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Abstract
This paper determines a class of exact solutions for plane steady motion of incompressible fluids of
variable viscosity for finite Peclet number through von-Mises coordinates. The class is characterized by an

equation involving a stream function y and two differentiable functions f (x) and g (x) . Successive
transformations technique is used on non-dimensional form of basic equations. The exact solutions are
determined basing on two velocity profile cases. The first velocity profile case fixes the functions g (x) and
demands f (x) to satisfy a second order variable coefficients differential equation whose trivial solution is

opted. The second velocity profile case fixes only the function g (x) and leaves f (x) arbitrary. In both the

cases, a large set of expressions for streamlines, viscosity function, generalized energy function and
temperature distribution for finite Peclet number can be found.

Keywords - Exact solutions for incompressible fluids, Variable viscosity fluids, Navier-Stokes equations with
body force, Martin’s coordinates, von-Mises coordinates

I. INTRODUCTION

The basic equations for motion of a fluid element comprises of the equation of momentum, the equation of
energy and equation of continuity. The basic equations for plane steady motion of incompressible variable

viscosity fluid in Cartesian space (x, y) in non-dimensional form are following

ux+vy:0 )

uux+vuy:—px+[(2ﬂux)x+{ﬂ(uy+vx)}y] )
1

uvx+vvy:_py+R_[(2”Vy)y+{”(uy+vx)}x] ©)
e

T, 4T, = (T 4T, )+ 2, +v. ’ 4

Ux+Vy_RP xx+w+R[ﬂ(ux+vy)+”(uy+vx)] )

Where the coefficient of viscosity is # > 0 , the velocity vector field g = (u(x,y), v(x,y)) and
p = p(x,y) ispressure. The dimensionless quantitiesR , P and E  are respectively the Reynolds number,
the Prandtl number and the Eckert number. The productof R, and P_ is Peclet numberP,, .

The equation of contunity (1) indicates

v, =u, voo= v (5)

where v = w (X, y) isastream function such thaty s =Wy

Dimension analysis method, coordinates transformation techniques and successive coordinate’s transformation
techniques are available for exact solutions in references [1-9] and references therein. The solution of equation

(4) for very large and very small P,. can be found where as finding solutions for finite P,. is fascinating [10-
12]. The successive transformation technique transforms basic equations from Cartesian system (x, y) to

Martin’s system (¢, ) and then to von-Mises system (x,y ) . The Martin’s coordinates system (¢, )
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defines the curves w = const . as streamlines and leaves the curves ¢ = const . arbitrary [13]. With this
definition the curvilinear coordinates system (¢, ) is called the Martin’s coordinates system. In Martin’s

system the curves ¢ = const . are arbitrary therefore von-Mises coordinates system (x,w ) takes it
along x — axis [14].
Let us characterization the streamlines = const . by

- f

y-re = const . (6)
g(x)

The equation (7), without loss of generality, implies

y=Ff(x)+g(x)v(y) )

where f (x) and g(x) are differentiable functions. In this communication, the function g’(x) is non-zero

and v "'(y ) is zero.

The paper is organized as follow: Section (2) applies successive transformation technique converts the basic to
Martin’s coordinates (¢, ) then to the von-Mises coordinates (x,y ). Section (3) finds exact solutions of
fundamental equations. The last section presents conclusion.

11. BASIC EQUATIONS IN VON-MISES COORDINATES

In equations (2-4) let us define the vorticity function w and the total energy function L , the
functions A and B as follow

W=v, —u, (8)
1 2uu

L=p+—(u’+v’)- £ x 9)
2 e

and

A=u(uy+vx), B=4uu, (10)

Consider the allowable change of Martin’s coordinates (¢, ) through

x=x(p,w), y=Yy(p.w) 11)

. . o(x,y) e
such that the Jacobian of the transformation J = ————— = 0 is finite.
o(e.v)

Suppose & be the angle between the tangents to the streamlines lines w = const . and the
curvesg = const . atacommon pointP (X, y), then
y¢7

tan( ) = — (12)

X
4

Applying the differential geometric technique [15], the fundamental equations (2-4) in Martin’s coordinates
system (@ ,w ) are following

~R,WIE=R,JEL, +A,((F®-3°)cos 20 - 2FJ sin 20)

. (1 2 2. . )
+ EA, (Jsin 20 — F cos 20)) -B, | —(F" -J3%)sin 26 + FJ cos 26
(2

J
Les ]|
+EB | —Fsin 20 + Jcos “ 6 |, (13)
v
(2 )
=-R,JL, +E A, cos 20 A, [F cos 26 — J sin 26 ]
1 EB
+B¢(—Fsin 29—Jsin2ﬂ— Y_sin 20 , (14)
(2 ) 2

and
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(6T -FT ET -FT ) |
1 E 1 T
|[ 4 WJ +( 4 wJ |=7 C—(BZ+4AZ)+—¢ (15)
JP,,

e | J , J .| R. 4 J
where the coefficients of first fundamental form are
E=x,+y, F=x,X,+Y, ¥, .G =(x,) +(y,), (16)
J=++EG-F* | (17)
and

