Complete Anti Fuzzy Graphs

R.Kalaivani^{#1} S.Meena Devi^{#2}
Department of mathematics
Sri kaliswari college, Sivakasi,

Abstract

In this paper, we define three new operations on anti fuzzy graphs, namely direct product, semi – strong product and strong product. Moreover, we introduce and study the notion of balanced graph.

Keywords - anti fuzzy graph, direct product, semi – strong product, strong product, balanced anti fuzzy graph.

I. INTRODUCTION

The concept of fuzzy graph was first introduced by Kaufmann [1] from the fuzzy relation introduced by Zedah [7]. Although Rosenfield [4] introduced another elaborated definition, including fuzzy vertex and fuzzy edge, and also introduced the notion of fuzzy graph .J.N. Mordeson and P.S. Nair [2] introduced the concept of operations on fuzzy graphs but this concept was extended by M.S. Sunitha and A.Vijaya kumar[6]. R.Muthuraj and A. Sasireka [3] introduced the concept of anti fuzzy graph. R. Seethalakshmi and R.B. Gnanajothi[5] discussed the concept some operations such as anti union and anti join on anti fuzzy graph.

In this paper, we introduce the new operations on anti fuzzy graphs, namely direct product, semi – strong product and strong product and balanced anti fuzzy graph. We derived some theorems and results on them.

II. PRELIMINARIES

Definition 2.1 : A fuzzy graph $G:(\sigma,\mu)$ is said to be an anti fuzzy graph with a pair of functions $\sigma: V \rightarrow [0,1]$ and $\mu: V \times V \rightarrow [0,1]$ where for all $u, v \in V$. We have $\mu(u,v) \ge \sigma(u) \ V \sigma(v)$ for all $u, v \in V$ and it is denoted by

 $G_A:(\sigma,\mu)$ where `V` stands for maximum.

Definition 2.2: An anti fuzzy graph $H_A: (\tau, \rho)$ is called an anti fuzzy subgraph of $G_A: (\sigma, \mu)$ if $\tau(u) \leq \sigma(u)$ for all $u \in V$ and $\rho(u, v) \leq \mu(u, v)$ for all $u, v \in V$

Definition 2.3: The underlying crisp graph of an anti fuzzy graph $G_A:(\sigma,\mu)$ is denoted by $G_A^*:(\sigma^*,\mu^*)$ where $\sigma^* = \{u \in V: \sigma(u) > 0\}$ and $\mu^* = \{(u,v) \in V \times V: \mu(u,v) > 0\}$.

Definition 2.4: The complement of an anti-fuzzy graph $G_A:(\sigma,\mu)$ is an anti-fuzzy sub-graph $\overline{G_A}:(\overline{\sigma},\overline{\mu})$ where $\overline{\sigma}\equiv \sigma$ and $\overline{\mu}(u,v)=\mu(u,v)-(\sigma(u)V\sigma(v))$ for all u,v in V.

III. COMPLETE ANTI FUZZY GRAPH

Definition 3.1: An anti fuzzy graph G_A : (σ, μ) is said to be complete anti-fuzzy graph if $\mu(u, v) \ge \sigma(u) \nabla \sigma(v)$ for all u, v in V.

Definition 3.2: The direct product of two anti fuzzy graphs $G_{A_1}:(\sigma_1,\mu_1)$ with crisp graph $G_{A_1}^*:(V_1,E_1)$ and

 G_{A_2} : (σ_2, μ_2) with crisp graph $G_{A_2}^*$: (V_2, E_2) , where we assume that $V_1 \cap V_2 = \emptyset$ is defined to be the anti fuzzy graph $G_{A_1} \cap G_{A_2}$: $(\sigma_1 \cap \sigma_2, \mu_1 \cap \mu_2)$ with crisp graph G_A^* : $(V_1 \times V_2, E_1)$

where $E = \{(u_1, v_1)(u_2, v_2) : (u_1, u_2) \in E_1, (v_1, v_2) \in E_2 \},\$

 $(\sigma_1 \sqcap \sigma_2)$ $(u, v) = \sigma_1(u) \lor \sigma_2(v)$, for all $(u, v) \in V_1 \times V_2$ and

