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Abstract 

        The main purpose of this paper is to prove some fixed point results for mappings satisfying various 

contractive conditions on Complete 𝐺 −Metric spaces. We also prove the uniqueness of such fixed points as 

well as we showed these mappings are G-continuous on such fixed points. 
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I. INTRODUCTION AND PRELIMINARIES 
  
        The study of metric fixed point theory has been researched extensively in the past decades, since fixed 

point theory plays a major role in mathematics and applied sciences, such as optimization, mathematical models, 

and economic theories. 

Different mathematicians tried to generalize the usual notion of metric space(𝑋, 𝑑) such as Gahler [3]  and 

Dhage [1,2] to extend known metric space theorems in more general setting, but different authors proved that 

these attempts are invalid.  

In 2005, Mustafa and Sims [4] introduced a new structure of generalized metric spaces which are called G-

metric spaces as generalization of metric space (𝑋, 𝑑) 𝑡𝑜 develop and introduce a new fixed point theory for 

various mappings in this new structure. 

Definition 1.1[4].Let X be a non- empty set, and let G: X × X × X → R+ be a function satisfying the following 

axioms: 

(G1) 𝐺(𝑥, 𝑦, 𝑧)  =  0 𝑖𝑓 𝑥 =  𝑦 =  𝑧, 

(G2) 0 <  𝐺(𝑥, 𝑥, 𝑦), for all 𝑥, 𝑦 ∈  𝑋, 𝑤𝑖𝑡ℎ 𝑥 ≠  𝑦, 

(G3) 𝐺(𝑥, 𝑥, 𝑦)  ≤  𝐺(𝑥, 𝑦, 𝑧), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 , 𝑧 ∈  𝑋, 𝑤𝑖𝑡ℎ 𝑧 ≠  𝑦, 

(G4) 𝐺(𝑥, 𝑦, 𝑧)  =  𝐺(𝑥, 𝑧, 𝑦)  =  𝐺(𝑦, 𝑧, 𝑥)  = ··· (symmetry in all three variables), 

(G5)  𝐺(𝑥, 𝑦, 𝑧)  ≤  𝐺(𝑥, 𝑎, 𝑎)  +  𝐺 (𝑎, 𝑦, 𝑧), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦, 𝑧, 𝑎 ∈  𝑋, (Rectangle inequality). 

then the function 𝐺 is called a generalized metric or more specifically a G-metric on X, and the pair (𝑋, 𝐺) 

is called a G-metric space. 

Example 1.2 Let R be the set of all real numbers. Define 𝐺: 𝑅 ×  𝑅 ×  𝑅 →  𝑅+ by 

𝐺(𝑥, 𝑦, 𝑧)  = | 𝑥 −  𝑦 |  + | 𝑦 −  𝑧 |  + | 𝑧 −  𝑥 |, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦, 𝑧 ∈  𝑋. 

Then it is clear that (𝑅, 𝐺) is a G-metric space. 

Proposition 1.3[4]:- Let (𝑋, 𝐺) be a 𝐺-metric space. Then for any 𝑥, 𝑦, 𝑧, and 𝑎 ∈  𝑋,     it follows that  

(1) 𝐼𝑓 𝐺(𝑥, 𝑦, 𝑧)  =  0, 𝑡ℎ𝑒𝑛 𝑥 = 𝑦 = 𝑧, 
(2) 𝐺(𝑥, 𝑦, 𝑧)  ≤  𝐺(𝑥, 𝑥, 𝑦)  +  𝐺(𝑥, 𝑥, 𝑧), 
(3) 𝐺(𝑥, 𝑦, 𝑦) ≤  2𝐺(𝑦, 𝑥, 𝑥), 
(4) 𝐺(𝑥, 𝑦, 𝑧)  ≤  𝐺(𝑥, 𝑎, 𝑧)  + 𝐺(𝑎, 𝑦, 𝑧), 

(5) 𝐺(𝑥, 𝑦, 𝑧)  ≤  ( 
2

3
)(𝐺(𝑥, 𝑦, 𝑎) +  𝐺(𝑥, 𝑎, 𝑧) +  𝐺(𝑎, 𝑦, 𝑧)), 

(6) 𝐺(𝑥, 𝑦, 𝑧)  ≤  ( 𝐺(𝑥, 𝑎, 𝑎) +  𝐺(𝑦, 𝑎, 𝑎)  + 𝐺(𝑧, 𝑎, 𝑎)). 
Definition 1.4 Let (𝑋, 𝐺) and (𝑋 ′ , 𝐺 ′ ) be 𝐺-metric spaces and let 𝑓 ∶  (𝑋, 𝐺)  →  (𝑋 ′ , 𝐺 ′ ) be a function, then 

f is said to be G-continuous at a point a ∈ X if given  ϵ  > 0, there exists δ > 0 such that 
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𝑥, 𝑦 ∈  𝑋;  𝐺(𝑎, 𝑥, 𝑦)  <  𝛿 implies 𝐺 ′ (𝑓(𝑎), 𝑓(𝑥), 𝑓(𝑦))  <   𝜖 . 

