On Study Generalized $\mathcal{B P}$ - Recurrent Finsler Space

Alaa A. Abdallah ${ }^{1^{*}}$, A.A. Navlekar ${ }^{2}$ and Kirtiwant P. Ghadle ${ }^{1}$
${ }^{1}$ Department of Mathematics, Dr.Babasaheb Ambedkar Marathwada University, Aurangabad, 431004, India.
${ }^{2}$ Department of Mathematics Pratishitan Mahavidyalaya, Paithan (M.S.) India.

Abstract

In this paper, we introduced a Finsler space whichCartan's second curvature tensor $P_{j k h}^{i}$ satisfies the generalized recurrence property in sense of Berwaldi.e. characterized by the following condition $$
\mathcal{B}_{l} P_{j k h}^{i}=\lambda_{l} P_{j k h}^{i}+\mu_{l}\left(\delta_{j}^{i} g_{k h}-\delta_{k}^{i} g_{j h}\right), \quad P_{j k h}^{i} \neq 0,
$$ where \mathcal{B}_{l} is Berwald's covariant differential operator with respect to x^{l}, λ_{l} and μ_{l} are known as recurrence vectors, such space is called a generalized $\mathcal{B} P$-recurrentspace.

The aim of this paper study the properties of the above space by Berwald covariant derivative of first order. We obtain the associate curvature tensor $P_{i j k h}$, the torsion tensor $P_{k h}^{i}$ and the associative torsion tensor $P_{j k h}$ are non- vanishing. Also we obtain $P-$ Ricci tensor $P_{j k}$, the curvature vector P_{k} and the curvature scalar P behave as recurrent. Also we obtain the tensor $\left(S_{j k h \mid r}^{i} y^{r}\right)$, the tensor $\left(C_{k h \mid j}^{i}+C_{s j}^{i} P_{k h}^{s}-j / k\right)$ is generalized recurrent. We obtain certain identities satisfy in the generalized $\mathcal{B P}$ - recurrent space.We discuss the projection of the generalized recurrence property on indicatrix with respect to Berwald's connection for the tensors whose behave as recurrent.

Keywords - Finsler Space, Generalized BP - Recurrent Space, curvature tensor, associate curvature tensor, torsion tensor, Ricci Tensor, curvature vector, curvature scalar, projection on indicatrix.

I. INTRODUCTION

Verma [11] discussed the recurrence property of the tensors $W_{j k h}^{i}, H_{j k h}^{i}$ and W_{h}^{i} in the sense of Berwald, Qasem[5] introduced and studied the curvature tensor $U_{j k h}^{i}$ which satisfies the recurrence property, Pandeyat al. [10] introduced and studied a generalized H - recurrent Finsler space, Mohammed [1] introduced and studied P^{h} - Recurrent Space,Awed [2] introduced and studied generalized P^{h} - Recurrent Space Qasem and Baleedi [7] introduced and studied on a generalized $\mathcal{B K}$-recurrent space, Qasem and Abdallah [6] introduced and studied a generalized $\mathcal{B R}$ - recurrent space,Zafar and Musavvir [4] introduced and studied on some properties of W - curvature tensor.Pandey [9] introduced and studied some problems in Finsler spaces.
Dikshit [12] studied the projection of some tensor onindicatrix with respect to Berwald's connection. Qasem [5] studied the projection of the curvature tensor $R_{j k h}^{i}$ on indicatrix with respect to Cartan's connection. Hanballa [3] studied the projection on indicatrixin the P^{h} - birecurrent space, P^{h}-generalized birecurrent space with respect to Cartan's connection.

Let F_{n} be an n - dimensional Finsler space equipped with the metric function $F(x, y)$ satisfying the request conditions[8].
The vector y_{i} is defined by
(1.1) $\quad y_{i}=g_{i j}(x, y) y^{j}$.

The two sets of quantities $g_{i j}$ and its associative $g^{i j}$, which are components of a metric tensor connected by

$$
g_{i j} g^{i k}=\delta_{j}^{k}= \begin{cases}1 & \text { if } j=k \tag{1.2}\\ 0 & \text { if } j \neq k\end{cases}
$$

In view of (1.1) and (1.2), we have
(1.3)
a) $\delta_{k}^{i} y^{k}=y^{i}$ and
b) $\delta_{j}^{i} g_{i r}=g_{j r}$.
the unit vector l^{i} in the direction of y^{i} is given by
(1.4) $l^{i}:=\frac{y^{i}}{F}$

In particular the metric tensor $g_{i j}$ and the associate metric tensor $g^{i j}$ are covariant constant with respect to h-covariant derivative, i.e.
(1.5)
a) $g_{i j \mid k}=0$
and
b) $g_{\mid k}^{i j}=0$.