 $\mu_1 \sqcap \mu_2((u_1, v_1)(u_2, v_2)) = \mu_1(u_1, u_2) \vee \mu_2(v_1, v_2).$

Definition 3.3: The semi-strong product of two anti fuzzy graphs G_{A_1} : (σ_1, μ_1) with crisp graph $G_{A_1}^*$: (V_1, E_1) and G_{A_2} : (σ_2, μ_2) with crisp graph $G_{A_2}^*$: (V_2, E_2) ; where we assume that $V_1 \cap V_2 = \emptyset$ is defined to be the anti fuzzy graph G_{A_1} : G_{A_2} : $(\sigma_1, \sigma_2, \mu_1, \mu_2)$ with crisp graph $G_{A_1}^*$: $(V_1 \times V_2, E_1)$

where
$$E = \{(u, v_1)(u, v_2) : u \in V_1, (v_1, v_2) \in E_2\} \cup \{(u_1, v_1) \ (u_2, v_2) : (u_1, u_2) \in E_1, \ (v_1, v_2) \in E_2\},$$

$$(\sigma_1. \sigma_2) \ (u, v) = \sigma_1(u) \ V \sigma_2(v), \text{ for all } (u, v) \in V_1 \times V_2 \text{ and}$$

$$(\mu_1. \mu_2)(\ (u, v_1)(u, v_2)) = \sigma_1(u) \ V \mu_2(v_1, v_2) \text{ and}$$

Definition 3.4: The strong product of two anti fuzzy graphs G_{A_1} : (σ_1, μ_1) with crisp graph $G_{A_1}^*$: (V_1, E_1) and G_{A_2} : (σ_2, μ_2) with crisp graph $G_{A_2}^*$: (V_2, E_2) where we assume that $V_1 \cap V_2 = \emptyset$ is defined to be the anti fuzzy graph

$$G_{A_1} \otimes G_{A_2}$$
: $(\sigma_1 \otimes \sigma_2, \, \mu_1 \otimes \mu_2)$ with crisp graph G_A^* : $(V_1 \times V_2, E)$

where
$$E = \{(u, v_1)(u, v_2) : u \in V_1, (v_1, v_2) \in E_2\} \cup \{(u_1, w) (u_2, w) : w \in V_2, v_2 \in E_2\} \cup \{(u_1, w) (u_2, w) : w \in V_2\} \cup \{(u_1, w) (u_2,$$

$$(u_1, u_2) \in E_1 \cup \{(u_1, v_1) (u_2, v_2) : (u_1, u_2) \in E_1, (v_1, v_2) \in E_2 \}.$$

$$(\sigma_1 \otimes \sigma_2)$$
 $(u, v) = \sigma_1(u) \vee \sigma_2(v)$, for all $(u, v) \in V_1 \times V_2$ and

$$(\mu_1 \otimes \mu_2)((u, v_1)(u, v_2)) = \sigma_1(u) \vee \mu_2(v_1, v_2)$$

$$(\mu_1 \otimes \mu_2) ((u_1, w)(u_2, w)) = \sigma_2(w) \vee \mu_1(u_1, u_2).$$

$$(\mu_1 \otimes \mu_2) ((u_1, v_1)(u_2, v_2)) = \mu_1(u_1, u_2) \vee \mu_2(v_1, v_2).$$

 $(\mu_1 \cdot \mu_2) ((u_1, v_1)(u_2, v_2)) = \mu_1 (u_1, u_2) \vee \mu_2 (v_1, v_2).$

Theorem 3.5: If G_{A_1} : (σ_1, μ_1) and G_{A_2} : (σ_2, μ_2) are anti fuzzy complete graphs, then $G_{A_1} \sqcap G_{A_2}$ is complete.

Proof: Let G_{A_1} : (σ_1, μ_1) and G_{A_2} : (σ_2, μ_2) be two anti fuzzy complete graphs.

Let
$$(u_1, u_2) \in E_1$$
, $(v_1, v_2) \in E_2$.

