Characterization of Some Graphs using Graph Equations

Beena S

Associate Professor, Department of Mathematics NSS College, Nilamel, Kollam, Kerala, India

Abstract

The line graph of a graph G denoted by L(G) is defined as the graph whose vertices are the edges of G and where two vertices in L(G) are adjacent if and only if the corresponding edges in G are incident to a common vertex. A connected graph G is said to be unicyclic if it contains a unique cycle. In this work, some unicyclic graphs, paths and generalized 3 -stars are characterized using graph equations involving line graphs.

Keywords - Line graphs, Graph equations.

I. INTRODUCTION

All graphs considered in this paper are finite, undirected, without loop or multiple edges. Let p, q and $d_1, d_2, ..., d_p$ respectively denote the order, size, and degree sequence of a given graph G.

Definition 1. The line graph of a graph G denoted by L(G) is defined as the graph whose vertices are the edges of G and where two vertices in L(G) are adjacent if and only if the corresponding edges in G are incident to a common vertex.

Theorem 2 [2]. If G is a (p,q) graph and degree sequence $d_1, d_2, ..., d_p$, then L(G) has q vertices and q_L

edges where
$$q_{L} = -q + \frac{1}{2} \sum_{i=1}^{p} d_{i}^{2}$$
.

Definition 3. The n – power G^n of a graph G has the same vertex set as G and two vertices u and v are adjacent in G^n if and only if $d(u, v) \le n$ in G.

Theorem 4[1]. A connected graph G with order $p \ge 2$ and degree sequence $d_1, d_2, ..., d_p$ is a path if and only

if
$$\sum_{i=1}^{p} d_i^2 = 4p - 6$$

Definition 5. A connected graph with one vertex of degree 3, three vertices of degree 1 and p - 4 vertices of degree 2 is called a generalized 3-star of order p.

Theorem 6[1]. A connected graph G with order $p \ge 2$ and degree sequence $d_1, d_2, ..., d_p$ is a generalized

3-star if and only if $\sum_{i=1}^{p} d_i^2 = 4 p - 4$.

II. MAIN RESULTS

Theorem 7. There does not exist a connected (p,q) graph G satisfying the graph equation $L(G) \cong G - e$. **Proof:** Let G be a connected (p,q) graph, then L(G) is a (q,q_L) graph where $q_L = -q + \frac{1}{2} \sum_{i=1}^{p} d_i^2$. Since

 $L(G) \cong G - e$, we have q = p and $q_L = q - 1$. Therefore, G is a unicyclic graph and $q - 1 = -q + \frac{1}{2} \sum_{i=1}^{p} d_i^2$,

which implies $\sum_{i=1}^{p} d_i^2 = 4p - 2$. That is, G is a generalized double 3 - star by theorem 6, which is a

contradiction to the fact that G is a unicyclic graph. Hence there exists no connected graph G satisfying the equation $L(G) \cong G - e$.

Theorem 8. Let *G* be a connected (p, q) graph. Then $L(G) \cong G - \{v\}$ for some $v \in L(G)$ if and only if *G* is a path.

Proof: Let G be a connected (p, q) graph. Let v be a vertex of G. Suppose that $L(G) \cong G - \{v\}$. Then L(G) is a $(p-1, q_L)$ graph. Thus G is a connected (p, p-1) graph. Hence G is a tree and v must be a pendant

vertex of G. Further, $q-1 = -q + \frac{1}{2} \sum_{i=1}^{p} d_i^2$. This implies, $\sum_{i=1}^{p} d_i^2 = 4q - 2 = 4p - 6$. Hence G is a path, by

theorem 4. The converse is trivial.

Theorem 9. Let G be a connected (p, q) graph. Then $L(G^2) \cong (L(G))^2$ if and only if G is K_3 or K_2 .

Proof: Let G be a connected (p, q) graph, then L(G) is a (q, q_L) graph where $q_L = -q + \frac{1}{2} \sum_{i=1}^{p} d_i^2$

and $(L(G))^2$ has q vertices. Suppose that $L(G^2) \cong (L(G))^2$. Therefore, $L(G^2)$ must have q vertices. Therefore, G^2 is also (p,q) graph. This implies, $G = G^2$. Therefore $G = K_p$ and $L(G^2) \cong (L(G))^2$

implies $L(G) \cong (L(G))^2$. Therefore, L(G) is a complete graph. But L(G) is a $\left(\frac{p(p-1)}{2}, q_L\right)$ graph, where

$$q_{L} = -\frac{p(p-1)}{2} + \frac{1}{2}p(p-1)^{2} = \frac{p}{2}(p-1)(p-2) \text{ Also } q_{L} = \frac{1}{2}\frac{p(p-1)}{2}\left(\frac{p(p-1)}{2} - 1\right). \text{ Therefore,}$$
$$\frac{p}{2}(p-1)(p-2) = \frac{p(p-1)}{4}\left(\frac{p(p-1)-2}{2}\right). \text{ That is, } p-2 = \frac{p(p-1)-2}{2} \text{ or } p^{2} - 5p + 6 = 0.$$

That is, p = 2 or 3. Therefore, $G = K_3$ or K_2 .

Conversely, If $G = K_3$ or K_2 , then $L(G^2) \cong (L(G))^2$.

