# On (a,d)-1-Vertex- Antimagic Labeled Graphs 

Beena S<br>Associate Professor<br>Department of Mathematics<br>NSS College, Nilamel, Kollam, Kerala, India


#### Abstract

Let $G$ be a graph on $p$-vertices. Then a vertex labeling $f: V(G) \rightarrow\{1,2, \ldots, p\}$ is called $(a, d)-1-$ vertex antimagic - vertex (1-VAV) labeling of $G$, if the vertex weight induced by $f$ at each vertex of $V$ are $a, a+d, a+2 d, \ldots, a+(p-1) d$ where $a$ and $d$ are some fixed positive integers. In this work, we have proved every graph is an induced subgraph of a regular $(a, d)-1-V A$ graph and some of its properties.


Key words : $(a, d)-1$ VAV labeling, $\Sigma$ ' labeling, regular graph.

## I. INTRODUCTION

All graphs considered in this paper are finite, undirected simple graphs.
Definition [1] 1. Let $G=(V, E)$ be a graph on $p$ vertices. Let $N[u]=N(u) \cup\{u\}$ be the closed neighborhood of $u$ in $G$. The graph $G$ is said to be $\Sigma^{\prime}$ labeled graph or $\Sigma^{\prime}$ graph if there exists a bijection $f: V(G) \rightarrow\{1,2, \ldots, p\}$ such that for all $u \in v(G), \sum_{v \in N[u]} f(v)$ is a constant independent of $u$. The constant sum is denoted by $S$ ' and $f$ is called a $\Sigma^{\prime}$ labeling of $G$.
Theorem [2] 2. Every graph is an induced subgraph of some connected $r$ - regular graph for some $r>0$.

## II. MAINRESULTS

Proposition 3. If the graph $G$ has two distinct vertices $u$ and $v$ such that $N(u)=N(v)$, then $G$ is not $(a, d)-1$ - VA graph.
Proof: If possible, suppose that an $(a, d)-1$-VA graph has two distinct vertices $u$ and $v$ such that $N(u)=N(v)$. Then $w t(u)=w t(v)$, which is not possible. Since vertex weights are distinct for a $(a, d)-1-\mathrm{VA}$ graph. Hence $G$ is not $(a, d)-1-$ VA graph.
Corollary 4. $K_{m_{1}, m_{2}, \ldots m_{r}}$ is $(a, d)-1-$ VA graph if and only if $m_{1}=1 \forall i$.
Proof: Suppose that $K_{m_{1}, m_{2}, \ldots m_{r}}$ is $(a, d)-1$ - VA graph. If possible, let $m_{i}>1$ for some $i$, then the vertices in the partite set with $m_{i}$ - vertices have equal neighborhood. Therefore, $K_{m_{1}, m_{2}, \ldots m_{r}}$ is $(a, d)-1 \mathrm{VA}$ graph then $m_{i}=1 \forall i$.
Conversely, suppose that $m_{i}=1 \forall i$. Therefore $K_{m_{1}, m_{2}, \ldots m_{r}} \cong K_{r}$, which is a $(a, d)-1$ - VA graph where $a=\frac{r(r-1)}{2}$ and $d=1$.
Theorem 5. Every $\Sigma^{\prime}$ graph is is $(a, d)-1-$ VA graph.
Proof: Let $v_{1}, v_{2}, \ldots, v_{p}$ be the vertices of a $\Sigma^{\prime}$ graph $G$ with vertex $\operatorname{sum} S^{\prime}$. Let $f\left(v_{i}\right)=i$ be the labeling. Then $i+w t\left(v_{i}\right)=S^{\prime}$. That is, wt $\left(v_{i}\right)=S^{\prime}-i \forall i=1,2, \ldots, p$. Hence $G$ is a $(a, d)-1-$ VA graph with $a=S^{\prime}-p$ and $d=1$.
Remark. The converse of the above theorem need not be true.
For example, consider the wheel $W_{5}$.

