3-Modulo Difference Mean Cordial Labeling of Some Graphs

S.S.Sabarina Subi ${ }^{1}$,Dr.S.Pasunkilipandian ${ }^{2}$
Department of Mathematics, Aditanar College of Arts and Science, Tiruchendur, Tamil Nadu-India

Abstract

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple graph with p vertices and q edges. G is said to have 3 - modulo difference mean cordial labeling if there is a injective map $f: V(G) \rightarrow\{0,1,2,3, \ldots \ldots \ldots, 5 p\}$ such that for every edge $u v$, the induced labeling f^{*} is defined as $f^{*}(\mathrm{uv})=\left\{\begin{array}{c}1 \text { if } \frac{|f(u)-f(v)|}{2} \equiv 0(\bmod 3) \text { if }|f(u)-f(v)| \text { is even } \\ 1 \text { if } \frac{|f(u)-f(v)|+1}{2} \equiv 0(\bmod 3) \text { if }|f(u)-f(v)| \text { is odd }{ }^{\text {with the condition }} \\ 0 \text { elsewhere }\end{array}\right.$ that $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$,where $e_{f}(0)$ is the number of edges with label 0 and $e_{f}(1)$ is the number of edges with label 1.If G admits 3 -modulo difference mean cordial labeling then G is a 3-modulo difference mean cordial graph. In this paper, we proved that the graphs $\operatorname{Path}\left(P_{n}\right),, \operatorname{Star}\left(K_{1, n}\right), C_{n}+u_{1} u_{3}$ are 3-modulo difference mean cordial graphs.

Keywords-3-modulo difference mean cordial labeling, 3-modulo difference mean cordial graphs.

I. INTRODUCTION

A graph G is a finite non-empty set of objects called vertices together with a set of unordered pairs of distinct vertices of G called edges.Each pair $\mathrm{e}=\{\mathrm{u}, \mathrm{v}\}$ of vertices in E is called edges or a line of G.In this paper,we proved thatthe graphs $\operatorname{Path}\left(\mathrm{P}_{\mathrm{n}}\right), \operatorname{Star}\left(K_{1, n}\right), C_{n}+u_{1} u_{3}$ are 3-modulo difference mean cordial graphs.For graph theoretic terminology we follow [2].

II. PRELIMINARIES

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple graph with p vertices and q edges. G is said to have
3 - modulo difference mean cordial labeling if there is a injective map
$f: V(G) \rightarrow\{0,1,2,3, \ldots \ldots \ldots, 5 p\}$ such that for every edge uv , the induced labeling f^{*} is defined as
$f^{*}($ uv $)=\left\{\begin{array}{c}1 \text { if } \frac{|f(u)-f(v)|}{2} \equiv 0(\bmod 3) \text { if }|f(u)-f(v)| \text { is even } \\ 1 \text { if } \frac{|f(u)-f(v)|+1}{2} \equiv \\ 0(\bmod 3) \text { if }|f(u)-f(v)| \text { is odd }{ }^{\text {with the condition that }} \\ 0 \text { elsewhere }\end{array}\right.$
$\left|e_{f}(0)-e_{f}(1)\right| \leq 1$,wheree ${ }_{f}(0)$ is the number of edges with label 0 and $e_{f}(1)$ is the number of edges with label 1.If G admits 3 -modulo difference mean cordial labeling then G is a 3-modulo difference mean cordial graph. In this paper, we proved that the graphs $\operatorname{Path}\left(\mathrm{P}_{\mathrm{n}}\right), \operatorname{Star}\left(K_{1, n}\right), C_{n}+u_{1} u_{3}$ are 3-modulo difference mean cordial graphs.

DEFINITION 2.1:

Path is a graph whose vertices can be listed in the order $\left(u_{1}, u_{2}, u_{3}, \ldots . . u_{n}\right)$ such that the edges are $\left\{u_{i}, u_{i+1}\right\}$ where $i=1,2,3, . . n-1$.

