U is an IFzOS in (X, 7). By hypothesis cl(int(A)) N int(cl(A)) <

cl(int(A)) N A < U. Hence cl(int(A)) N int(cl(A)) < U. Therefore A is an IFzgy*CS in
X.

Example 3.8: Let X={a,b } and lett= {0, T, 1.}, where T = (X, (0.3, 0.4), (0.6, 0.6)
). Then the IFS A = (x, (0.3, 0.3), (0.7, 0.6) ) is an IFrgy™*CS but not an IFSCS in X.

Theorem 3.9: Every IFPCS is an IFrgy™*CS but not conversely.

Proof: Let A < U and U is an [FzOS in (X, 7). By hypothesis cl(int(A)) N int(cl(A)) <
int(cl(A)) <A < U. Hence cl(int(A)) N int(cl(A)) < U. Therefore A is an IFrgy*CS in X.

Example 3.10: Let X = { a, b } and let t = {0, Ty, T,, 1.}, where T; = (X, (0.3, 0.3),
(0.4,0.6) ), T,=(Xx, (0.7, 0.8), (0.3,0.2) ). Then the IFS A = (x, (0.4, 0.4), (0.5, 0.5) ) is
an IFrgy*CS but not an IFPCS in X.

Theorem 3.11: Every IFGCS is an IFrgy*CS but its converse may not be true.

Proof: Let IFS A is an IFGCS in (X, 7). Let A c U and U is an IFTOS in X. That is U is
IFOS in X. By hypothesis cl(A) < U. clearly cl(int(A)) N int(cl(A)) < cl(A) < U. Which
implies cl(int(A)) N int(cl(A)) < U whenever A < U and U is an IFTOS. Therefore A is
an IFrgy*CSin X.

Example 3.12: Let X = { a, b } and let T = {0, T, 1.} is an IFT on X, where
T=(x, (0.2,0.8), (0.3,0.1) ). Then the IFS A = (%, (0.1, 0), (0.4, 0.9) ) is an IFTgy*CS
but not an IFGCS in X.

Theorem 3.13: Every IFGSCS is an IFrgy*CS but its converse may not be true.
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Proof: Let A c U and U is an IFzOS in (X, t). That is U is IFOS in X. By hypothesis
scl(A) < U. That is Au(int(cl(A)) < U. Which implies int(cl(A)) < U. Therefore
cl(int(A)) N int(cl(A)) < U. Hence A is an IFrgy*CS in X.

Example 3.14: Let X = { a, b } and let T = {0, T, 1.} is an IFT on X, where
T =(Xx, (04, 0.5), (0.3, 0.2) ). Then the IFS A = ( %, (0.3, 0.3), (0.6, 0.6) ) is an
IFTgy™CS in X but not an IFGSCS in X.

Theorem 3.15: Every IFZCS is an IFrgy*CS in (X, 1) but not conversely in general.

Proof: Let A be an IFzCS in (X, 7). Since every IFTCS is an IFCS, A is an IFrgy*CS in
X, 7).

Example 3.16: Let X ={a, b} and T = ( %, (0.5, 0.5), (0.5, 0.6) ). Thent= {0, T, 1.} is
an IFT on X. Here the IFS A = ( x, (0.5, 0.5), (0.5, 0.4) ) is an IFTgy™*CS but not an
IFCS in (X, 7).

Theorem 3.17: Every IFrgy*CS is an IFGPCS but its converse may not be true.

Proof: Let A c U and U is an IFZOS in (X, 7). That is U is IFOS in X. By hypothesis
pcl(A) < U. Which implies int(cl(A)) < U. That is cl(int(A))Nint(cl(A)) < U. Therefore
Alis an IFrgy*CSin X.

Example 3.18: Let X = { a, b } and T = ( x, (0.1, 0.8), (0.5, 0.1) ) and let
t={0., T, 1}isan IFT on X. the IFS A =(Xx, (0.1, 0.3), (0.8, 0.7) ) is an IFzgy*CS
but not an IFGPCS in X.

Theorem 3.19: Every IFyCS is an IFrgy*CS in (X, 1) but not conversely in general.

Proof: Let A be an IFyCS in (X, 7). Let A < U and U be an IFzOS in (X, 7). Now
cl(int(A)) N int(cl(A)) < A < U by hypothesis. Hence A is an IFzgy*CS in (X, 1).