Theorem 10. Let *G* be a connected (p,q) graph which is not a cycle, a path or a generalized 3 - star. Let $q_n = q(L^n(G))$ where $L^0(G) \cong G$. Then $\{q_n\}_{n=0,1,2,\dots}$ is a strictly increasing sequence.

Proof: Let *G* be a connected (p, q) graph, then L(G) is a (q, q_1) graph. Since *G* is connected (L(G) also), $q_1 \ge q - 1$. If $q_1 = q - 1$, L(G) must be a tree. Which contradicts the fact that *G* is not a path. If $q_1 = q$,

Then L(G) is a unicyclic graph. Clearly $q \ge p-1$. If q > p, then L(G) will have more than one cycle, which

is a contradiction. Therefore q = p - 1 or p. Also $q_1 = q$ implies $\sum_{i=1}^{p} d_i^2 = 4q = 4p - 4$ or 4p.

 $\sum_{i=1}^{p} d_i^2 = 4p - 4$ implies, G is a generalized 3-star and $\sum_{i=1}^{p} d_i^2 = 4p$, implies G is a cycle. That is

 $q_1 = q$ implies G is a cycle or a generalized 3-star, a contradiction to our assumption. Hence, $q_1 > q$.

Suppose we have proved that for any graph not in this class, then $q < q_1 < ... < q_n$. Now, L(G) can not be a generalized 3-star, which has $K_{1,3}$ as an induced subgraph. Suppose $L(G) \cong C_n$, $n \ge 3$. First suppose $n \ge 4$, then $L(G) \cong C_n \cong L(C_n)$ which implies $G \cong C_n$, which is a contradiction. Therefore, $L(G) \cong C_3$, implies $G \cong C_3$ or $K_{1,3}$, again a contradiction. Therefore, if G does not belong to the class of graphs so does L(G).

Therefore by induction, $q(L^{n+1}(L(G))) < q(L^n(L(G)))$. This implies, $q(L^n(G)) < q(L^{n+1}(G))$. Hence the proof.

Corollary 11. Let *G* be a connected (p, q) graph, then $L^m(G) \cong L^n(G)$ for m > n if and only if *G* is a cycle or $K_{1,3}$.

Proof: By theorem 10, *G* must be either a cycle, a path or a generalized 3-star. Clearly *G* is not a path. Therefore, *G* is either a cycle or a generalized 3-star. If *G* is a generalized 3-star with p > 4, then L(G) is a unicyclic graph other than cycle. Therefore, $q(L^n(L(G))) = q(L^{n+1}(G))$ is an increasing sequence for n = 1, 2, ...

by theorem 10.In this case $L^m(G) \neq L^n(G)$ for m > n. Hence G must be a cycle or a generalized 3-star with p = 4. That is $K_{1,3}$.

The converse is trivial.

Corollary 12. Let G be a tree on p vertices. Then G is a generalized 3-star if and only if q(G) = q(L(G)).

Proof: By theorem 6, G is a generalized 3-star if and only if $\sum_{i=1}^{r} d_i^2 = 4p - 4$. Also we have,

 $q(L(G)) = -q + \frac{1}{2} \sum_{i=1}^{p} d_i^2$. That is, $\sum_{i=1}^{p} d_i^2 = 2(q + q(L(G)))$. Therefore, *G* is a generalized 3-star if and only if q(L(G)) = 2p - 2 - q = 2p - 2 - (p - 1) = p - 1 = q = q(G)

Corollary 13. Let G be a connected (p,q) graph, then $L^m(G^n) \cong L^r(G^n)$ where m > r, n > 1 if and only if G is C_3 or $K_{1,3}$.

Proof: Let $L^m(G^n) \cong L^r(G^n)$ where m > r, n > 1. Then by corollary 5, G^n is a cycle or $K_{1,3}$. Therefore, G is C_3 or $K_{1,3}$.

Theorem 14. Let G be a connected (p,q) graph, then $L(G^n) \cong L(G)$ for some n > 1 if and only if G is the complete graph K_p .

Proof: Let G be a connected (p,q) graph. Then G^n is $a(p,q(G^n))$ graph. Suppose that $L(G^n) \cong L(G)$.

This implies that $q(G^n) = q(G) \forall n > 1$ and therefore, $G = K_p$. The converse is trivial.

III. CONCLUSION

There does not exist a connected graph *G* satisfying the graph equation $L(G) \cong G - e$. A connected (p, q) graph *G* is a path if and only if $L(G) \cong G - \{v\}$ for some $v \in L(G)$, is K_3 or K_2 if and only if $L(G^2) \cong (L(G))^2$, is a cycle or $K_{1,3}$ if and only if $L^m(G) \cong L^n(G)$ for m > n, is C_3 or $K_{1,3}$ if and only if $L^m(G^n) \cong L^r(G^n)$ where m > r, n > 1, is the complete graph K_p if and only if $L(G^n) \cong L(G)$ for some n > 1 and is a generalized 3-star if and only if q(G) = q(L(G)).

REFERENCES

[1] S Beena, "A Characterization of paths, generalized stars and cycles", Graph Theory of New York LI, 46 – 49 (2006).

[2] F Harary, "Graph Theory", Addison Wesley, Inc(1969).