On (*a*,*d*) – 1- Vertex- Antimagic Labeled Graphs

Beena S

Associate Professor Department of Mathematics NSS College, Nilamel, Kollam, Kerala, India

Abstract

Let G be a graph on p – vertices. Then a vertex labeling $f:V(G) \rightarrow \{1,2,..., p\}$ is called (a,d)-1vertex antimagic - vertex (1-VAV) labeling of G, if the vertex weight induced by f at each vertex of V are a, a + d, a + 2d, ..., a + (p-1)d where a and d are some fixed positive integers. In this work, we have proved every graph is an induced subgraph of a regular (a, d) - 1 - VA graph and some of its properties.

Key words : (a, d) - 1 *VAV labeling,* Σ' *labeling, regular graph.*

I. INTRODUCTION

All graphs considered in this paper are finite, undirected simple graphs.

Definition [1] 1. Let G = (V, E) be a graph on p vertices. Let $N[u] = N(u) \cup \{u\}$ be the closed neighborhood of u in G. The graph G is said to be Σ' labeled graph or Σ' graph if there exists a bijection $f:V(G) \rightarrow \{1,2,..., p\}$ such that for all $u \in v(G)$, $\sum_{v \in N[u]} f(v)$ is a constant independent of u. The constant sum is

denoted by S' and f is called a Σ' labeling of G.

Theorem [2] 2. Every graph is an induced subgraph of some connected r - regular graph for some r > 0.

II. MAINRESULTS

Proposition 3. If the graph G has two distinct vertices u and v such that N(u) = N(v), then G is not (a, d) - 1 - VA graph.

Proof: If possible, suppose that an (a, d) - 1 - VA graph has two distinct vertices u and v such that N(u) = N(v). Then wt(u) = wt(v), which is not possible. Since vertex weights are distinct for a (a, d) - 1 - VA graph. Hence G is not (a, d) - 1 - VA graph.

Corollary 4. K_{m_1,m_2,\dots,m_i} is (a, d) - 1 - VA graph if and only if $m_1 = 1 \forall i$.

Proof: Suppose that K_{m_1,m_2,\dots,m_r} is (a, d) - 1 - VA graph. If possible, let $m_i > 1$ for some *i*, then the vertices in the partite set with m_i - vertices have equal neighborhood. Therefore, K_{m_1,m_2,\dots,m_r} is (a, d) - 1 VA graph then $m_i = 1 \forall i$.

Conversely, suppose that $m_i = 1 \forall i$. Therefore $K_{m_1, m_2, \dots, m_r} \cong K_r$, which is a (a, d) - 1 - VA graph where r(r-1)

$$a = \frac{r(r-1)}{2}$$
 and $d = 1$.

Theorem 5. Every Σ' graph is is (a, d) - 1 - VA graph.

Proof: Let $v_1, v_2, ..., v_p$ be the vertices of a Σ' graph G with vertex sum s'. Let $f(v_i) = i$ be the labeling. Then $i + wt(v_i) = S'$. That is, $wt(v_i) = S' - i \forall i = 1, 2, ..., p$. Hence G is a (a, d) - 1 - VA graph with a = S' - p and d = 1.

Remark. The converse of the above theorem need not be true. For example, consider the wheel W_5 . Let G = (V, E) be any connected r - regular graph, where r > 0 with vertex set $\{v_1, v_2, ..., v_n\}$. Let G_1^* be another graph with $|V(G_1^*)| = n$ having vertices say $\{v_1', v_2', ..., v_n'\}$. Join v_i' to v_i and to the vertices which are adjacent to v_i in G, also v_i' is joined to v_j' whenever v_i and v_j are joined in G. Note that G_1^* is (2r + 1)- regular graph of order 2n.

Theorem 6. Every connected r - regular graph, where r > 0 is an induced subgraph of a connected (a, d) - 1 - VA graph.

Proof: Let G = (V, E) be any connected r - regular graph, where r > 0 with vertex set $\{v_1, v_2, ..., v_n\}$. Then the graph G_1^* constructed as above is (2r+1)- regular graph of order 2n. Define a function $f: V(G_1^*) \rightarrow \{1, 2, ..., 2n\}$ as follows: $f(v_i) = i$ and $f(v_i') = (2n+1) - i$ for $1 \le i \le n$. Clearly f is a

bijection and $wt(v_i) = (r+1)(2n+1) - i$, $wt(v_i') = r(2n+1), 1 \le i \le n$. Therefore, f is a (r(2n+1)+1,1) - 1 -VAV labeling of G_1^* . Thus G_1^* is a connected (r(2n+1)+1,1) - 1 -VA graph.