Example 3.20: Let X = {a, b}, T; = (x, (0.5, 0.6), (0.5, 0.4)) and T, =(x, (0.2, 0.2), (0.8,
0.8)). Then T = {0-, Ty, Tp, 1.} is an IFT on X. Here the IFS A =(x, (0.4, 0.6), (0.6, 0.4))
is an IFy*GCS but not an IFyCS in (X, 1), as cl(int(A)) N int(cl(A)) = = (x, (0.5, 0.4),
(05,0.6)) € A.

Theorem 3.21: Every IFrgy*CS is an IFy*GCS in X. But not conversely in general.

Proof: Let A c U and U is an IFrOS in (X, t). That is U is IFOS in X. By hypothesis
yCl(A) < U. Which implies cl(int(A))Nint(cl(A)) < U. Therefore A is an IFrgy*CS in X.

Example 3.22: Let X = { a, b} and T = ( x, (0.6, 0.6), (0.4, 0.3) ) and let
1={0., T,1}isan IFT on X. the IFS A = (X, (0.4, 0.4), (0.6, 0.5) ) is an IFrgy*CS.
Since cl(int(A))Nint(cl(A)) € U is IFOS in X, Ais not an IFy*GCS in X.

The following diagram implications are true:

IFnCS —— »IFGCS ——  » |FOLGCS\

IFRCS —  »IFeCS ——» IFn'gy*CS <«— IFGSCS

IFCS /IFGPCS / IFy*GCS /
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Theorem 3.23 : Let (X, 1) be an IFTS. Then for every A e IFrgy*C(X) and for every B
e IFS(X), A c B ccl(int(A)) = B e IFTgy*C(X).

Proof: Let B < U and U be an IFZOS in X. Since A < B, A < U. Also B c cl(int(A)),
cl(int(B)) < cl(int(A)). Also int(cl(B)) < int(cl(A)). Therefore cl(int(B)) N int(cl(B)) <
cl(int(A)) < U, by hypothesis. Hence B € IFrgy*C(X).

Theorem 3.24: If A is both an IFOS and an IFzgy*CS in (X, 7) then A is an [FyCS in
X, 7).

Proof: Since A is an IFTOS and A < A, by hypothesis int(cl(A)) N cl(int(A)) < A.
Hence A is an IFyCS in (X, 1).

Theorem 3.25: If A is both an IFOS and an IFrgy*CS in (X, 1) then A is an IFBCS in
X, 1).

Proof: Let A be an IFzOS and an IFzgy*CS in X. Then int(cl(A)) N cl(int(A)) < A, as
A c A. Clearly int(cl(int(A))) = int(cl(int(A))) N cl(int(A)) < int(cl(A)) N cl(int(A)) < A.
Therefore int(cl(int(A))) < A. Hence A is an IFBCS in (X, 1).

Theorem 3.26: If Ais an IFZOS and an IFrgy*CS in (X, t), then Alisan IFSCS in (X,
).

Proof: Let A be an IFzOS and an IFrgy*CS in X. That is A is an IFOS in X. Then
int(cl(A)) N cl(int(A)) < A, as A < A. Clearly int(cl(A)) = cl(A) N int(cl(A)) = cl(int(A))
N int(cl(A)) = A. This implies int(cl(A)) c A.  Hence Aiis an IFSCS in (X, ).

Theorem 3.27: For an IFS A in (X, 1), A is both an IFOS and an IFrgy*CS in X, then A
isan IFROS in X.

Proof: Let A be an IFTOS and an IFrgy*CS in X. That A is a IFOS in X. Then
int(cl(A)) = int(cl(A)) N cl(A) = int(cl(A)) N cl(int(A)) < A. Since A is an IFOS, it is an
IFPOS and A c int(cl(A)). Therefore A = int(cl(A)) and A is an IFROS in X.

Theorem 3.28: If an IFS A of an IFTS (X, 1) is an intuitionistic fuzzy nowhere dense,
then Ais an IFTgy*CS in X.

Proof: If A is an intuitionistic fuzzy nowhere dense, then by Definition, int(cl(A)) = 0.
Let Ac U where U is an IFZQOS in X. Then cl(int(A)) N int(cl(A)) = cl(int(A)) N 0- = 0-
c U and hence A isan IFTgy*CS in X.