A function 𝑓 is 𝐺 −continuous on X if and only if it is G-continuous at all 𝑎 ∈  𝑋. 

Definition 1.5[4]:- Let (𝑋, 𝐺) be a 𝐺 -metric space. Then for 𝑥0 ∈ 𝑋, 𝑟 > 0, 𝑡ℎ𝑒 𝐺 − 𝑏𝑎𝑙𝑙 with centre 𝑥0 and 

radius r is : 

𝐵𝐺 𝑥0, 𝑟 =  𝑦 ∈ 𝑋: 𝐺 𝑥0, 𝑦, 𝑦 < 𝑟 (1.2) 

Proposition 1.6[4]:- Let (𝑋, 𝐺) be a 𝐺-metric space. Then for any 𝑥0 ∈ 𝑋, 𝑟 > 0    one has 

(1) if 𝐺(𝑥0, 𝑥, 𝑦)  < r, then  𝑥, 𝑦∈𝐵𝐺 𝑥0, 𝑟 ,  

(2) if y ∈ 𝐵𝐺 𝑥0, 𝑟 , then there exists a 𝛿 > 0 such that  𝐵𝐺 𝑦, 𝛿 ⊆ 𝐵 𝑥0,, 𝑟 . 

Definition 1.7:- A 𝐺-metric space (𝑋, 𝐺)is called symmetric 𝐺-metric space if 𝐺 𝑥, 𝑦, 𝑦 = 𝐺 𝑦, 𝑥, 𝑥  for all 

𝑥, 𝑦 ∈ 𝑋 and called Nonsymmetric if it is not Symmetric. 

Example 1.8 Let (𝑅, 𝑑) be the usual metric space. Define 𝐺𝑠and 𝐺𝑚  by  

𝐺𝑠 𝑥, 𝑦, 𝑧 =  𝑑 𝑥, 𝑦 +  𝑑 𝑦, 𝑧 +  𝑑 𝑥, 𝑧 , and 

𝐺𝑚(𝑥, 𝑦, 𝑧)  =  𝑚𝑎𝑥{𝑑(𝑥, 𝑦), 𝑑(𝑦, 𝑧), 𝑑(𝑥, 𝑧)} 

for all 𝑥, 𝑦, 𝑧 ∈  𝑅. Then (𝑅, 𝐺𝑠) and (𝑅, 𝐺𝑚) are symmetric G-metric spaces. 

Example 1.9.Let 𝑋 =  {𝑎, 𝑏, 𝑐} and define 𝐺 ∶  𝑋 ×  𝑋 ×  𝑋 −→ 𝑅+ by, 

𝐺(𝑥, 𝑦, 𝑧)  =  0 𝑖𝑓 𝑥 =  𝑦 =  𝑧 

𝐺(𝑎, 𝑏, 𝑏)  =  𝐺(𝑏, 𝑎, 𝑎)  =  22 

𝐺(𝑎, 𝑐, 𝑐)  =  𝐺(𝑐, 𝑎, 𝑎)  =  27 

𝐺(𝑏, 𝑐, 𝑐)  =  𝐺(𝑐, 𝑏, 𝑏)  =  30, 

𝐺(𝑎, 𝑏, 𝑐)  =  35 

extended by symmetry in the variables. It is easily verified that 𝐺 𝑖s a symmetric 𝐺-metric, but 𝐺 ≠ 𝐺𝑠  or 𝐺𝑚   

for any underlying metric. 