F cos 8 — Jsin 0

Aoy )=ul* - ){E¢(2EJ3COSH+F\/Esin 0)

4E?
~4E®3%),cos & —2ENEF, sin6 +EVEE, sin 6}

Cos

0 . .
257 {E, (Fsin & +Jcos #)—2E) , cos 6 —E G, sin ¢}

+(Fsin 6 + Jcos @)

+

. {@J E,-2E) )sin@
2E)

tcoso [-FE +2EF -EE ]}

sin 6
- 3 {(E, (Isin & - F cos #)-2EJ , sin & +EG , cos ¢ }], (18)
21

4
B(p,w)= 'u3 [Ew(F sin @ + J cos 0)272E(F sin & + J cos 9)
EJ

. 2 . 2
(F,sin @+, cos @) + E“(J, sin 20 + G sin " 0)], (19)
and

(Fsin & +Jcos @)
w =

283 @

{JE,-2E) )sin@+coso [-FE _+2EF -EE ]}

sin @ . .
- S 57 {E, (Isin & — Fcos #)-2EJ , sin & +EG , cos 6 }]

F cos & — Jsin @
L )

{E (2E 3%cos @ + FE sin 0)
42 3° ’

~4E®3%) cos 0 —2ENEF,sin6 +EVEE, sin 6}

cos 6 . .
- 23 {E, (Fsin 0+ Jcos 0)-2E)  cos § —E G, sin 6 }], (20)
Since the von-Mises coordinates system (x,y ) , takes the curvesg = const . along x — axis , therefore
@ =X (21)

Applying equation (21) and the streamlines (7) in equation (12) and equations (16-17) and using the
trigonometric identities, we have

0030:% (22)
E=1+(M + Nv)? (23)
F =JVE -1 (24)
G =u3" (25)
J=xgv'=a(xg) (26)

where

ISSN: 2231 - 5373 http://www.ijmttjournal.org Page 218




International Journal of Mathematics Trends and Technology (IJMTT) - Volume 65 Issue 3 - March 2019

N (x) = xg'(x) M (x) = x f'(x), (27)
and
v=awy+b (28)

with constantsa = 0, b . The equations (13-15) and equations (18-20), in von-Mises coordinates (x,y ) are
following

-R,w=R,L, -JA +JE-1A, +B, (29)
A (2-E) VE-1B
0=-R,L,+—~V——+AJE-1-——" (30)
J J
a’E E,
JTXX—Za E_lTvx+ 3 Tvv+ Jx—m—Pe: Tx
E E EJ JE_P
+a| ——- SN A RS (31)
J o o2dE-1 g2 4u
A:%[xg(M’-rN'v)—Z(M SN VYN +g)] (32)
a(xg)
—4u(N
B _ #(N +4g) (33)
2 2
ax g
M 2mNIray T o2n? Iy
wo M ZMN )N 2N v (34)
|x9 (xg)" |\a) |xg (xg) |\a)
and the magnitude of velocity vector q = (u,v) is
\/1+(M + Nv)?
= (35)

J
Eliminating the function L from equations (28-29) assuming Ly, =L, « provides the following compatibility

equation

1-x2(f'+g'v)°
b,

angXX—Zx(f’+g'v)AXW g

ag A=A, ((F +gv)+x(f"+g"v))=A, ((f'+gv)+x(f"+g"v))

( (f'+g'v)B, |
4B, -—} =R_w, (36)
L ag )y

Finding solution of equation (36) L and T are obtained from equations (29-30) and (31) respectively. The
viscosity is obtained either from equation (32) or (33). The pressure and velocity components are obtained from
equation (9) and equation (5) respectively.