DEFINITION 2.2:

A Star $K_{1, n}$ is a tree with one internal vertex and n edges.

DEFINITION 2.3:

In any cycle there is a chord between any two non-adjacent vertices.It is denoted by $C_{n}+u_{1} u_{3}$.

III. MAIN RESULT

Theorem 1:

Path $\left(P_{n}\right)$ is a 3-modulo difference mean cordial graph.

Proof:

Let G be a graph
When n is odd , $\mathrm{n}=2 \mathrm{k}+1$ and when n is even, $\mathrm{n}=2 \mathrm{k}$.
Let $\mathrm{V}(\mathrm{G})=\left\{u_{1}, u_{2}, u_{3}, \ldots \ldots \ldots u_{n}\right\}$
$\mathrm{E}(\mathrm{G})=\left\{u_{i} u_{i+1} / 1 \leq i \leq n-1\right\}$
Then $|V(G)|=n$ and $|E(G)|=n-1$
Define $f: V(G) \rightarrow\{0,1,2,3, \ldots \ldots \ldots, 3 n\}$
Case (i): n is even
Subcase (i): k is not a multiple of 3 .
The vertex labels are,
$f\left(u_{i}\right)=\left\{\begin{array}{lc}3 i & 1 \leq i \leq k \\ 5 i & k+1 \leq i \leq n\end{array}\right.$
The induced edge labels are,
For $1 \leq i \leq k-1$
$f^{*}\left(u_{i} u_{i+1}\right)=2$
For $k+1 \leq i \leq n-1$
$f^{*}\left(u_{i} u_{i+1}\right)=3 \equiv 0(\bmod 3)$

$$
f^{*}\left(u_{k} u_{k+1}\right)=k+3 \not \equiv 0(\bmod 3)
$$

It is observed as
$e_{f}(0)=k$
$e_{f}(1)=k-1$
Subcase (ii): k is a multiple of 3 .
The vertex labels are,
$f\left(u_{i}\right)=\left\{\begin{array}{cc}3 i & 1 \leq i \leq k \\ 5 i & k+1 \leq i \leq n\end{array}\right.$
The induced edge labels are,
For $1 \leq i \leq k-1$
$f^{*}\left(u_{i} u_{i+1}\right)=2$
For $k+1 \leq i \leq n-1$
$f^{*}\left(u_{i} u_{i+1}\right)=3 \equiv 0(\bmod 3)$

$$
f^{*}\left(u_{k} u_{k+1}\right)=k+3 \equiv 0(\bmod 3)
$$

It is observed as
$e_{f}(0)=k-1$
$e_{f}(1)=k$

P_{6}
Case (ii): n is odd
Subcase (i): k is not a multiple of 3
The vertex labels are,
$f\left(u_{i}\right)=\left\{\begin{array}{cc}3 i & 1 \leq i \leq k \\ 5 i & k+1 \leq i \leq n\end{array}\right.$
The induced edge labels are,
For $1 \leq i \leq k-1$
$f^{*}\left(u_{i} u_{i+1}\right)=2$
For $k+1 \leq i \leq n-1$
$f^{*}\left(u_{i} u_{i+1}\right)=3 \equiv 0(\bmod 3)$

$$
f^{*}\left(u_{k} u_{k+1}\right)=k+3 \not \equiv 0(\bmod 3)
$$

It is observed as
$e_{f}(0)=k$
$e_{f}(1)=k$
Subcase (ii): k is a multiple of 3
The vertex labels are,
$f\left(u_{i}\right)=\left\{\begin{array}{cc}3 i & 1 \leq i \leq k \\ 5 i & k+1 \leq i \leq n-1\end{array}\right.$
$f\left(u_{n}\right)=5 n-1$
The induced edge labels are,
For $1 \leq i \leq k-1$
$f^{*}\left(u_{i} u_{i+1}\right)=2$
For $k+1 \leq i \leq n-2$
$f^{*}\left(u_{i} u_{i+1}\right)=3 \equiv 0(\bmod 3)$

$$
f^{*}\left(u_{k} u_{k+1}\right)=k+3 \equiv 0(\bmod 3)
$$

$f^{*}\left(u_{n-1} u_{n}\right)=2$
It is observed as
$e_{f}(0)=k$
$e_{f}(1)=k$

P_{7}
Clearly $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$
Then f is a 3 - modulo difference mean cordial labeling.
Hence P_{n} is a 3 - modulo difference mean cordial graph.