Then
$$\mu_1(\mathbf{u}_1, \mathbf{u}_2) = \sigma_1(\mathbf{u}_1) \ \forall \sigma_1(\mathbf{u}_2) \ \text{and} \ \mu_2(\mathbf{v}_1, \mathbf{v}_2) = \sigma_2(\mathbf{v}_1) \ \forall \sigma_2(\mathbf{v}_2)$$
 (1)

Now,
$$(\mu_1 \sqcap \ \mu_2)((u_1, v_1)(u_2, v_2)) = (\ \sigma_1 \sqcap \ \sigma_2)(u_1, v_1) \ V(\ \sigma_1 \sqcap \ \sigma_2)(u_2, v_2).$$

If
$$(u_1, v_1)(u_2, v_2) \in E$$
.

Then
$$(\mu_1 \sqcap \ \mu_2)((\mathbf{u}_1, \mathbf{v}_1)(\mathbf{u}_2, \mathbf{v}_2)) = \mu_1(\mathbf{u}_1, \mathbf{u}_2) \ \forall \mu_2(\mathbf{v}_1, \mathbf{v}_2)$$

$$= \sigma_1(\mathbf{u}_1) \ \forall \sigma_1(\mathbf{u}_2) \ \forall \sigma_2(\mathbf{v}_1) \ \forall \sigma_2(\mathbf{v}_2) \ (\text{ by } (1) \)$$

$$= (\ \sigma_1 \sqcap \ \sigma_2) \ (\mathbf{u}_1, \mathbf{v}_1) \ \forall (\ \sigma_1 \sqcap \ \sigma_2)(\mathbf{u}_2, \mathbf{v}_2).$$

 $G_{A_1} \sqcap G_{A_2}$ is complete.

Theorem 3.6: If G_{A_1} : (σ_1, μ_1) and G_{A_2} : (σ_2, μ_2) are anti fuzzy complete graphs, then G_{A_1} . G_{A_2} is complete.

Proof: Let G_{A_1} : (σ_1, μ_1) and G_{A_2} : (σ_2, μ_2) be two anti fuzzy complete graphs.

If
$$((u, v_1), (u, v_2)) \in E$$
, then

i)(
$$\mu_1$$
. μ_2)((u, v₁)(u, v₂))= σ_1 (u) $\vee \mu_2$ (v₁,v₂)
= σ_1 (u) $\vee \sigma_2$ (v₁) $\vee \sigma_2$ (v₂)
= (σ_1 . σ_2) (u,v₁) \vee (σ_1 . σ_2) (u,v₂).

ii) If $((u_1, v_1), (u_2, v_2)) \in E$, then

$$\begin{split} (\; \mu_1.\; \mu_2)((\mathbf{u}_1, \mathbf{v}_1)(\mathbf{u}_2, \mathbf{v}_2)) &= \mu_1(\mathbf{u}_1, \mathbf{u}_2) \; \forall \mu_2(\mathbf{v}_1, \mathbf{v}_2). \\ &= \; \sigma_1(\mathbf{u}_1) \; \forall \sigma_1(\mathbf{u}_2) \; \forall \; \sigma_2(\mathbf{v}_1) \; \forall \; \sigma_2(\mathbf{v}_2). \\ &= (\; \sigma_1.\; \sigma_2) \; (\mathbf{u}_1, \mathbf{v}_1) \; \forall \; (\sigma_1.\; \sigma_2) \; (\mathbf{u}_2, \mathbf{v}_2). \end{split}$$

 G_{A_1} . G_{A_2} is complete.

Theorem 3.7: If G_{A_1} : (σ_1, μ_1) and G_{A_2} : (σ_2, μ_2) are anti fuzzy complete graphs, then $G_{A_1} \otimes G_{A_2}$ is complete.

Proof: Let G_{A_1} : (σ_1, μ_1) and G_{A_2} : (σ_2, μ_2) be two anti fuzzy complete graphs.

i) If
$$((u,v_1), (u,v_2)) \in E$$
, then

$$\begin{split} (\; \mu_1 \otimes \; \mu_2) ((\mathbf{u}, \, \mathbf{v}_1), \, (\mathbf{u}, \, \mathbf{v}_2)) &= \sigma_1(\mathbf{u}) \; \forall \mu_2(\mathbf{v}_1, \mathbf{v}_2) \\ &= \sigma_1(\mathbf{u}) \; \forall \sigma_2(\mathbf{v}_1) \; \forall \; \sigma_2(\mathbf{v}_2) \quad (\text{since } \textit{G}_{\textit{A}_2} \; \text{is complete}) \\ &= (\; \sigma_1 \otimes \; \sigma_2)(\mathbf{u}, \mathbf{v}_1) \forall \; (\sigma_1 \otimes \sigma_2)(\mathbf{u}, \mathbf{v}_2). \end{split}$$