The number of unknown in equation (36) can be reduced by eliminating g through a relation between A and

B but it is not impossible here. Therefore, following two cases are considered

Case I: A=0
Case Il: B=0
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111. EXACT SOLUTIONS

The case

A=0 (37)

and equations (27) in (32) provides

2(xg)" g’

——(xg')'=0 (38)

g

-2 "t

29 iy (39)
g

It is easy to see that equation (38) is satisfied by

g(x) = ————— (40)

2
Cox +Cy
Equation (39) on utilizing equation (40) provides

X(Cox? +Cy) "+ (8Cyx°-C,)f'=0 (41)
The equation (41) possesses trivial and non-trivial solution. A trivial solution of equation (41) is
f(x)=0 (42)
Equation (36) on utilizing equation (42), becomes
' ! -4R_C, v
BXV—[Q—]V Bw—(g—] B, = ——"g’ @3)
g g a
This suggests seeking a solution of the form
B=v’Q(x) (44)
Equation (43) on substituting equation (44) provides
' g , B 2 Re C 0 '
Q' -2|—|Q=—""1g (45)
g a
whose solution is
2R, C, )
Q(X):T9+ng (46)
Equation (44) on substituting equation (46) gives
, 2R, C, 2
B=v {———9+C,g9"} S
a

and equation (33) on using equation (47) provides
_—a(xg)’ {2 R, C
4(xq)' a’
Solution of equation (29) and (30), utilizing equation (47) and (37) is

Sg+C,g W’ (48)

Re |—N/ 2N2 —| VZ
aR,_ L= {- | — - 2|72a Q(xX)} — |+p, (49)
a | xg (xg)" | 2
Equation (31), using (42) and (47) provides
' 2 B 2
(axg)TXX—2a(xg'v)T”+a[1+(Xg V) ]Tvv+[(axg)x B a[1+(xg v) ]V b, T,
X g 2(xg'v)
+arw—(xg’)'v1Tv=EcPraz(xg)(xg'+ 9)v2Q(x) (50)
(x9) J
Let us seek solution of equation (50) of the form
T(x,v) =v2R(x)+S(x) (51)

Equation (50) on inserting equation (51) provides
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ax’g’R"+xgfag-P, - 4a xg’}R’+2a{3(xg’)2 - Xg (xg’)'}R
2R, C, )
=E, P, (X9’+9){a—29+C29 } (52)
ax’g?s"+xglag-P,}S'=-2aR(x) (53)
On substituting the value of g (x) from equation (40) in equation (52) we get
axz(Cox2 +C1)2 R”+x(C, x 2 +Cl){a(9C0 X2 +Cy)+ P (Cy x +Cl)2}R’

2
2R,C, , 2R,C,C,

2 2 2
+8aCyx (2Cyx" +C;)R=-E_ P, (Cux" +C){ 2 X+ ¥ -C,} (54)
where C ,, C,and C, are arbitrary constants. Equation (54) suggests searching a solution of (54) setting
C,=0 (59)

Equation (54) on substituting C , =0, becomes

asz”+x{9a+ Pe,COx2 }R’—lGaR:—ECP,{ : - } (56)

Consider the function R (x) satisfying equation (56) takes the form

R(x) =B, + B, x 2 (57)
implies
E PR 1 P C
81: c rze(__i_ r 2\1 (58)
8a \a 28 )
and
B E 9 Pr C 2
_ T Telima (59)
28 aC,
Inserting equations (58-59) in equation (57), we get

R(r)=

E. P (1 P,.C, _ECPrC2 ( 1 W

1 L (60)
ga? \a 28 ) 28aC, ( x?

Employing equation (60) in equation (53), we get

[ ~CoPe > 1 “CoPer 2
, le 22 ' 3 Sole | e 22 '
S(x)=-2C, J|—[xe 28 R(x)dx [d&x+C, [——dx +C, (61)
X | X
L i

On substituting equations (60-61)) in equation (51), we get the temperature distribution.

Similarly, for non-trivial solution of equation (41), the exact the solutions to the basic equations can be
obtained.

The case
B=0 (62)
in equation (33) implies

Cc

o= (63)
X
where ¢ = 0 is constant.
Equation (36) on supplying B = 0 gives

2
all-(M —-gv
a;cA,,—2a (M -gv)A, - [ ( ; J )]Avv+agAx
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+aAV[—(M "—g'v)+ 2(-9)(M _gV)W =[R—e]rM "+ 2V } + 2Rev

c Y
Consider the solution of equation (64) of the form
A=R(X)+P(Xx)v

Equation (64) employing equation (65) become

2gM
>

) , . 2g° R, \T 2M ] 2R,v
+v {acP”"+3agP'+aP|g’'+ =l — | M+ +
c ac L X J ax’

Since v and x are independent variables therefore the equation (66) yields

acR"-2aM P'+ agR’+aP(— M-
\

2R
x> P"+3xXP ' +P =— ” £
a CX
and
' xR, | 2M ] 2xM X 2M
(xR") = M+ + P'+—|M'+—|P
ate? x ] el x )

The solutions of equations (67-68) are

2
S s, Inx R, (In x)
P(x) = —++ 2 .
X X a’cx

and
1 1

R(x)=— I{—jzl(x)dx} dx +C, In x+C,
X X

where

'

X R 2M 2 xM X 2M
Zl(x)=[2e]rM'+ | P’+—(M'+ WP

+
I e el ox )
On substituting equations (69-71) in equation (32), we get the value of u