Theorem 2:

$\operatorname{Star}\left(K_{1, n}\right)$ is a 3-modulo difference mean cordial graph.

Proof:

Let G be a graph
When n is odd, $\mathrm{n}=2 \mathrm{k}+1$ and when n is even, $\mathrm{n}=2 \mathrm{k}$.
Let $\mathrm{V}(\mathrm{G})=\left\{u_{1}, u_{2}, u_{3}, \ldots \ldots \ldots u_{n}, u\right\}$
$\mathrm{E}(\mathrm{G})=\left\{u u_{i} / 1 \leq i \leq n\right\}$
Then $|V(G)|=n+1$ and $|E(G)|=n$
Define $f: V(G) \rightarrow\{0,1,2,3, \ldots \ldots \ldots, 3 n+3\}$
The vertex labels are,
$f\left(u_{i}\right)=3 i \quad, \quad 1 \leq i \leq n$
$f(u)=0$
The induced edge labels are,
$f^{*}\left(u u_{i}\right)=\left\{\begin{array}{l}\frac{3 i+1}{2} \equiv 2(\bmod 3) \text { when } i \text { is odd } \\ \frac{3 i}{2} \equiv 0(\bmod 3) \text { when } i \text { is even }\end{array}\right.$
It is observed as,
$e_{f}(0)=\left\{\begin{array}{lc}k+1 & \text { when } n \text { is odd } \\ k & \text { when } n \text { is even }\end{array}\right.$

$$
e_{f}(1)=k
$$

$K_{1,5}$

$$
K_{1,4}
$$

Clearly $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$
Then f is a 3 - modulo difference mean cordial labeling
Hence Star is a 3-modulo difference mean cordial graph.

Theorem 3:

$$
C_{n}+u_{1} u_{3} \text { is a 3-modulo difference mean cordial graph only when } \mathrm{n} \text { is even. }
$$

Proof:

Let G be a graph
When n is odd, $\mathrm{n}=2 \mathrm{k}+1$ and when n is even, $\mathrm{n}=2 \mathrm{k}$.
Let $\mathrm{V}(\mathrm{G})=\left\{u_{1}, u_{2}, u_{3}, \ldots \ldots \ldots u_{n}\right\}$
$\mathrm{E}(\mathrm{G})=\left\{u_{i} u_{i+1} / 1 \leq i \leq n-1\right\} \cup\left\{u_{n} u_{1}\right\} \cup\left\{u_{3} u_{1}\right\}$
Then $|V(G)|=n$ and $|E(G)|=n+1$
Define $f: V(G) \rightarrow\{0,1,2,3, \ldots \ldots \ldots, 3 n\}$
Case(i): $n=4$
The vertex labels are,
$f\left(u_{i}\right)=3 i \quad, 1 \leq i \leq 3$
$f\left(u_{n}\right)=5 n$
The induced edge labels are,
$f^{*}\left(u_{1} u_{2}\right)=2$
$f^{*}\left(u_{2} u_{3}\right)=2$
$f^{*}\left(u_{3} u_{4}\right)=6 \equiv 0(\bmod 3)$