Theorem 3.29: Let A <Y < X and suppose that A is an IFrgy*CS in X then A is an
IFTgy*CS relativeto Y.

Proof: Given that A Y < X and A is an IFTgy*CS in X. Now let A <Y N U where U
is an IFzOS in X. Since A is an IFtgy*CS in X, A < U implies cl(int(A)) N
int(cl(A)) < U. It follows that Y N [cl(int(A)) N int(cl(A))] = cly(int,(A)) N inty,(cly (A))
cYNU=U.Thus Aisan IFtgy*CS relative toY.

Theorem 3.30: Let F A < X where A is an IFzOS and an IFrgy*CS in X. Then F is
an IFrgy*CS in Aif and only if F is an IFzgy*CS in X.

Proof: Necessity: Let U be an IFrOS in X and F < U. Also let F be an IFzgy*CS in A.
Then clearly F < A N U and A N U is an IF7OS in A. Hence inta(cla(F)) N cla(inta(F))
< A N U and by theorem, A is an IFyCS. Therefore int(cl(A)) N cl(int(A)) < A. Now
int(cl(F)) N cl(int(F)) < {int(cl(F)) N cl(int(F))} N A = inta (CIa(F)) N cla (inta(F)) < A
N U < U. That is int(cl(F)) N cl(int(F)) < U, whenever F < U. Hence F is an IFrgy*CS
in X.
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Sufficiency: Let V be an IFzOS in A such that FcV. Since A is an IFTOS in X, V is an
IFmOS in X. Therefore int(cl(F)) N cl(int(F)) < V as F is an IFrgy*CS in X. Thus, inta
(cla(F)) N cla (inta(F)) = {int(cl(F)) N cl(int(F))} N A =V N A < V. Hence F is an
IFTgy*CSin A.

Remark 3.31: The intersection of any two IFrgy*CSs need not be an IFrgy*CS in (X,
1T) in general.

Example 3.32: Let X = {a, b}, T, =(x, (0.4, 0.2), (0.6, 0.8)) and T, =(x, (0.4, 0.4), (0.5,
0.5)). Then t={0-, Ty, To, 1.} isan IFT on X. Here the IFSs A = (x, (0.4, 0.5), (0.5,
0.4)) and B = ({x, (0.5, 0.2), (0.4, 0.6)) are IFrgy*CSs in (X, 1) but A N B =¢X, (0.4, 0.2),
(0.5, 0.6)) is not an IFTgy*CS in (X, 1)

Theorem 3.33: An IFS A of an IFTS (X, 1) is an IFzgy*CS if and only if Az F=
(int(cl(A)) N cI(int(A))]tT F for every IFCS F of X.

Proof: Necessity: Let F be an IFrCS in X and A, F, then A ¢ F°, by Definition, F° is

an IFmOS. Then int(cl(A)) N cl(int(A)) = F°, by hypothesis. Hence by Definition,
(int(cl(A) N cl(int(A)) 5 F.

Sufficiency: Let U be an IFOS such that A < U. Then U® is an IFZCS and A < (U°".
By hypothesis, A U= (int(cl(A)) N cl(int(A))) sU°. Hence int(cl(A)) N el(int(A)) =

(U9° = U. Therefore int(cl(A)) N cl(int(A)) < U and A is an IFtgy*CS in X.

IV. INTUITIONISTIC FUZZY mgy* OPEN SETS

In this section we have introduced intuitionistic fuzzy mgy™ open sets and studied
some of its properties.

Definition 4.1: An IFS A is said to be an intuitionistic fuzzy wgy™open set (IFtgy*0S in
short) in (X, t) if the complement A® is an IFrgy*CS in X.
The family of all IF IFrgy*0Ss of an IFTS (X, 1) is denoted by IFrgy*C(X).

Theorem 4.2: For any IFTS (X, 1), we have the following:
e Every IFOSisan IFrgy*0S,
Every IFaOS is an IFrgy*OS,
Every IFROS is an IFrgy*0OS,
Every IFPOS is an IFtgy*0S,
Every IFyOS is an IFTtgy*0OS
Every IFOS is an IFTgy*0S. But the converses are not true in general.

Proof: Straight forward

Example 4.3: Let X = {a,b } and let T = {0, T, 1.} where T = ( X, (0.4, 0.3),
(0.6, 0.6) ). Then the IFS A = ( x, (0.5, 0.6), (0.6, 0.3) ) is an IFrgy*OS but not an IFOS
in X.