Let $G=(V, E)$ be any connected $r$-regular graph, where $r>0$ with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let $G_{1}^{*}$ be another graph with $\left|V\left(G_{1}{ }^{*}\right)\right|=n$ having vertices say $\left\{v_{1}{ }^{\prime}, v_{2}{ }^{\prime}, \ldots, v_{n}{ }^{\prime}\right\}$. Join $v_{i}{ }^{\prime}$ to $v_{i}$ and to the vertices which are adjacent to $v_{i}$ in $G$, also $v_{i}{ }^{\prime}$ is joined to $v_{j}{ }^{\prime}$ whenever $v_{i}$ and $v_{j}$ are joined in $G$. Note that $G_{1}{ }^{*}$ is $(2 r+1)$ - regular graph of order $2 n$.
Theorem 6. Every connected $r$-regular graph, where $r>0$ is an induced subgraph of a connected $(a, d)-1$ - VA graph.
Proof: Let $G=(V, E)$ be any connected $r$-regular graph, where $r>0$ with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Then the graph $G_{1}^{*}$ constructed as above is $(2 r+1)$ - regular graph of order $2 n$. Define a function $f: V\left(G_{1}^{*}\right) \rightarrow\{1,2, \ldots, 2 n\}$ as follows: $f\left(v_{i}\right)=i$ and $f\left(v_{i}{ }^{\prime}\right)=(2 n+1)-i$ for $1 \leq i \leq n$. Clearly $f$ is a bijection and $\quad w t\left(v_{i}\right)=(r+1)(2 n+1)-i, \quad w t\left(v_{i}{ }^{\prime}\right)=r(2 n+1), \quad 1 \leq i \leq n$. Therefore, $f$ is a $(r(2 n+1)+1,1)-1$-VAV labeling of $G_{1}^{*}$. Thus $G_{1}^{*}$ is a connected $(r(2 n+1)+1,1)-1$-VA graph.
Theorem 7. Every connected graph $H$ is an induced subgraph of a regular $(a, d)-1$ - VA graph.
Proof: By theorem 2, the graph $H$ is an induced subgraph of some connected $r$-regular graph $G$ for some $r>0$. Then by theorem 6, the graph $G_{1}^{*}$ is a $(2 r+1)$ - regular $(a, d)-1$ - VA graph. As $G$ is an induced subgraph of $G_{1}^{*}$, it follows that $H$ is also an induced subgraph of $G_{1}^{*}$. Hence every graph $H$ is an induced subgraph of a regular $(a, d)-1$ VA graph.

Theorem 8. The graph $K_{1}+P_{n}$ has $(a, d)-1$ VAV labeling if and only if $n=1,2,4$.
Proof: Suppose that $K_{1}+P_{n}$ has $(a, d)-1$ VAV labeling. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of $P_{n}$ in this order and vertex of $K_{1}$ be $v$. Note that $w t(v) \geq \frac{n(n+1)}{2}$ and $w t\left(v_{i}\right) \leq 3 n$.Therefore $d \geq \frac{n(n+1)}{2}-3 n$. That is, $n(n+1)-6 n \leq 2$, which implies $n(n-5) \leq 2$, which is true only when $n=1,2,3,4,5$.
(i) When $n=1, \quad K_{1}+P_{1}$ has $(1,1)-1-$ VAV labeling.
(ii) When $n=2, \quad K_{1}+P_{2} \cong K_{3}$ has $(3,1)-1$-VAV labeling.
(iii) When $n=3 \quad n=3$


Figure 1
From the figure 1, $N\left(v_{1}\right)=\left\{v, v_{2}\right\}=N\left(v_{3}\right)$. Therefore by proposition $3, K_{1}+P_{3}$ has no ( $a, 1$ ) -1 VAV labeling.
(iv) When $n=4, \quad K_{1}+P_{4}$ has $(7,1)-1-$ VAV labeling.
(v) When $n=5$. Let $f(v)=x, f\left(v_{1}\right)=a, f\left(v_{2}\right)=b, f\left(v_{3}\right)=c, f\left(v_{4}\right)=d, f\left(v_{5}\right)=e$. Then the possible values of $x$ are 6 or 5. If possible, assume that $x=6$. Then $w t(x)=15$. Therefore, $10 \leq w t(a)<15$.
$w t(a) \geq 10$ implies that $b \geq 4$. That is $b=4$ or 5 .
Let $b=4$, then $w t(a)=10$. Therefore, $10<w t(e)<15$. That is $10<d+6<15$, Which implies $4<d<9$. Therefore $d=5$. Hence wt $(c)=15=w t(x)$, which is impossible. Similarly if $b=5$, we get $d=4$ and $w t(c)=w t(x)$, which is not possible. Therefore, $x \neq 6$. If possible, let $x=5$. Then $w t(x)=16$. Therefore,
$11 \leq w t(a)<16$. That is, $11 \leq 5+b<16$. This implies $6 \leq b<11$. Therefore $b=6$ and $w t(a)=11$. Now, $11<w t(e)<16$ implies $11<d+5<16$. That is, $6<d<9$, Which is not possible. Therefore, $K_{1}+P_{5}$ has no $(a, 1)-1$ - VAV labeling. Hence $K_{1}+P_{n}$ has $(a, d)-1-$ VAV labeling if and only if $n=1,2,4$.

## III CONCLUSIONS

If the graph $G$ has two distinct vertices $u$ and $v$ such that $N(u)=N(v)$, then $G$ is not $(a, d)-1-$ VA graph. Every $\Sigma^{\prime}$ graph is $(a, d)-1-$ VA graph and the converse is need not be true. Every connected graph $H$ is an induced subgraph of a regular $(a, d)-1-$ VA graph. The graph $K_{1}+P_{n}$ has $(a, d)-1$ - VAV labeling if and only if $n=1,2,4$

## REFENCES

[1] S Beena, 'On $\Sigma \& \Sigma$ ' labeled graphs' Discrete Mathematics 309(2009) 1783 - 1787.
[2] K R Parthasarathy, 'Basic Graph Theory, Tata Mc.Graw - Hill (1994).
[3] D B West, Introduction to Graph Theory', (2 ${ }^{\text {nd }}$ Edn) Pearson Education (2001).