The h - covariant derivative of the vector y^{i} and y_{i} vanish identically, i. e.
a) $y^{i}{ }_{\mid k}=0$,
and
b) $y_{i \mid k}=0$

Berwald covariant derivative $\mathcal{B}_{k} T_{j}^{i}$ of an arbitrary tensor field T_{j}^{i} with respect to x^{k} is given by

$$
\mathcal{B}_{k} T_{j}^{i}:=\partial_{k} T_{j}^{i}-\left(\dot{\partial}_{r} T_{j}^{i}\right) G_{k}^{r}+T_{j}^{r} G_{r k}^{i}-T_{r}^{i} G_{j k}^{r}
$$

Berwald covariant derivative of the vector y^{i} vanish identically, i.e.
(1.7) $\quad \mathcal{B}_{k} y^{i}=0$.

But, in general, Berwald covariant derivative of the metric tensor $g_{i j}$ does not vanish and given by
(1.8) $\quad \mathcal{B}_{k} g_{i j}=-2 y^{h} \mathcal{B}_{h} C_{i j k}$.

The h - curvature tensor (Cartan's third curvature tensor) is defined by [8]

$$
R_{j k h}^{i}=\partial_{h} \Gamma_{j k}^{* i}+\left(\partial_{l} \Gamma_{j k}^{* i}\right) G_{h}^{l}+C_{j m}^{i}\left(\partial_{k} G_{h}^{m}-G_{k l}^{m} G_{h}^{l}\right)+\Gamma_{m k}^{* i} \Gamma_{j h}^{* m}-k / h^{*}
$$

This tensor satisfies the following relations
(1.9) $\quad R_{j k h}^{i} y^{j}=H_{k h}^{i}$

The associate curvature tensor $R_{r j k h}$ satisfies
(1.10) $R_{i j k h}=g_{i r} R_{i k h}^{r}$.

Also, the curvature tensor $R_{j k h}^{i}$ and its associative tensor $R_{i j h k}$ satisfies the following identities known as Bianchi identity [8]
(1.11)

$$
\text { a) } R_{i j k \mid h}^{r}+R_{i h j \mid k}^{r}+R_{i k h \mid j}^{r}+y^{m}\left(R_{m k h}^{s} P_{i j s}^{r}+R_{m j k}^{s} P_{i h s}^{r}+R_{m h j}^{s} P_{i k s}^{r}\right)=0
$$

The $h v$-curvature tensor $P_{j k h}^{i}$ (Cartan's second curvature tensor) is defined by [8]
(1.12) $P_{j k h}^{i}:=\dot{\partial}_{h} \Gamma_{j k}^{* i}+C_{j r}^{i} P_{k h}^{r}-C_{j h \mid k}^{i}$
or equivalent by
(1.13) $\quad P_{j k h}^{i}:=\dot{\partial}_{h} \Gamma_{j k}^{* i}+C_{j r}^{i} C_{k h \mid s}^{r} y^{s}-C_{j h \mid k}^{i}$

The tensor $P_{j k h}^{i}$ is positively homogeneous of degree zero in y^{i} and satisfies
(1.14) $\quad P_{j k h}^{i} y^{j}=P_{k h}^{i}$.
where $P_{j k}^{i}$ is called the $v(h v)$-torsion tensor and its associative tensor $P_{r k h}$ is given by
(1.15) a) $g_{i r} P_{k h}^{i}=P_{r k h}$ and
b) $P_{r k h} g^{i r}=P_{k h}^{i}$

The associate curvature tensor $P_{r j k h}$ is given by
(1.16) $\quad P_{r j k h}=P_{j k h}^{i} g_{i r}$.
P - Ricci tensor $P_{j k}$, the curvature vector P_{k} and The curvature scalar P (of Cartan's second curvature tensor) are given by
(1.17) $\quad P_{j k}=P_{j k i}^{i}$
(1.18) $P_{k}=P_{k i}^{i}$.
and
(1.19) $P_{k} y^{k}=P$.

Thehv - curvature tensor $P_{j k h}^{i}$ satisfies the following:
(1.20) $\quad P_{j k h}^{i}-P_{k j h}^{i}=-S_{j k h \mid r}^{i} y^{r}$.
and
(1.21)

$$
P_{j k h}^{i}-P_{k j h}^{i}=C_{k h \mid j}^{i}+C_{s j}^{i} P_{k h}^{s}-j / k
$$

II. AGENERALIZED $\mathcal{B P}$ - RECURRENT FINSLER SPACE

Let us consider a Finsler space F_{n} for which Cartan's second curvature tensor $P_{j k h}^{i}$ satisfies the generalized recurrence property with respect to Berwald's connection parameter $G_{k h}^{i}$, i.e. characterized by the following condition
(2.1) $\quad \mathcal{B}_{l} P_{j k h}^{i}=\lambda_{l} P_{j k h}^{i}+\mu_{l}\left(\delta_{j}^{i} g_{k h}-\delta_{k}^{i} g_{j h}\right), \quad P_{j k h}^{i} \neq 0$,
where \mathcal{B}_{l} is Berwald's covariant differential operator with respect to x^{l}, λ_{l} and μ_{l} are called recurrence vectors.
Definition 2.1.A Finsler space F_{n} for which Cartan's second curvature tensor $P_{j k}^{i} h$ satisfies the condition (2.1), where λ_{l} and μ_{l} are non-zero covariant vectors field. Such space satisfying the condition (2.1) will be called a generalized $\mathcal{B P}$ - recurrent spaceanddenoted it briefly by $G(\mathcal{B P})-R F_{n}$.