2
a ¢

u=—————(R(X)+ P(x)v)
(M"=g'v)

The solution of equation (29) and (30) using equation (63), is
- R, v - R\ 2M (x)]
aR, L= +acP'(x)+agP (x)|| —|+{ M "(x) +
2 2 L <

ax ac

+acR'(x)—aM (x)P(x)}v +a:j(1— M 2)P(x)dx + M (X)R(x)dx +p,

The equation (31) on utilizing equation (72) becomes
afl+ (M - gv)Z]T

Vv

acT, —-2a(M -gv) T, +
c

+(%—PE,WTX - (M'—g'v)|aT,

)
’ ’ U l2
=—E_P[RM "+ (PM'=gR)v-Pg'v’]

[2(M + Nv)

X

The structure of equation (74) suggests
T =R, (X)+ Ry (X)v + Ry(x)v?

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)
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and
2aR .g° 29
vz[acR;'+4ag R, +—39+2aR3(g +—) +(ac - P, )Ré]
c X L x J
4aR ;Mg v
+v [acR) -4aM R;v +2ag vR) - ————
c
(ac W ( 2M 29 ]
+|——=Py |[Ryv +a{-2R;| M '+ +Ry g+ — ]
k X ) L X X J
2aR,(1+ M ?) (2 ) 2M
+acR;"-2aM R, + +| —-P, [R{*+| —a(M '+ —)R,
c L x J X
= E.P[RM'+(PM'—gR)v—Pg'v?| (76)
Comparison of the coefficients of like terms on both sides gives
2 R// Pe, 2 ’ —
g +|5x—-——x" |R;+4R,=2Z,(x) 77
ac
2 Pe’ XZ
X" Ry +|3x- R; + R, =Z4(x) (78)
ac
and
P,
Rl”+(— : )Rl’zzz(x) (79)
(x ac )
where
2MR, 1 2M 20+ M ° E.P M’
Z,(x)= 24> M+ — R, (+2 ) R,——— R (80)
c c X c ac
2 2 AM 2
Zs(x)=4ax"M Rj + 2ax R3(M’+ ]—EC P,(x PM'+CR) (81)
X
B Ec Pr
Z4(X)=TP(X) (82)
The solution of equation (79) is
[ [Pe’jx ] f Pe’jx]
e ¢ - e
Rl(x):jJ jxe z (x)dedx+C5Ij dx +C (83)
| X | X
The solutions of equations (77) and (78) using Mathematica is
Rz(x)=C3[—1+ " ] +C, MeilerGl{{f 1 {0} {-1-13.0F -Alx]
X
1
+= AL (-1+ AL x) Je M xMeierG{{ 1 {13} {-1.-11L {3 - A1 x] Z,4(x) dx
X
+ xMeilerG[{{ }{1} H{-L-13.0} -ALx] [AL(1- AL x)e ™z, (x)dx } (84)

R, (x)=Cy

+C, Meier6{{ } {13} {-2-2 0} -Alx]

—
|
+
-
N
~—
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1
t— {Al2 (2 — 4 AL x+ AL? x?)
X

Je " x® MeilerGH{ ALY (-2 - 21 0 - AL X] Z,(x)
+x° MeilerG[{{ 3. {13} {{-2 -2} {3} -ALx]
[AL% (- 2+ 4 A1 x - AL? x2) xe Mz, (x)dx | (85)
where AL = —¢ (86)
ac

Therefore equations (83-85) in equation (75) provides temperature distribution for finite P,

IVV. CONCLUSION

Applying the successive transformation technique on non-dimensional equations for plane steady motion of
incompressible fluids of variable viscosity in von-Mises coordinates a class of exact solutions are determined. In

this class of flows the streamlines are characterized by equation y = f(x)+ g(x)v(yw) with

v(y)=aw +b with constants a = 0 andb . Based on two velocity field shapes exact solutions are

-1
obtained. The first velocity field requires g (x) = — Y and f (x) satisfies a second order variable
Cox +Cy

coefficients differential equation with a trivial solution f (x) = 0 . Therefore the streamlines for this case are

ay +b c
y = — _avre . The second velocity field demands g (x) = — and leaves the function f (x) arbitrary.

2
X
Cox +Cy

c (ay +b
Therefore the streamlines for this case arey = f (x) + clay +b) . Both the velocity field cases create
X

infinite set of streamlines, pressure, viscosity, generalized energy function, temperature distribution. The
symbolsc = 0, C, # 0, C, , are constants.

The software Mathematica is used to determine the solution of some of the ordinary differential
equations. The same software can easily draw the streamlines pattern to find the effect of various parameters on
the streamlines and discuss the flow characteristic.
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