Example 4.4: Let X ={a,b } and let t= {0-, Ty, T,, 1.}, where T; =(X, (0.4, 0.2), (0.6,
0.7) ), T, =(x, (0.7, 0.8), (0.2, 0.2) ). Then the IFS A =X, (0.5, 0.5), (0.3, 0.4) ) isan
IFgy*0S but not an IFa.OS in X.
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Example 4.5: Let X ={a,b } and lett= {0, T, 1.}, where T = (X, (0.3, 0.4), (0.6, 0.6)
). Then the IFS A ={x, (0.7, 0.6), (0.3, 0.4) ) is an IFrgy>*OS but not an IFSOS in X.

Example 4.6: Let X ={ a,b } and let t= {0-, T1, T,, 1.}, where T; =(X, (0.3, 0.3), (0.4,
0.6) ), T,=(x, (0.7,0.8), (0.3,0.2) ). Then the IFS A = (x, (0.5, 0.5), (0.4,
0.4) ) is an IFTgy*0S but not an IFPOS in X.

Example 4.7: Let X = {a, b}, T, = (X, (0.5, 0.6), (0.5, 0.4)) and T, =(x, (0.2, 0.2), (0.8,
0.8)). Then t={0., Ty, To, 1.} isan IFT on X. Here the IFS A =(x, (0.6,
0.4), (0.4, 0.6)) is an IFy*GOS but not an IFyOS in (X, 1).

Example 4.8: Let X = {a, b} and T =( X, (0.5, 0.5), (0.5, 0.6) ). Thent= {0-, T, 1.} isan
IFT on X. Here the IFS A =(x, (0.5, 0.4), (0.5, 0.5) ) is an IFzgy™*OS but not an IFZOS
in (X, 7).

Theorem 4.9: For any IFTS (X, 1), we have the following:

Every IFGOS is an IFTgy*0OS,

Every IFGSOS is an IFzgy*0S,

Every IFGPOS is an IFzgy*0S,

Every IFtgy*0S is an IFy*GOS. But the converses are not true in general.

Proof: Straight forward

Example 4.10: Let X = {a, b } and let t = {0, T, 1.} is an IFT on X, where T = (X,
(0.2,0.8), (0.3,0.1) ). Then the IFS A = (X, (0.4, 0.9), (0.1, 0) ) is an IFTgy*OS but not
an IFGOS in X.

Example 4.11: Let X = {a,b } and let t= {0-, T, 1.} isan IFT on X, where T = ( x, (0.4,
0.5), (0.3,0.2) ). Then the IFS A = ( X, (0.6, 0.6), (0.3, 0.3) ) is an IFrgy*OS in X but not
an IFGSOS in X.

Example 4.12: Let X ={a,b}and T = (x, (0.1, 0.8), (0.5,0.1) Y and let == {0-, T, 1.}
is an IFT on X. the IFS A = (%, (0.8, 0.7), (0.1, 0.3) ) is an IFrgy*OS but not an
IFGPOS in X.

Example 4.13: Let X ={a,b }and T = ( x, (0.6, 0.6), (0.4, 0.3) ) and let == {0-, T, 1.}
is an IFT on X. the IFS A = ( x, (0.4, 0.4), (0.6, 0.5) ) is an IFmrgy*CS. Since
cl(int(A))Nint(cl(A)) € U is IFOS in X, Aiis not an IFy*GCS in X.

Theorem 4.14: Let (X, 1) be an IFTS. Then for every IFS A and for every BelIFRC(X),
B < A c cl(int(B)) N int(cl(B)) implies A is an IFTgy*CS in X.

Proof: Let B be an IFRCS in X. Then B = cl(int(B)). By hypothesis, A € (cl(int(B)) N
int(cl(B))) = B N int(cl(B)) < int(cl(B)) < int(cl(A)) as B < A. Therefore A is an IFPOS
and by Proposition, A is an IFrgy*0S in X.

V. APPLICATIONS OF INTUITIONISTIC FUZZY mrgy* CLOSED SETS

In this section we provide some applications of intuitionistic fuzzy mgy™> closed
sets.

Definition 5.1: An IFTS (X, 1) is said to be an intuitionistic fuzzy wy*Ty, (in short
IFmy*Ty,) space if every IFrgy*CS in X isan IFyCS in X.