$$
f^{*}\left(u_{4} u_{1}\right)=9 \equiv 0(\bmod 3)
$$

$f^{*}\left(u_{1} u_{3}\right)=3 \equiv 0(\bmod 3)$

It is observed as
$e_{f}(0)=2$
$e_{f}(1)=3$

$$
C_{4}+u_{1} u_{3}
$$

Case(ii): $n>4$
Subcase $(\mathbf{i i}): k \equiv 1(\bmod 3)$.
The vertex labels are,
$f\left(u_{i}\right)=\left\{\begin{array}{cc}3 i & 1 \leq i \leq k \\ 5 i & k+1 \leq i \leq n\end{array}\right.$
The induced edge labels are,
For $1 \leq i \leq k-1$
$f^{*}\left(u_{i} u_{i+1}\right)=2$
For $k+1 \leq i \leq n-1$
$f^{*}\left(u_{i} u_{i+1}\right)=3 \equiv 0(\bmod 3)$

$$
\begin{aligned}
& f^{*}\left(u_{k} u_{k+1}\right)=k+3 \equiv 1(\bmod 3) \\
& f^{*}\left(u_{n} u_{1}\right)=\frac{5 n-3}{2} \equiv 1(\bmod 3)
\end{aligned}
$$

$f^{*}\left(u_{1} u_{3}\right)=3 \equiv 0(\bmod 3)$
It is observed as
$e_{f}(0)=k+1$
$e_{f}(1)=k$

Subcase (iii) $: k \equiv 2(\bmod 3)$.
The vertex labels are,
$f\left(u_{i}\right)=\left\{\begin{array}{lc}3 i & 1 \leq i \leq k \\ 5 i & k+1 \leq i \leq n\end{array}\right.$
The induced edge labels are,
For $1 \leq i \leq k-1$
$f^{*}\left(u_{i} u_{i+1}\right)=2$
For $k+1 \leq i \leq n-1$
$f^{*}\left(u_{i} u_{i+1}\right)=3 \equiv 0(\bmod 3)$

$$
f^{*}\left(u_{k} u_{k+1}\right)=k+3 \equiv 2(\bmod 3)
$$

$f^{*}\left(u_{n} u_{1}\right)=\frac{5 n-2}{2} \equiv 0(\bmod 3)$
$f^{*}\left(u_{1} u_{3}\right)=3 \equiv 0(\bmod 3)$
It is observed as
$e_{f}(0)=k$
$e_{f}(1)=k+1$

Subcase $(\mathbf{i v}): k \equiv 0(\bmod 3)$.
The vertex labels are,
$f\left(u_{i}\right)=\left\{\begin{array}{cc}3 i & 1 \leq i \leq k \\ 5 i & k+1 \leq i \leq n\end{array}\right.$
The induced edge labels are,
For $1 \leq i \leq k-1$
$f^{*}\left(u_{i} u_{i+1}\right)=2$
For $k+1 \leq i \leq n-1$
$f^{*}\left(u_{i} u_{i+1}\right)=3 \equiv 0(\bmod 3)$

$$
f^{*}\left(u_{k} u_{k+1}\right)=k+3 \equiv 0(\bmod 3)
$$

$f^{*}\left(u_{n} u_{1}\right)=\frac{5 n-2}{2} \equiv 2(\bmod 3)$
$f^{*}\left(u_{1} u_{3}\right)=3 \equiv 0(\bmod 3)$
It is observed as
$e_{f}(0)=k$
$e_{f}(1)=k+1$

$$
C_{6}+u_{1} u_{3}
$$

REFERENCES

[1] Gallian J.A,A Dynamic Survey of Graph Labeling,The Electronic Journal of Combinatorics,6(2001)\#DS6
[2] Harray.F Graph Theory,Adadison-Wesley Publishing Company inc,USA, 1969
[3] NellaiMurugan .A and Esther.G,Some Results on Mean Cordial Graphs,International Journal of Mathematics Trends and Technology,ISSN:2231-5373,Volume 11 Number 2-Jul 2014,page 97-101
[4] SabarinaSubi.S.S and Nagarajan.A,3-Modulo Cordial Graphs on Cycle Related Graphs,International Journal for Science and Advance research in technology,ISSN[ONLINE]:2395-1052,Volume 4,Issue 2,February 2018,Pp.889-894.