Proposition 1.10[4]:-   Every 𝐺-metric space (𝑋, 𝐺) will define a metric space (X,𝑑𝐺) by 

𝑑𝐺 𝑥, 𝑦 = 𝐺 𝑥, 𝑦, 𝑦 +  𝐺 𝑦, 𝑥, 𝑥 ,       ∀𝑥, 𝑦 ∈ 𝑋                                                                   (1.1) 

 If (𝑋, 𝐺) is a symmetric 𝐺 −metric space, then 

𝑑𝐺 𝑥, 𝑦 = 2𝐺 𝑥, 𝑦, 𝑦 , ∀𝑥, 𝑦 ∈ 𝑋                                                                                              (1.2) 

However, if (𝑋, 𝐺) is not symmetric, then it holds by the 𝐺 −metric properties that 

3

2
𝐺 𝑥, 𝑦, 𝑦 ≤ 𝑑𝐺 𝑥, 𝑦 ≤ 3𝐺 𝑥, 𝑦, 𝑦 ,     ∀𝑥, 𝑦 ∈ 𝑋(1.3) 

and that in general these inequalities cannot be improved. 

II. MAIN RESULT 

Lemma 2.1 Let (𝑋, 𝐺) be a 𝐺-metric space . If lim𝑛→∞ 𝑎𝑛 = 0then the sequence  𝑥𝑛  is a Cauchy sequence. 

 Proof : Since lim𝑛→∞ 𝑎𝑛 = 0, we have for every 𝜀 > 0, there exists  𝑚 ∈ 𝑁 such that for every  

𝑛 > 𝑚,  𝑎𝑛 − 0 < 𝜀 i.e. 𝛿𝐺 𝐴𝑛 < 𝜀 

Then for 𝑙, 𝑚, 𝑘 ≥ 𝑛 > 𝑚, we have  
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𝐺 𝑥𝑙 , 𝑥𝑚 , 𝑥𝑙 ≤ 𝑠𝑢𝑝 𝐺 𝑥𝑖 , 𝑥𝑗 , 𝑥𝑝 : 𝑥𝑖 , 𝑥𝑗 ,𝑥𝑝 ∈ 𝐴𝑛 = 𝒂𝒏 < 𝜀 

Therefore  𝑥𝑛  is a Cauchy sequence in 𝑋. 

Theorem 4.3.2 Let  S,R,T,U be self-mapping of a complete G-metric space (𝑋, 𝐺) satisfying  

(i) 𝑆𝑅 ⊆ 𝑇𝑈 and 𝑇𝑈(𝑋) is a closed subset of 𝑋, 
(ii) The pair (𝑆𝑅, 𝑇𝑈) is weakly compatible, 

(iii)  𝛿
𝐺 𝑆𝑅𝑥 ,𝑆𝑅𝑦 ,𝑆𝑅𝑧 

0
 𝑡 𝑑𝑡 ≤   𝛿 𝑡 𝑑𝑡

𝜙(𝐺 𝑇𝑈𝑥 ,𝑇𝑈𝑦 ,𝑇𝑈𝑧 )

0
  for every 𝑥, 𝑦, 𝑧 ∈ 𝑋, where 𝜙:  0,∞ →

[0,∞) is a non-decreasing  continuous function with 𝜙 𝑡 < 𝑡 for every 𝑡 > 0 and 𝛿(𝑡) is a 

Lebesgue integrable function which is summable nonnegative such that  

 𝛿 𝑡 𝑑𝑡 > 0, ∀𝜀 > 0
𝜀

0

 

(iv)  𝑆, 𝑅 , (𝑇, 𝑈) are commutative then 𝑆, 𝑅, 𝑇, 𝑈 have a common fixed point in 𝑋. 

Proof :Let 𝑥0be an arbitrary point in 𝑋. By (i) we can choose a point 𝑥1 in 𝑋 such that  

𝑦0 = 𝑆𝑅𝑥0 = 𝑇𝑈𝑥1 

And 𝑦1 = 𝑆𝑅𝑥1 = 𝑇𝑈𝑥2. In general ,∃ a sequence  𝑦𝑛  such that  

𝑦𝑛 = 𝑆𝑅𝑥𝑛 = 𝑇𝑈𝑥𝑛+1 for 𝑛 = 0,1,2,3…. 

We prove that the sequence  𝑦𝑛  is a Cauchy sequence. 

Let 𝐴𝑛 =  𝑦𝑛 , 𝑦𝑛+1, 𝑦𝑛+2 … .   And 𝑎𝑛 = 𝛿𝐺 𝐴𝑛 , 𝑛 ∈ 𝑁. 

Then we know that lim𝑛→∞ 𝑎𝑛 = 𝑎 for some 𝑎 ≥ 0. 