Definition 5.2: An IFTS (X, 1) is said to be an intuitionistic fuzzy my*cTy, (in short
IFy*cTyy,) space if every IFrgy*CS in X is an IFCS in X.
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Definition 5.3: An IFTS (X, 1) is an intuitionistic fuzzy mwy*pTy, (IFy*pTy, ) space if
every IFrgy*CS is an IFPCS in X.

Example 5.4: Let X = {a, b}, T; = (X, (0.4, 0.5), (0.6, 0.5)) and T, = (x, (0.6, 0.5), (0.4,
0.5)). Then t = {0-, T1, T,, 1.} isan IFT on X. Hence is an IFy*pTy,, space.

Definition 5.5: An IFTS (X, 1) is an intuitionistic fuzzy my*gTy, (IFy*gTy,) space if
every IFrgy*CS is an IFGCS in X.

Theorem 5.6: Every IFmy*pTy, space is an IFmry*T,/, space.

Proof: Let (X, 1) be an IFmy*pTy/, space and let A be an IFrgy*CS in X. By hypothesis
A'is an IFPCS in X. Since every IFPCS is an IFyCS, A is an IFyCS in X. Hence (X, 1) is
an IFmy*Ty,Space.

Theorem 5.7: Every IFmy*cTy, space is an IFmry*gTy, space.

Proof: Let (X, 1) be an [Fry*cT,,, space and let A be an IFzgy*CS in X. By hypothesis
A'is an IFCS in X. Since every IFCS is an IFGCS, A is an IFGCS in X. Hence (X, 1) is
an IFmy*gTy, space.

Theorem 5.8: Every IFmy*cTy, space is an IFmy*Ty/, space.

Proof: Let (X, 1) be an IFmy*cTy,, space and let A be an IFrgy*CS in X. By hypothesis
A'is an IFCS in X. Since every IFCS is an IFyCS, A is an IFYCS in X. Hence (X, 7) is an
IFmy*Ty, Space.

Theorem 5.9: Every IFmy*cTy, space is an IFmy*pTy, space but not conversely in
general.

Proof: Let (X, 1) be an IFmy*cTy,, space and let A be an IFzy*GCS in X. By hypothesis
A is an IFCS in X. Since every IFCS is an IFPCS, A is an IFPCS in X. Hence (X, 1) is an
|F7T'Y*pT1/2 space.

Example 5.10: Let X = {a, b}, T; = {x, (0.5, 0.5), (0.5, 0.6)) and T, = (x,(0.5, 0.6), (0.5,
0.5)). Then T = {0-, Ty, T, 1.} is an IFT on X. Here (X, 1) is an IFmy*pTy;, space but not
an IFmy*cTy, space, since the IFS A = ( x, (0.5, 0.8) (0.4, 0.2)) is an IFzy*GCS but not
an IFCS in X.

Theorem 5.11: An IFTS (X, 1) is an IFmy*Ty, space if and only if IFyO(X) =
IFTgy*O(X).

Proof: Necessity: Let A be an IFrgy*0OS in (X, 1), then A® is an IFrgy*CS in (X, 1). By
hypothesis, A is an IFyCS in (X, t). Therefore A is an IFyOS in (X, 1). Hence [FyO(X) =
IFTgy*O(X).

Sufficiency: Let A be an IFrgy*CS in (X, t). Then A° is an IFtgy*OS in (X, 7). By
hypothesis A® is an IFyOS in (X, 1) and therefore A is an IFyCS in (X, 1). Hence (X, 1) is
an IFmy*T,, space.

Theorem 5.12: An IFTS (X, 1) is an IFmy*cTy, space if and only if IFrgy*O(X) =
IFO(X).

Proof: Necessity: Let A be an IFzgy*0OS in (X, 1), then A® is an IFrgy*CS in (X, 1). By
hypothesis A® is an IFCS in (X, t). Hence A is an IFOS in (X, 1). Thus IFmy*O(X) =
IFO(X).
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Sufficiency: Let A be an IFrgy*CS in (X, 1). Then A® is an IFTgy*OS in (X, 1). By
hypothesis A° is an IFOS in (X, t). Therefore A is an IFCS in (X, t). Hence (X, 1) is an
IFmy*cTy, Space.
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