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Abstract  
         This paper determines a class of exact solutions for plane steady motion of incompressible fluids of 

variable viscosity for finite Peclet number through von-Mises coordinates. The class is characterized by an 

equation involving a stream function   and two differentiable functions )( xf  and )( xg . Successive 

transformations technique is used on non-dimensional form of basic equations. The exact solutions are 

determined basing on two velocity profile cases. The first velocity profile case fixes the functions )( xg  and 

demands )( xf  to satisfy a second order variable coefficients differential equation whose trivial solution is 

opted. The second velocity profile case fixes only the function )( xg and leaves )( xf  arbitrary. In both the 

cases, a large set of expressions for streamlines, viscosity function, generalized energy function and 

temperature distribution for finite Peclet number can be found.  
 

Keywords - Exact solutions for incompressible fluids, Variable viscosity fluids, Navier-Stokes equations with 
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I. INTRODUCTION 
 

       The basic equations for motion of a fluid element comprises of the equation of momentum, the equation of 

energy and equation of continuity. The basic equations for plane steady motion of incompressible variable 

viscosity fluid in Cartesian space ),( yx  in non-dimensional form are following 
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Where the coefficient of viscosity is 0 , the velocity vector field  ),(),,( yxvyxuq   and 

),( yxpp   is pressure. The dimensionless quantities
e

R , 
r

P  and 
c

E  are respectively the Reynolds number, 

the Prandtl number and the Eckert number.  The product of  
e

R  and 
r

P  is Peclet number eP   .  

The equation of contunity (1) indicates   

vu
xy

  ,          (5) 

where ),( yx   is a stream function such that
yxxy

  .  

Dimension analysis method, coordinates transformation techniques and successive coordinate’s transformation 

techniques are available for exact solutions in references [1-9] and references therein. The solution of equation 

(4) for very large and very small eP   can be found where as finding solutions for finite eP   is fascinating [10-

12]. The successive transformation technique transforms basic equations from Cartesian system ),( yx to 

Martin’s system ),(   and then to von-Mises system ),( x . The Martin’s coordinates system ),(   
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defines the curves .const  as streamlines and leaves the curves .const  arbitrary [13]. With this 

definition the curvilinear coordinates system ),(   is called the Martin’s coordinates system. In Martin’s 

system the curves .const  are arbitrary therefore von-Mises coordinates system ),( x  takes it 

along axisx   [14]. 

 Let us characterization the streamlines .const  by  

.
)(

)(
const

xg

xfy



          (6) 

The equation (7), without loss of generality, implies 

)()()( xgxfy            (7) 

where )( xf  and )( xg  are differentiable functions. In this communication, the function )( xg   is non-zero 

and )(   is zero.  

The paper is organized as follow: Section (2) applies successive transformation technique converts the basic to 

Martin’s coordinates ),(   then to the von-Mises coordinates ),( x .  Section (3) finds exact solutions of 

fundamental equations. The last section presents conclusion. 

 

II. BASIC EQUATIONS IN VON-MISES COORDINATES 
 

           In equations (2-4) let us define the vorticity function w  and the total energy function L  , the 

functions A  and B  as follow   
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Consider the allowable change of Martin’s coordinates ),(   through   
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such that the Jacobian of the transformation 0
),(

),(









yx
J  is finite.  

Suppose   be the angle between the tangents to the streamlines lines .const  and the 

curves .const   at a common point ),( yxP , then   

)tan(   = 
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y
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Applying the differential geometric technique [15], the fundamental equations (2-4) in Martin’s coordinates 

system ),(   are following  
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where the coefficients of first fundamental form are 
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Since the von-Mises coordinates system ),( x , takes the curves .const  along axisx  , therefore  

x              (21) 

Applying equation (21) and the streamlines (7) in equation (12) and equations (16-17) and using the 

trigonometric identities, we have    

E

1
cos             (22) 

2
)(1 NME            (23) 

F   = 1EJ           (24) 

G  = 
2

J             (25) 

)( gxagxJ                         (26) 

where 



International Journal of Mathematics Trends and Technology (IJMTT) - Volume 65 Issue 3 - March 2019 