ii) If $((u_1, w), (u_2, w)) \in E$, then

$$(\mu_1 \otimes \mu_2)((\mathbf{u}_1, \mathbf{w}), (\mathbf{u}_2, \mathbf{w})) = \mu_1(\mathbf{u}_1, \mathbf{u}_2) \vee \sigma_2(\mathbf{w})$$

$$= \sigma_1(\mathbf{u}_1) \vee \sigma \sigma_1(\mathbf{u}_2) \vee \sigma_2(\mathbf{w}) \quad \text{(since } G_{A_1} \text{ is complete)}$$

$$= (\sigma_1 \otimes \sigma_2)(\mathbf{u}_1, \mathbf{w}) \vee (\sigma_1 \otimes \sigma_2)(\mathbf{u}_2, \mathbf{w}).$$

iii) If
$$((u_1, v_1), (u_2, v_2)) \in E$$
, then

$$\begin{split} (\; \mu_1 \otimes \; \mu_2)((u_1, \, v_1), & (u_2, v_2)) = \mu_1(u_1, \, u_2) \; \; \forall \mu_2(u_2, \, v_2) \\ & = \; \sigma_1(u_1) \; \forall \sigma_1(u_2) \; \forall \; \sigma_2(v_1) \; \forall \sigma_2(v_2) \\ & = (\; \sigma_1 \otimes \; \sigma_2)(u_1, v_1) \forall \; (\sigma_1 \otimes \sigma_2)(u_2, v_2). \end{split}$$

 $G_{A_1} \otimes G_{A_2}$ is complete.

Result 3.8: 1) If
$$G_{A_1}$$
: (σ_1, μ_1) and G_{A_2} : (σ_2, μ_2) are anti fuzzy complete graphs, then $\overline{G_{A_1} \otimes G_{A_2}} \simeq \overline{G_{A_1}} \otimes \overline{G_{A_2}}$
2) If G_{A_1} : (σ_1, μ_1) and G_{A_2} : (σ_2, μ_2) are anti fuzzy complete graphs, then $\overline{G_{A_1} \cdot G_{A_2}} \simeq \overline{G_{A_1}} \cdot \overline{G_{A_2}}$.
3) If G_{A_1} : (σ_1, μ_1) and G_{A_2} : (σ_2, μ_2) are anti fuzzy complete graphs, then $\overline{G_{A_1} \cap G_{A_2}} \simeq \overline{G_{A_1}} \cap \overline{G_{A_2}}$.

Note 3.9: The direct product, the semi –strong product (or) the strong product of two anti fuzzy graphs is complete, then atleast one of the two anti fuzzy graphs must be complete.

Theorem 3.10: If G_{A_1} : (σ_1, μ_1) and G_{A_2} : (σ_2, μ_2) are anti fuzzy graphs such that $G_{A_1} \sqcap G_{A_2}$ is complete, then at least G_{A_1} or G_{A_2} must be complete.

Proof: Suppose that G_{A_1} and G_{A_2} are not complete.

Then there exists at least one $(u_1, u_2) \in E_1$ and $(v_1, v_2) \in E_2$ such that

$$\mu_1(\mathbf{u}_1, \mathbf{u}_2) < \sigma_1(\mathbf{u}_1) \ \forall \sigma_1(\mathbf{u}_2)$$

$$\mu_2(v_1, v_2) < \sigma_2(v_1) \ \forall \sigma_2(v_2)$$

If
$$G_{A_1} \sqcap G_{A_2}$$
, $(\sigma_1 \sqcap \sigma_2)(u_1, v_1) = \sigma_1(u_1) \vee \sigma_2(v_1)$

$$(\sigma_1 \sqcap \sigma_2)(\mathbf{u}_2, \mathbf{v}_2) = \sigma_2(\mathbf{u}_2) \bigvee \sigma_2(\mathbf{v}_2)$$