Taking 𝑥 = 𝑥𝑛+𝑘 , 𝑦 = 𝑦𝑚+𝑘and 𝑧 = 𝑧𝑙+𝑘  in (iii) for 𝑘 ≥ 1 and  𝑚, 𝑛, 𝑙 ≥ 0, we have  

 𝛿

𝐺 𝑦𝑛+𝑘 ,𝑦𝑚+𝑘 ,𝑦𝑙+𝑘 

0

 𝑡 𝑑𝑡 =  𝛿

𝐺 𝑆𝑅𝑥𝑛+𝑘 ,𝑆𝑅𝑥𝑚+𝑘 ,𝑆𝑅𝑥𝑙+𝑘 

0

 𝑡 𝑑𝑡 

≤   𝛿 𝑡 𝑑𝑡

𝜙(𝐺 𝑇𝑈𝑥𝑛+𝑘 ,𝑇𝑈𝑥𝑚+𝑘 ,𝑇𝑈𝑥𝑙+𝑘) 

0

  

=   𝛿 𝑡 𝑑𝑡
𝜙(𝐺 𝑦𝑛+𝑘−1 ,𝑦𝑚+𝑘−1 ,𝑦𝑙+𝑘−1 )

0
                                     (1) 

 Now we claim 𝐺 𝑦𝑛+𝑘−1, 𝑦𝑚+𝑘−1, 𝑦𝑙+𝑘−1 ≤ 𝑎𝑘−1 for every 𝑛,𝑚, 𝑙 ≥ 0. 

Since 𝐴𝑘−1 =  𝑦𝑘−1, 𝑦𝑘 , 𝑦𝑘+1 … .  , 𝑎𝑘−1 = 𝑠𝑢𝑝 𝐺 𝑎, 𝑏, 𝑐 : 𝑎, 𝑏, 𝑐 ∈ 𝐴𝑘−1  

Also 𝑦𝑛+𝑘−1, 𝑦𝑚+𝑘−1, 𝑦𝑙+𝑘−1 ⊆ 𝐴𝑘−1 implies 𝐺 𝑦𝑛+𝑘−1, 𝑦𝑚+𝑘−1, 𝑦𝑙+𝑘−1 ≤ 𝑎𝑘−1 

Also 𝜙 is increasing in , 

From (1.1) we get sup𝑚,𝑛,𝑗≥0 𝐺 𝑦𝑛+𝑘−1, 𝑦𝑚+𝑘−1, 𝑦𝑙+𝑘−1 ≤ 𝜙(𝑎𝑘−1) 

Therefore we have 𝑎𝑘−1 ≤  𝜙 𝑎𝑘−1 , letting 𝑘 → ∞, we get 𝑎 ≤≤  𝜙 𝑎 . If 𝑎 ≠ 0, then 𝑎 ≤ 𝜙 𝑎 ≤ 𝑎,  
which is a contradiction. Thus 𝑎 = 0. Hence lim𝑘→∞ 𝑎𝑛 = 0. 

Thus by lemma , 𝑦𝑛  is a Cauchy sequence in 𝑋, there exists 𝑦1 ∈ 𝑋 such that 

lim
𝑛→∞

𝑦𝑛 = lim
𝑛→∞

𝑆𝑅𝑥𝑛 = lim
𝑛→∞

𝑇𝑈𝑥𝑛+1 =𝑦1. 

Also 𝑇𝑈(𝑋) is closed, there exists 𝑧 ∈ 𝑋 such that 𝑇𝑈𝑧 = 𝑦1. Now we show that 𝑆𝑅𝑧 = 𝑦1. For this set 

𝑥𝑛 , 𝑥𝑛 , 𝑧  replacing 𝑥, 𝑦, 𝑧 respectively in equation (iii) , we get 
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 𝛿

𝐺 𝑆𝑅𝑥𝑛 ,𝑆𝑅𝑥𝑛 ,𝑆𝑅𝑧 

0

 𝑡 𝑑𝑡 ≤   𝛿 𝑡 𝑑𝑡

𝜙(𝐺 𝑇𝑈𝑥𝑛 ,𝑇𝑈𝑥𝑛 ,𝑇𝑈𝑧 )

0

  

Taking 𝑛 → ∞, we get  

 𝛿

𝐺 𝑦1 ,𝑦1 ,𝑆𝑅𝑧 

0

 𝑡 𝑑𝑡 ≤   𝛿 𝑡 𝑑𝑡

𝜙 𝐺 𝑦1 ,𝑦1 ,𝑦1  

0

 = 0 

Implies 𝑆𝑅𝑧 = 𝑦1. Since the pair (𝑆𝑅, 𝑇𝑈) is weakly compatible , hence we get 𝑆𝑅  𝑇𝑈 =  𝑇𝑈  𝑆𝑅 𝑧. Thus 

𝑆𝑅𝑦1 = 𝑇𝑈𝑦1. 