Theorem 7. Every connected graph H is an induced subgraph of a regular (a, d) - 1 - VA graph.

Proof: By theorem 2, the graph *H* is an induced subgraph of some connected *r* -regular graph *G* for some r > 0. Then by theorem 6, the graph G_1^* is a (2r + 1) - regular (a, d) - 1 - VA graph. As *G* is an induced subgraph of G_1^* , it follows that *H* is also an induced subgraph of G_1^* . Hence every graph *H* is an induced subgraph of a regular (a, d) - 1 VA graph.

Theorem 8. The graph $K_1 + P_n$ has (a, d) - 1 VAV labeling if and only if n = 1, 2, 4.

Proof: Suppose that $K_1 + P_n$ has (a, d) - 1 VAV labeling. Let $v_1, v_2, ..., v_n$ be the vertices of P_n in this order and vertex of K_1 be v. Note that $wt(v) \ge \frac{n(n+1)}{2}$ and $wt(v_i) \le 3n$. Therefore $d \ge \frac{n(n+1)}{2} - 3n$. That is, $n(n+1) - 6n \le 2$, which implies $n(n-5) \le 2$, which is true only when n = 1, 2, 3, 4, 5.

(i) When n = 1, $K_1 + P_1$ has (1, 1) - 1 - VAV labeling.

(ii) When n = 2, $K_1 + P_2 \cong K_3$ has (3, 1) - 1 -VAV labeling.

(iii) When n = 3 n = 3

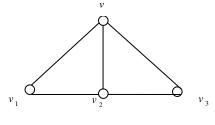


Figure 1

From the figure 1, $N(v_1) = \{v, v_2\} = N(v_3)$. Therefore by proposition 3, $K_1 + P_3$ has no (a,1) - 1 VAV labeling.

(iv) When n = 4, $K_1 + P_4$ has (7, 1) - 1 - VAV labeling.

(v) When n = 5. Let f(v) = x, $f(v_1) = a$, $f(v_2) = b$, $f(v_3) = c$, $f(v_4) = d$, $f(v_5) = e$. Then the possible values of x are 6 or 5. If possible, assume that x = 6. Then wt(x) = 15. Therefore, $10 \le wt(a) < 15$.

wt (a) ≥ 10 implies that $b \ge 4$. That is b = 4 or 5.

Let b = 4, then wt(a) = 10. Therefore, 10 < wt(e) < 15. That is 10 < d + 6 < 15, Which implies 4 < d < 9. Therefore d = 5. Hence wt(c) = 15 = wt(x), which is impossible. Similarly if b = 5, we get d = 4 and wt(c) = wt(x), which is not possible. Therefore, $x \neq 6$. If possible, let x = 5. Then wt(x) = 16. Therefore, $11 \le wt(a) < 16$. That is, $11 \le 5 + b < 16$. This implies $6 \le b < 11$. Therefore b = 6 and wt(a) = 11. Now, 11 < wt(e) < 16 implies 11 < d + 5 < 16. That is, 6 < d < 9, Which is not possible. Therefore, $K_1 + P_5$ has no (a, 1) - 1 - VAV labeling. Hence $K_1 + P_n$ has (a, d) - 1 - VAV labeling if and only if n = 1, 2, 4.

III CONCLUSIONS

If the graph *G* has two distinct vertices *u* and *v* such that N(u) = N(v), then *G* is not (*a*, *d*) – 1 – VA graph. Every Σ' graph is (*a*, *d*) – 1 – VA graph and the converse is need not be true. Every connected graph *H* is an induced subgraph of a regular (*a*, *d*) – 1 – VA graph. The graph $K_1 + P_n$ has (*a*, *d*) – 1 – VAV labeling if and only if n = 1, 2, 4

REFENCES

- [1] S Beena, 'On Σ & Σ' labeled graphs' Discrete Mathematics 309(2009) 1783 1787.
- [2] K R Parthasarathy, 'Basic Graph Theory, Tata Mc.Graw Hill (1994).
- [3] D B West, Introduction to Graph Theory', (2nd Edn) Pearson Education (2001).