Now,(
$$\mu_1 \sqcap \mu_2$$
)((u_1, v_1)(u_2, v_2)) = $\mu_1(u_1, u_2) \lor \mu_2(v_1, v_2)$

$$< \sigma_1(\mathbf{u}_1) \ \forall \sigma_1(\mathbf{u}_2) \ \forall \ \sigma_2(\mathbf{v}_1) \ \forall \sigma_2(\mathbf{v}_2)$$

=
$$(\sigma_1 \sqcap \sigma_2) (u_1, v_1) \lor (\sigma_1 \sqcap \sigma_2) (u_2, v_2)$$

$$(\mu_1 \sqcap \mu_2)((u_1, v_1)(u_2, v_2)) < (\sigma_1 \sqcap \sigma_2)(u_1, v_1) \lor (\sigma_1 \sqcap \sigma_2)(u_2, v_2)$$

Therefore $G_{A_1} \sqcap G_{A_2}$ is not complete, which is a contradiction to our assumption.

Either G_{A_1} or G_{A_2} is complete.

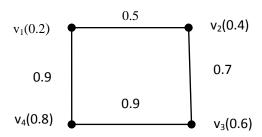
Result 3.11:

- 1) If G_{A_1} : (σ_1, μ_1) and G_{A_2} : (σ_2, μ_2) are two anti fuzzy graphs such that G_{A_1} . G_{A_2} is complete, then at least G_{A_1} (or) G_{A_2} must be complete.
- 2) If G_{A_1} : (σ_1, μ_1) and G_{A_2} : (σ_2, μ_2) are two anti fuzzy graphs such that $G_{A_1} \otimes G_{A_2}$ is complete, then at least G_{A_1} (or) G_{A_2} must be complete.

IV. BALANCED ANTI FUZZY GRAPHS

Definition 4.1: The density of a anti fuzzy graph G_A : (σ, μ) is $D(G_A) = 2(\sum_{u,v \in V} \mu(u,v))/(\sum_{u,v \in V} \sigma(u) \vee \sigma(v))$: G_A is balanced if $D(H_A) \leq D(G_A)$ for all anti fuzzy non-empty subgraphs H_A of G_A .

Example 4.2:



Theorem 4.3: Any complete anti fuzzy graph is balanced.

Proof: Let G be a complete anti fuzzy graph.

Then D(G_A) =
$$2[(\sum_{u,v \in V} \mu(u,v))/(\sum_{u,v \in V} \sigma(u) \lor \sigma(v))]$$

= $2[\sum_{u,v \in V} \sigma(u) \lor \sigma(v)/\sum_{u,v \in V} \sigma(u) \lor \sigma(v)]$

 $D(G_A) = 2$ (since G_A is complete).

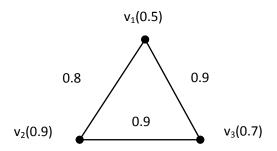
If H_A is a non-empty anti fuzzy subgraph of G_A, then

$$\begin{split} \mathrm{D}(\mathrm{H_A}\,) &= 2[(\sum_{u,v \in V(H)} \mu(u,v)\,)/(\sum_{u,v \in V(H)} \sigma(u) \vee \sigma(v))] \\ &\leq 2[(\sum_{u,v \in V(H)} \sigma(u) \vee \sigma(v)\,)/(\sum_{u,v \in V(H)} \sigma(u) \vee \sigma(v))] \\ &\leq 2[(\sum_{u,v \in V(G)} \sigma(u) \vee \sigma(v)\,)/(\sum_{u,v \in V(G)} \sigma(u) \vee \sigma(v))] \\ &= 2 = \mathrm{D}(\mathrm{G_A}) \end{split}$$

Note 4.4: The converse of the above theorem need not be true.

Example 4.5: The following anti fuzzy graph G_A : (σ, μ) is a balanced graph that is not complete.

 $D(H_A) \le D(G_A)$.



Note 4.6: we use to give necessary and sufficient conditions for the direct product, semi-strong product and strong product of two anti fuzzy balanced graphs to be balanced.

Lemma 4.7: Let G_{A_1} and G_{A_2} be anti fuzzy graphs.

Then D
$$(G_{Ai}) \le D(G_{A_1} \sqcap G_{A_2})$$
 for $i = 1, 2$ if and only if $D(G_{A_1}) = D(G_{A_2}) = D(G_{A_1} \sqcap G_{A_2})$.

