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Abstract    

          This communication announces a class of new exact solutions of the equations governing the steady plane 

motion of fluid with constant density, constant thermal conductivity but variable viscosity with moderate Peclet 

numbers through von.Mises coordinates. The class is characterized through an equation relating two functions 

of variable x  and one function of stream function . The successive transformation technique is applied to find 

unknowns functions in basic equations. This technique determines two temperature distribution formulas due to 

heat generation and corresponding viscosities. A large in number of exact solutions are shown for moderate 

Peclet number in von-Mises coordinates. 
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I. INTRODUCTION 
 

        The equations in non-dimensional form for theoretical study of steady fluid flow problem with constant 

density, constant thermal conductivity, constant specific heat but variable viscosity using following 

dimensionless parameters  
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after dropping the overhead “*” in tensor’s notation are  
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Where )( ii xvv  is the fluid velocity vector, )( ixpp   is pressure, and )( ix   is viscosity, 

}3,2,1{,, kji . The dimensionless quantity
e

R , 
r

P  and 
c

E  are known as the Reynolds number, the Prandtl 

number and the Eckert number respectively. The product of  
e

R  and 
r

P  is Peclet number denoted by
e

P
 . For 

the plane case }2,1{,, kji , xx 
1

, yx 
2

, uv 
1

 vv 
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,  reduces the equations (1-3) to following 
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The equation (4) implies that velocity components in terms of a continuous stream function ),( yx  

are   

   xyvu   ,,v                 (8) 

Like other mechanics, fluid dynamics also offers difficulties due to nonlinearity in the basic equations. 

To overcome these difficulties some methods/techniques are found in [1-7] and articles referred therein. 

References [6, 8-10] and reference therein are examples of solution techniques for a given Peclet number. This 

discourse uses method of partial differentiation and successive transformation technique in von-Mises 

coordinates for a class of exact solutions to flow equations (5-7). The technique first rewrites equation (5-7) in 

terms of the vorticity function   and the total energy function L , the function A  and B defined as follow   
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Secondly, we take Const.),( yx  to be some arbitrary families of curves which generates a curvilinear net 

with the streamlines Const.),( yx  so that in the physical plane the independent variables yx ,  can be 

replaced by ),(  . Let 

),( xx   ,  ),( yy          (12) 

define a curvilinear net in the plane),( yx with the squared element of arc length along any curve given by  

2
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wherein  
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such that the Jacobian of the transformation 0
),(

),(









yx
J  and finite. As this was the case in Martin [11] 

therefore these coordinates are referred here as Martin’s coordinates system   , .  Let Martin’s coordinates 

net   ,  possesses angle   at a point ),( yxP  then  

)tan(   = 





x

y
                (15) 

It is easy to transform the basic equations (5-7) in Martin’s system [1].  

 
II. BASIC EQUATIONS IN VON-MISES COORDINATES 

 

       In Martin’s coordinates net   ,  the arbitrary coordinate lines constant  can be taken along 

axisx   so that x  and   are independent variables, called von-Mises coordinates, instead of y  and x  [12]. 

Set 

x            (16) 

in order to determine exact integrals for a class of flow problems in von-Mises coordinates and the streamline 

pattern for a given flow problem in the form  
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where )( xf  and 0)( xg  are differentiable functions. For a given flow problem with 

 Const.
)(

)(




xg

xfy
as the family of streamlines, we have 

)()()( xgxfy           (18) 

with )(  is a differentiable functions. 

Applying equation (16) and the streamlines (18) in equation (15) and equations (14) and using the trigonometric 

identities, we have    
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where 

)()()()( xgxxNxfxxM  ,      (24) 

 Utilizing (19-24), the basic flow equations (5-7), the vorticity function , the function A  and B  are 

retransform to von-Mises coordinates system ),( x  as follow 
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The momentum equations (25-26) on eliminating L  applying 
xx LL   , provides 

xxJA – xAE 12  – 


A
J

E )2( 
+ 



















12 E

E
JA xx


  



International Journal of Mathematics Trends and Technology (IJMTT) - Volume 65 Issue 3 - March 2019 

ISSN: 2231 – 5373                             http://www.ijmttjournal.org  Page 229 

+ 





















J

E

J

EJ

E

E
A

x 

 2

)2(

12

 –

















 


J

BE
B x

1
= xeR    (31) 

 

III. EXACT SOLUTION IN VON-MISES COORDINATES 
 

       The compatibility equation (31) is to lead to the solution of (25-26) and as this discourse is considering 

0)(    and 0)(  xg  therefore it is reasonable to set    
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c
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in equations (28-30) leads to    

bxxf  ln)(           (34) 

where b  and c  are constant. Equations (32-34) simplifies the functions  , A  and B  as follow   
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It is easy to eliminate   from equations (36-37) and find  
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 Substituting equation (32-34) and equation (38), the equation (31) reduces to   
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Equation (39) suggest to seek numbers ),( mn  and p such that  
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xpxA  ),(           (40) 

Equation (39) on substituting equation (40) provides   
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Equation (41) implies  
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 22)1(  mmm  =0        (45) 

The system of algebraic equations (42-45) implies   

2,1m  and mn   

For the numbers )1,1(),( nm , equation (36), equation (40) and equations (25-26) provides  
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where 1p  is constant. The energy equation (27) for this case is   
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Equation (49) suggests T  of the form  
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Equation (49) on inserting equation (50) provides  
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Comparing coefficients of like terms yields  
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Therefore, from equation (50), we get 
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Thus temperature form equation (53), viscosity from (46), pressure from (10) using (48) and velocity from 

equation (8) for moderate Peclet number is obtained.  

For the numbers )1,1(),( nm the function A ,   and L  are  
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where 2p  is constant.  

The energy equation (27) becomes   
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which on substituting  
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Thus temperature form equation (60), viscosity from (55), pressure from (10) using (56) and velocity from 

equation (8) for moderate Peclet number is obtained.  

 
IV. CONCLUSION 

 

      A class of new exact solutions of the equations governing the steady plane motion of fluid of constant 

density, constant thermal conductivity but variable viscosity in von-Mises coordinates for moderate Peclet 

numbers is obtained. The streamline pattern for class of flows under consideration is found to 
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be
x

ec
xby



 ln . Where stream function is . Two temperature distribution formulas due to heat 

generation are obtained for corresponding viscosities for moderate Peclet number.  This discourse shows 

streamlines pattern, velocity components, viscosity function, and temperature distribution to the flow problem 

for all moderate Peclet number.  
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