Characterization of Some Graphs using Graph Equations

Beena S
Associate Professor, Department of Mathematics
NSS College, Nilamel, Kollam, Kerala, India

Abstract

The line graph of a graph G denoted by $L(G)$ is defined as the graph whose vertices are the edges of ${ }_{G}$ and where two vertices in $L(G)$ are adjacent if and only if the corresponding edges in G are incident to a common vertex. A connected graph G is said to be unicyclic if it contains a unique cycle. In this work, some unicyclic graphs, paths and generalized 3 -stars are characterized using graph equations involving line graphs.

Keywords - Line graphs, Graph equations.

I. INTRODUCTION

All graphs considered in this paper are finite, undirected, without loop or multiple edges. Let p, q and $d_{1}, d_{2}, \ldots, d_{p}$ respectively denote the order, size, and degree sequence of a given graph G.

Definition 1. The line graph of a graph G denoted by $L(G)$ is defined as the graph whose vertices are the edges of G and where two vertices in $L(G)$ are adjacent if and only if the corresponding edges in G are incident to a common vertex.
Theorem 2 [2].If G is a (p, q) graph and degree sequence $d_{1}, d_{2}, \ldots, d_{p}$, then $L(G)$ has q vertices and q_{L} edges where $q_{L}=-q+\frac{1}{2} \sum_{i=1}^{p} d_{i}^{2}$.
Definition 3. The n - power G^{n} of a graph G has the same vertex set as G and two vertices u and v are adjacent in G^{n} if and only if $d(u, v) \leq n$ in G.
Theorem 4[1]. A connected graph G with order $p \geq 2$ and degree sequence $d_{1}, d_{2}, \ldots, d_{p}$ is a path if and only if $\sum_{i=1}^{p} d_{i}^{2}=4 p-6$.
Definition 5. A connected graph with one vertex of degree 3, three vertices of degree 1 and $p-4$ vertices of degree 2 is called a generalized 3 -star of order p.
Theorem 6[1]. A connected graph G with order $p \geq 2$ and degree sequence $d_{1}, d_{2}, \ldots, d_{p}$ is a generalized
3-star if and only if $\sum_{i=1}^{p} d_{i}^{2}=4 p-4$.