Proof: Let G_1 and G_2 be two anti fuzzy graphs.

Assume that D $(G_{Ai}) \le D(G_{A_1} \sqcap G_{A_2})$ for i = 1, 2.

$$\begin{split} \text{WKT, D}(G_{A_1}) &= 2(\sum_{u_1, u_2 \in V_1} \mu_1(u_1, u_2)) / (\sum_{u_1, u_2 \in V_1} \sigma_1(u_1) \vee \sigma_1(u_2)) \\ &\leq 2(\sum_{u_1, u_2 \in V_1} \mu_1(u_1, u_2) \vee \sigma_2(v_1) \vee \sigma_2(v_2)) / \\ &\qquad \qquad (\sum_{u_{1, u_2} \in V_1} v_{1, v_2} \in V_2 \sigma_1(u_1) \vee \sigma_1(u_2) \vee \sigma_2(v_1) \vee \sigma_2(v_2)) \\ &= 2[(\sum_{u_1, u_2 \in V_1} v_{1, v_2} \in V_2 \mu_1(u_1, u_2) \vee \mu_2(v_1, v_2)] / [(\sum_{u_{1, u_2} \in V_1} v_{1, v_2} \in V_2 \sigma_1(u_1) \vee \sigma_1(u_2) \vee \sigma_2(v_1) \vee \sigma_2(v_2))] \\ &= 2[\sum_{u_1, u_2 \in V_1} \mu_1 \sqcap \mu_2(u_1, v_1) (u_2, v_2)] / \sum_{u_1, u_2 \in V_1} v_{1, v_2} \in V_2 (\sigma_1 \sqcap \sigma_2) ((u_1, v_1)(u_2, v_2))] \\ &= D(G_{A_1} \sqcap G_{A_2}) \end{split}$$

 $:D(G_{A_1}) \le D(G_{A_1} \sqcap G_{A_2})$ and hence $D(G_{A_1}) = D(G_{A_1} \sqcap G_{A_2})$

Similarly, $D(G_{A_2}) \leq D(G_{A_1} \sqcap G_{A_2})$ and thus $D(G_{A_2}) = D(G_{A_1} \sqcap G_{A_2})$.

Hence $D(G_{A_1}) = D(G_{A_2}) = D(G_{A_1} \sqcap G_{A_2})$.

Theorem 4.8: Let G_{A_1} and G_{A_2} be anti fuzzy balanced graphs. Then $G_{A_1} \sqcap G_{A_2}$ is balanced if and only if $D(G_{A_1}) = D(G_{A_2}) = D(G_{A_1} \sqcap G_{A_2})$.

Proof: If $G_{A_1} \sqcap G_{A_2}$ is balanced.

Then $D(G_{Ai}) \leq D(G_{A_1} \sqcap G_{A_2})$ for i = 1, 2.

By lemma 4.7, $D(G_{A_1})=D(G_{A_2})=D(G_{A_1}\sqcap G_{A_2}).$

Conversely, assume that $D(G_{A_1}) = D(G_{A_2}) = D(G_{A_1} \sqcap G_{A_2})$.

Let H be a anti fuzzy subgraph of $G_{A_1} \sqcap G_{A_2}$.

Then there exist anti fuzzy subgraphs H_{A_1} of G_{A_1} and H_{A_2} of G_{A_2}

Let the edge set of G_{A_1} and G_{A_2} is n_1 and vertex set of G_{A_1} and G_{A_2} is r_1 .

Let the edge set of H_{A_1} and H_{A_2} is a_1 and a_2 , vertex set of H_{A_1} and H_{A_2} is b_1 and b_2 .

Since G_{A_1} and G_{A_2} are balanced and $D(G_{A_1}) = D(G_{A_2}) = n_1/r_1$, then $D(H_{A_1}) = a_1/b_1 \le n_1/r_1$ and $D(H_{A_2}) = a_2/b_2 \le n_1/r_1$

Now, $a_1 \le n_1 b_1/r_1$ and $a_2 \le n_1 b_2/r_1$.

 $\Rightarrow a_1 + a_2 \le (n_1b_1 + n_2b_2)/r_1$

 $\Rightarrow a_1+a_2 \le n_1 (b_1+b_2)/r_1$

 $\Longrightarrow a_1r_1 + a_2r_2 \le n_1b_1 + n_2b_2$.