ISSN: 2231 – 5373                             http://www.ijmttjournal.org  Page 219 

)()()()( xfxxMxgxxN  ,       (27) 

and  

ba              (28) 

 with constants 0a , b . The equations (13-15) and equations (18-20), in von-Mises coordinates ),( x  are 

following  
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and the magnitude of velocity vector ),( vuq  is 

J

NM
q
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Eliminating the function L from equations (28-29) assuming 
xx LL    provides the following compatibility 

equation 
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Finding solution of equation (36) L  and T are obtained from equations (29-30) and (31) respectively. The 

viscosity is obtained either from equation (32) or (33).  The pressure and velocity components are obtained from 

equation (9) and equation (5) respectively.   

The number of unknown in equation (36) can be reduced by eliminating   through a relation between A  and 

B  but it is not impossible here. Therefore, following two cases are considered 

 

Case I:   0A  

Case II:   0B  
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III. EXACT SOLUTIONS 

The case  

0A             (37) 

and equations (27) in (32) provides 
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It is easy to see that equation (38) is satisfied by  
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Equation (39) on utilizing equation (40) provides  
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The equation (41) possesses trivial and non-trivial solution. A trivial solution of equation (41) is  

0)( xf            (42) 

Equation (36) on utilizing equation (42), becomes 

xB 












 


g

g


B













 


g

g


B = g

a

CR
e




2

0
4 

      (43) 

This suggests seeking a solution of the form  
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Equation (43) on substituting equation (44) provides  
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whose solution is  
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Equation (44) on substituting equation (46) gives  
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and equation (33) on using equation (47) provides  
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Solution of equation (29) and (30), utilizing equation (47) and (37) is  
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Equation (31), using (42) and (47) provides  
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Let us seek solution of equation (50) of the form 

)()(),(
2

xSxRxT            (51) 

Equation (50) on inserting equation (51) provides  
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On substituting the value of )( xg  from equation (40) in equation (52) we get 
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where 
0

C , 
1

C and 
2

C are arbitrary constants. Equation (54) suggests searching a solution of (54) setting   
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Equation (54) on substituting 
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Consider the function )( xR  satisfying equation (56) takes the form 
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Inserting equations (58-59)  in equation (57), we get  
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Employing equation (60) in equation (53), we get  
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On substituting equations (60-61)) in equation (51), we get the temperature distribution.  

Similarly, for non-trivial solution of equation (41), the exact the solutions to the basic equations can be 

obtained.    

 The case 

0B             (62) 

in equation (33) implies   
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where 0c  is constant. 

Equation (36) on supplying 0B  gives 
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Consider the solution of equation (64) of the form  
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Equation (64) employing equation (65) become  
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Since   and x  are independent variables therefore the equation (66) yields  
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The solutions of equations (67-68) are 
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On substituting equations (69-71) in equation (32), we get the value of     
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The solution of equation (29) and (30) using  equation (63), is  
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The equation (31) on utilizing equation (72) becomes  
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Comparison of the coefficients of like terms on both sides gives 
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The solution of equation (79) is  
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The solutions of equations (77) and (78) using Mathematica is   
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Therefore equations (83-85) in equation (75) provides temperature distribution for finite eP  . 

 

IV. CONCLUSION 
 

        Applying the successive transformation technique on non-dimensional equations for plane steady motion of 

incompressible fluids of variable viscosity in von-Mises coordinates a class of exact solutions are determined. In 

this class of flows the streamlines are characterized by equation )()()( xgxfy   with 

ba   )(  with constants 0a  and b . Based on two velocity field shapes exact solutions are 

obtained. The first velocity field requires
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  and )( xf  satisfies a second order variable 

coefficients differential equation with a trivial solution 0)( xf  . Therefore the streamlines for this case are 
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 . The second velocity field demands 
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c
xg )(  and leaves the function )( xf  arbitrary. 

Therefore the streamlines for this case are
x

bac
xfy

)(
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 . Both the velocity field cases create 

infinite set of streamlines, pressure, viscosity, generalized energy function, temperature distribution. The 

symbols 0c , 0
0
C , 

1
C  , are constants.  

The software Mathematica is used to determine the solution of some of the ordinary differential 

equations. The same software can easily draw the streamlines pattern to find the effect of various parameters on 

the streamlines and discuss the flow characteristic.    