II. MAIN RESULTS

Theorem 7. There does not exist a connected (p, q) graph G satisfying the graph equation $L(G) \cong G-e$. Proof: Let G be a connected (p, q) graph, then $L(G)$ is a $\left(q, q_{L}\right)$ graph where $q_{L}=-q+\frac{1}{2} \sum_{i=1}^{p} d_{i}^{2}$. Since $L(G) \cong G-e$, we have $q=p$ and $q_{L}=q-1$. Therefore, $G \quad$ is a unicyclic graph and $q-1=-q+\frac{1}{2} \sum_{i=1}^{p} d_{i}^{2}$, which implies $\sum_{i=1}^{p} d_{i}^{2}=4 p-2$. That is, G is a generalized double $3-$ star by theorem 6 , which is a
contradiction to the fact that G is a unicyclic graph. Hence there exists no connected graph G satisfying the equation $L(G) \cong G-e$.
Theorem 8. Let G be a connected (p, q) graph. Then $L(G) \cong G-\{v\}$ for some $v \in L(G)$ if and only if G is a path.
Proof: Let G be a connected (p, q) graph. Let v be a vertex of G. Suppose that $L(G) \cong G-\{v\}$. Then $L(G)$ is a $\left(p-1, q_{L}\right)$ graph. Thus G is a connected $(p, p-1)$ graph. Hence G is a tree and v must be a pendant vertex of G. Further, $q-1=-q+\frac{1}{2} \sum_{i=1}^{p} d_{i}^{2}$. This implies, $\sum_{i=1}^{p} d_{i}^{2}=4 q-2=4 p-6$. Hence G is a path, by theorem 4. The converse is trivial.
Theorem 9. Let G be a connected (p, q) graph. Then $L\left(G^{2}\right) \cong(L(G))^{2}$ if and only if G is K_{3} or K_{2}.
Proof: Let G be a connected (p, q) graph, then $L(G)$ is a $\left(q, q_{L}\right)$ graph where $q_{L}=-q+\frac{1}{2} \sum_{i=1}^{p} d_{i}^{2}$
and $(L(G))^{2}$ has q vertices. Suppose that $L\left(G^{2}\right) \cong(L(G))^{2}$. Therefore, $L\left(G^{2}\right)$ must have q vertices. Therefore, G^{2} is also (p, q) graph. This implies, $G=G^{2}$. Therefore $G=K_{p}$ and $L\left(G^{2}\right) \cong(L(G))^{2}$ implies $L(G) \cong(L(G))^{2}$. Therefore, $L(G)$ is a complete graph. But $L(G)$ is a $\left(\frac{p(p-1)}{2}, q_{L}\right)$ graph, where $q_{L}=-\frac{p(p-1)}{2}+\frac{1}{2} p(p-1)^{2}=\frac{p}{2}(p-1)(p-2)$. Also $q_{L}=\frac{1}{2} \frac{p(p-1)}{2}\left(\frac{p(p-1)}{2}-1\right)$. Therefore, $\frac{p}{2}(p-1)(p-2)=\frac{p(p-1)}{4}\left(\frac{p(p-1)-2}{2}\right)$. That is, $p-2=\frac{p(p-1)-2}{2}$ or $p^{2}-5 p+6=0$.
That is, $p=2$ or 3 . Therefore, $G=K_{3}$ or K_{2}.
Conversely, If $G=K_{3}$ or K_{2}, then $L\left(G^{2}\right) \cong(L(G))^{2}$.
Theorem 10. Let G be a connected (p, q) graph which is not a cycle, a path or a generalized 3 -star. Let $q_{n}=q\left(L^{n}(G)\right)$ where $L^{0}(G) \cong G$. Then $\left\{q_{n}\right\}_{n=0,1,2, \ldots . .}$ is a strictly increasing sequence.
Proof: Let G be a connected (p, q) graph, then $L(G)$ is a (q, q_{1}) graph. Since G is connected ($L(G)$ also), $q_{1} \geq q-1$. If $q_{1}=q-1, L(G)$ must be a tree. Which contradicts the fact that G is not a path. If $q_{1}=q$, Then $L(G)$ is a unicyclic graph. Clearly $q \geq p-1$. If $q>p$, then $L(G)$ will have more than one cycle, which is a contradiction. Therefore $q=p-1$ or p. Also $q_{1}=q$ implies $\sum_{i=1}^{p} d_{i}^{2}=4 q=4 p-4$ or $4 p$. $\sum_{i=1}^{p} d_{i}{ }^{2}=4 p-4$ implies, G is a generalized 3 -star and $\sum_{i=1}^{p} d_{i}^{2}=4 p$, implies G is a cycle. That is $q_{1}=q$ implies G is a cycle or a generalized 3-star, a contradiction to our assumption. Hence, $q_{1}>q$. Suppose we have proved that for any graph not in this class, then $q<q_{1}<\ldots<q_{n}$. Now, $L(G)$ can not be a generalized 3-star, which has $K_{1,3}$ as an induced subgraph. Suppose $L(G) \cong C_{n}, n \geq 3$. First suppose $n \geq 4$, then $L(G) \cong C_{n} \cong L\left(C_{n}\right)$ which implies $G \cong C_{n}$, which is a contradiction. Therefore, $L(G) \cong C_{3}$, implies $G \cong C_{3}$ or $K_{1,3}$, again a contradiction. Therefore, if G does not belong to the class of graphs so does $L(G)$. Therefore by induction, $q\left(L^{n+1}(L(G))\right)<q\left(L^{n}(L(G))\right)$. This implies, $q\left(L^{n}(G)\right)<q\left(L^{n+1}(G)\right)$. Hence the proof.
Corollary 11. Let G be a connected (p, q) graph, then $L^{m}(G) \cong L^{n}(G)$ for $m>n$ if and only if G is a cycle or $K_{1,3}$.
Proof: By theorem 10, G must be either a cycle, a path or a generalized 3-star. Clearly G is not a path. Therefore, G is either a cycle or a generalized 3-star. If G is a generalized 3-star with $p>4$, then $L(G)$ is a unicyclic graph other than cycle. Therefore, $q\left(L^{n}(L(G))\right)=q\left(L^{n+1}(G)\right)$ is an increasing sequence for $n=1,2, \ldots$
by theorem 10.In this case $L^{m}(G) \tilde{\neq} L^{n}(G)$ for $m>n$. Hence G must be a cycle or a generalized 3-star with $p=4$. That is $K_{1,3}$.
The converse is trivial.
Corollary 12. Let G be a tree on p vertices. Then G is a generalized 3-star if and only if $q(G)=q(L(G))$.
Proof: By theorem 6, G is a generalized 3-star if and only if $\sum_{i=1}^{p} d_{i}^{2}=4 p-4$. Also we have,
$q(L(G))=-q+\frac{1}{2} \sum_{i=1}^{p} d_{i}{ }^{2}$. That is, $\sum_{i=1}^{p} d_{i}{ }^{2}=2(q+q(L(G)))$. Therefore, G is a generalized 3-star if and only if $q(L(G))=2 p-2-q=2 p-2-(p-1)=p-1=q=q(G)$
Corollary 13. Let G be a connected (p, q) graph, then $L^{m}\left(G^{n}\right) \cong L^{r}\left(G^{n}\right)$ where $m>r, n>1$ if and only if G is C_{3} or $K_{1,3}$.
Proof: Let $L^{m}\left(G^{n}\right) \cong L^{r}\left(G^{n}\right)$ where $m>r, n>1$. Then by corollary 5, G^{n} is a cycle or $K_{1,3}$. Therefore, G is C_{3} or $K_{1,3}$.
Theorem 14. Let G be a connected (p, q) graph, then $L\left(G^{n}\right) \cong L(G)$ for some $n>1$ if and only if G is the complete graph K_{p}.
Proof: Let G be a connected (p, q) graph. Then G^{n} is a $\left(p, q\left(G^{n}\right)\right)$ graph. Suppose that $L\left(G^{n}\right) \cong L(G)$.
This implies that $q\left(G^{n}\right)=q(G) \forall n>1$ and therefore, $G=K_{p}$. The converse is trivial.

III. CONCLUSION

There does not exist a connected graph G satisfying the graph equation $L(G) \cong G-e$. A connected (p, q) graph G is a path if and only if $L(G) \cong G-\{v\}$ for some $v \in L(G)$, is K_{3} or K_{2} if and only if $L\left(G^{2}\right) \cong(L(G))^{2}$, is a cycle or $K_{1,3}$ if and only if $L^{m}(G) \cong L^{n}(G)$ for $m>n$, is C_{3} or $K_{1,3} \quad$ if and only if $L^{m}\left(G^{n}\right) \cong L^{r}\left(G^{n}\right)$ where $m>r, n>1$, is the complete graph K_{p} if and only if $L\left(G^{n}\right) \cong L(G)$ for some $n>1$ and is a generalized 3-star if and only if $q(G)=q(L(G))$.

REFERENCES

[1] S Beena, "A Characterization of paths, generalized stars and cycles", Graph Theory of New York LI, 46 - 49 (2006).
[2] F Harary, "Graph Theory", Addison Wesley, Inc(1969).