Hence, $D(H_{A_1}) \le (a_1+a_2) \setminus (b_1+b_2) \le n_1/r_1 = D(G_{A_1} \sqcap G_{A_2})$

 $D(H_{A_1}) \leq D(G_{A_1} \sqcap G_{A_2})$

 $(G_{A_1} \sqcap G_{A_2})$ is balanced.

Note 4.9: Let G_{A_1} and G_{A_2} be anti fuzzy balanced graphs.

Then i) G_{A_1} . G_{A_2} is balanced if and only if $D(G_{A_1}) = D(G_{A_2}) = D(G_{A_1}$. G_{A_2} .

ii) $G_{A_1} \otimes G_{A_2}$ is balanced if and only if $D(G_{A_1}) = D(G_{A_2}) = D(G_{A_1} \otimes G_{A_2})$

Theorem 4.10: Let G_{A_1} and G_{A_2} be isomorphic anti fuzzy graphs. If G_{A_2} is balanced, then G_{A_1} is balanced.

Proof: Let h: $V_1 \rightarrow V_2$ be a bijection such that $\sigma_1(x) = \sigma_2(h(x))$ and $\mu_1(x, y) = \mu_2(h(x), h(y))$ for all $x, y \in V_1$

We have
$$\sum_{x \in V1} \sigma_1(x) = \sum_{x \in V2} \sigma_2(x)$$
 and $\sum_{x,y \in V1} \mathbb{Z}_1(x,y) = \sum_{x,y \in V2} \mathbb{Z}_2(x,y)$

Let $H_{A_1} = (\sigma'_{1}, \mu'_{1})$ be a anti fuzzy subgraph of G_{A_1} with underlying set W.

Let $H_{A_2} = (\sigma'_{2}, \mu'_{2})$ be a anti fuzzy subgraph of G_{A_2} with underlying set h(W), where

$$\sigma'_{2}(h(x)) = \sigma'_{1}(x)$$
 and $\mu'_{2}(h(x),h(y)) = \mu'_{1}(x,y)$ for all $x,y \in W$.

Since G_{A_2} is balanced, $D(H_{A_2}) \le D(G_{A_2})$

Now,
$$2(\sum_{x,y\in W} \mathbb{Z}'(h(x),h(y)) / \sum_{x,y\in W} \sigma'_{2}(x) \vee \sigma'_{2}(y)$$

$$\leq 2(\sum_{x,y\in V_{2}} \mu_{2}(x,y)) / (\sum_{x,y\in V_{2}} \sigma_{2}(x) \vee \sigma_{2}(y))$$

$$2(\sum_{x,y\in W} \mathbb{Z}'_{1}(x,y) / \sum_{x,y\in W} \sigma'_{2}(x) \vee \sigma'_{2}(y)$$

$$\leq 2(\sum_{x,y\in V_{1}} \mu_{1}(x,y)) / (\sum_{x,y\in V_{1}} \sigma_{2}(x) \vee \sigma(y))$$

$$\leq D(G_{1}).$$

Therefore G_{A_1} is balanced.

REFERENCES

- [1] Kaufmann. A., "Introducion to the theory of fuzzy Subsets", Academic pres, Newyork, (1975).
- [2] J.N.Mordeson and P.S.Nair, Physica Verlag(2000).
- [3] R.Muthuraj and A.Sasireka, "On Anti-fuzzy graph", Advances in Fuzzy Mathematics, Vol.12, No.5,(2017), pp.1123-1135.
- [4] Rosenfield, Fuzzy graphs In Zadeh, L.A.,Fu, K.S., Shimura, M(Eds), Fuzzy Sets and their Applications, Academic Press, New York, (1975).
- [5] R.Seethalakshmi, R.B.Gnanajothi, "Operations on anti-fuzzy graph" Mathematical Sciences International Research Journal, Volume 5, Issue 2 (2016), pp.210-214.
- [6] M.S.Sunitha and A.Vijaya Kumar, "Complement of a fuzzy graph", Indian Journal of Pure and Applied Mathematics, 33(9), September (2002), pp.1451-1464.
- [7] L.A.Zadeh, "Fuzzy sets", Information sciences, No.8(1965), pp.338-353.