 

REFERENCES 
 

 [1] Naeem, R. K.; Mushtaq A.; A class of exact solutions to the fundamental equations for plane steady incompressible and variable 

viscosity fluid in the absence of body force: International Journal of Basic and Applied Sciences, 2015, 4(4), 429-465. 

www.sciencepubco.com/index.php/IJBAS , doi:10.14419/ijbas.v4i4.5064 

[2] Mushtaq A., On Some Thermally Conducting Fluids: Ph. D Thesis, Department of Mathematics, University of Karachi, Pakistan, 

2016. 

[3] Mushtaq A.; Naeem R.K.; S. Anwer Ali; A class of new exact solutions of Navier-Stokes equations with body force for viscous 

incompressible fluid,: International Journal of Applied Mathematical Research,  2018, 7(1), 22-26. 

www.sciencepubco.com/index.php/IJAMR , doi:10.14419/ijamr.v7i1.8836 

[4] Mushtaq Ahmed, Waseem Ahmed Khan :  A Class of New Exact Solutions of the System of  PDE  for the plane motion of viscous 

incompressible fluids in the presence of body force,:  International Journal of Applied Mathematical Research, 2018, 7 (2) , 42-48.  

www.sciencepubco.com/index.php/IJAMR , doi:10.14419 /ijamr.v7i2.9694 

[5] Mushtaq Ahmed, Waseem Ahmed Khan , S. M. Shad Ahsen :  A Class of Exact Solutions of Equations for Plane Steady 

Motion of Incompressible Fluids of Variable viscosity in presence of Body Force,:  International Journal of Applied 

Mathematical Research, 2018, 7 (3) , 77-81.  

 www.sciencepubco.com/index.php/IJAMR,  doi:10.14419/ijamr.v7i2.12326 

[6] Mushtaq Ahmed, (2018), A Class of New Exact Solution of equations for Motion of Variable Viscosity Fluid In presence of Body 

Force with Moderate Peclet number , International Journal of Fluid Mexhanics and Thermal Sciences,  4 (4)  429- 

www.sciencepublishingdroup.com/j/ijfmts  doi: 10.11648/j.ijfmts.20180401.12 

[7] Naeem, R. K.; Steady plane flows of an incompressible fluid of variable  viscosity via Hodograph transformation method: Karachi 

University Journal of Sciences, 2003, 3(1), 73-89.  

[8] Naeem, R. K.; On plane flows of an incompressible fluid of variable viscosity: Quarterly Science Vision, 2007, 12(1), 125-131.  

[9] Naeem, R. K. and Sobia, Y. ; Exact solutions of the Navier-Stokes equations for incompressible fluid of variable viscosity for 

prescribed vorticity distributions: International Journal of Applied Mathematics and Mechanics, 2010, 6(5), 18-38.  

[10]  D.L.R. Oliver & K.J. De Witt, High Peclet number heat transfer from a droplet suspended in an electric field: Interior problem,  Int. J. 

Heat Mass Transfer, vol. 36: 3153-3155, 1993. 



International Journal of Mathematics Trends and Technology (IJMTT) - Volume 65 Issue 3 - March 2019 

ISSN: 2231 – 5373                             http://www.ijmttjournal.org  Page 225 

[11]  Z.G. Fenz, E.E. Michaelides, Unsteady mass transport from a sphere immersed in a porous medium at finite Peclet numbers, Int. J. 

Heat Mass Transfer 42: 3529-3531, 1999. 

[12]  Fayerweather Carl , Heat Transfer From a Droplet at Moderate Peclet Numbers with heat Generation. PhD. Thesis, U of Toledo, May 

2007.  

[13] Martin, M. H.; The flow of a viscous fluid I: Archive for Rational Mechanics and Analysis, 1971, 41(4), 266-286. 

[14]  Daniel Zwillinger; Handbook of differential equations; Academic Press, Inc. (1989) 

[15] Weatherburn C.E., Differential geometry of three dimensions, Cambridge University Press, 1964 