Now we prove that 𝑆𝑅𝑦1 = 𝑦1. If we substitute 𝑥, 𝑦, 𝑧 in (iii) by 𝑥𝑛 , 𝑥𝑛 , 𝑦1 respectively 

 𝛿

𝐺 𝑆𝑅𝑥𝑛 ,𝑆𝑅𝑥𝑛 ,𝑆𝑅𝑦1 

0

 𝑡 𝑑𝑡 ≤   𝛿 𝑡 𝑑𝑡

𝜙(𝐺 𝑇𝑈𝑥𝑛 ,𝑇𝑈𝑥𝑛 ,𝑇𝑈𝑦1 )

0

  

Taking 𝑛 → ∞,  we get  

 𝛿

𝐺 𝑦1 ,𝑦1 ,𝑆𝑅𝑦1 

 0

 𝑡 𝑑𝑡 ≤   𝛿 𝑡 𝑑𝑡

𝜙 𝐺 𝑦1 ,𝑦1 ,,𝑇𝑈𝑦1  

0

 =   𝛿 𝑡 𝑑𝑡

𝜙 𝐺 𝑦1 ,𝑦1 ,,𝑆𝑅𝑦1  

0

  

If 𝑆𝑅𝑦1 ≠ 𝑦1, then 𝛿
𝐺 𝑦1 ,𝑦1 ,𝑆𝑅𝑦1 

0
 𝑡 𝑑𝑡 ≤  𝛿

𝐺 𝑦1 ,𝑦1 ,𝑆𝑅𝑦1 

0
 𝑡 𝑑𝑡 is a contradiction. 

Therefore 𝑆𝑅𝑦1 = 𝑇𝑈𝑦1 = 𝑦1. 

For uniqueness let 𝑦1 and 𝑦2 be fixed points of 𝑆𝑅, 𝑇𝑈. 

Taking 𝑥 = 𝑦 = 𝑦1 and 𝑧 = 𝑦2 in (iii) we have  

 𝛿

𝐺 𝑦1 ,𝑦1 ,𝑦2 

 0

 𝑡 𝑑𝑡 =  𝛿

𝐺 𝑆𝑅𝑦1𝑆𝑅𝑦1 ,𝑆𝑅𝑦2 

 0

 𝑡 𝑑𝑡 ≤  ,  𝛿 𝑡 𝑑𝑡

𝜙 𝐺 𝑇𝑈𝑦1 ,𝑇𝑈𝑦1 ,𝑇𝑈𝑦2  

0

  

=   𝛿 𝑡 𝑑𝑡

𝜙 𝐺 𝑦1 ,𝑦1 ,𝑦2  

0

 <   𝛿 𝑡 𝑑𝑡

 𝐺 𝑦1 ,𝑦1 ,𝑦2  

0

  

a contradiction. Thus we have  𝑦1 = 𝑦2. 

Now by (iv)𝑆, 𝑅),  𝑇, 𝑈  are mutually commutative pair of mapping. 

Consider 𝑆𝑦1 = 𝑆 𝑆𝑅𝑦1 = 𝑆 𝑅𝑆𝑦1 = 𝑆𝑅 𝑆𝑦1 , implies 𝑆𝑦1 is the unique point of 𝑆𝑅 but 𝑦1 is the unique 

fixed point of 𝑆𝑅, hence 𝑆𝑦1 = 𝑦1. 

Also 𝑅𝑦1 = 𝑅 𝑆𝑅𝑦1 =  𝑅𝑆  𝑅𝑦1 = 𝑆𝑅 𝑅𝑦1 , implies 𝑅𝑦1is the fixed point of 𝑆𝑅, but𝑦1 

is the unique fixed  point of 𝑆𝑅. Hence 𝑅𝑦1 = 𝑦1. 

Thus 𝑆𝑦1 = 𝑅𝑦1 = 𝑦1. In the same way we have 𝑇𝑦1 = 𝑈𝑦1 = 𝑦1. 

Hence the result. 
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