Let us consider a $G(\mathcal{B} P)-R F_{n}$ which is characterized by the condition (2.1).
Transvecting the condition (2.1) by $g_{i m}$, using (1.16), (1.8) and (1.3b), we get
(2.2) $\quad \mathcal{B}_{l} P_{m j k h}=\lambda_{l} P_{m j k h}+\mu_{l}\left(g_{j m} g_{k h}-g_{k m} g_{j h}\right)+2 P_{j k h}^{i} y^{t} \mathcal{B}_{t} C_{i m l}$.

Thus, we conclude
Theorem 2.1.In $G(\mathcal{B P})-R F_{n}$, Berwald's covariant derivative of first order for the associate curvature tensor $P_{i j k h}$ is given by (2.2).
Transvecting the condition (2.1) by y^{j}, using (1.14), (1.7), (1.3a) and (1.1), we get

$$
\begin{equation*}
\mathcal{B}_{l} P_{k h}^{i}=\lambda_{l} P_{k h}^{i}+\mu_{l}\left(y^{i} g_{k h}-\delta_{k}^{i} y_{h}\right) . \tag{2.3}
\end{equation*}
$$

Transvecting the condition (2.3) by $g_{i j}$, using (1.15a), (1.8), (1.1) and (1.3b), we get
(2.4) $\quad \mathcal{B}_{l} P_{j k h}=\lambda_{l} P_{j k h}+\mu_{l}\left(g_{k h} y_{j}-g_{k j} y_{h}\right)+2 P_{k h}^{i} y^{t} \mathcal{B}_{t} C_{i j l}$.

Thus, we conclude
Theorem 2.2.In $G(\mathcal{B P})-R F_{n}$, Berwald's covariant derivative of first order for the (v)hv-torsion tensor $P_{k h}^{i}$ and the associative torsion tensor $P_{j k h}$ is given by (2.3) and (2.4) respectively .
Contracting the indices i and h in the condition (2.1), using (1.17) and (1.3b), we get
(2.5) $\quad \mathcal{B}_{l} P_{j k}=\lambda_{l} P_{j k}$.

Contracting the indices i and h in the condition (2.3), using (1.18), (1.1) and (1.3b), we get
(2.6) $\quad \mathcal{B}_{l} P_{k}=\lambda_{l} P_{k}$.

Transvecting the condition (2.6) by y^{K}, using (1.19) and (1.7), we get
(2.7) $\quad \mathcal{B}_{l} P=\lambda_{l} P$

Thus, we conclude
Theorem 2.3.In $G(\mathcal{B P})-R F_{n}, P-$ Ricci tensor $P_{j k}$, the curvature vector P_{k} and the curvature scalar P behave as recurrent.
Taking the covariant derivative for (1.20) with respect to x^{l} in the sense of Berwald, we get
(2.8) $\quad \mathcal{B}_{l} P_{j k h}^{i}-\mathcal{B}_{l} P_{k j h}^{i}=\mathcal{B}_{l}\left(-S_{j k h \mid r}^{i} y^{r}\right)$.

Using the condition (2.1) in (2.8), we get
(2.9) $\quad \mathcal{B}_{l}\left(-S_{j k h \mid r}^{i} y^{r}\right)=\lambda_{l}\left(P_{j k h}^{i}-P_{k j h}^{i}\right)+2 \mu_{l}\left(\delta_{k}^{i} g_{j h}-\delta_{j}^{i} g_{k h}\right)$

Using(1.20) in (2.9), we get
(2.10) $\quad \mathcal{B}_{l}\left(S_{j k h \mid r}^{i} y^{r}\right)=\lambda_{l}\left(S_{j k h \mid r}^{i} y^{r}\right)+\alpha_{l}\left(\delta_{j}^{i} g_{k h}-\delta_{k}^{i} g_{j h}\right)$

Where $\alpha=2 \mu_{l}$
Thus, we conclude
Theorem 2.2.4.In $G(\mathcal{B P})-R F_{n}$, the tensor $\left(S_{j k h \mid r}^{i} y^{r}\right)$ is generalized recurrent.
Taking the covariant derivative for (1.21) with respect to x^{l} in the sense of Berwald, we get
(2.11) $\quad \mathcal{B}_{l} P_{j k h}^{i}-\mathcal{B}_{l} P_{k j h}^{i}=\mathcal{B}_{l}\left(C_{k h \mid j}^{i}+C_{s j}^{i} P_{k h}^{s}-j / k\right)$.

Using the condition (2.1) in (2.8), we get
(2.12) $\quad \mathcal{B}_{l}\left(C_{k h \mid j}^{i}+C_{s j}^{i} P_{k h}^{s}-j / k\right)=\lambda_{l}\left(P_{j k h}^{i}-P_{k j h}^{i}\right)-2 \mu_{l}\left(\delta_{j}^{i} g_{k h}-\delta_{k}^{i} g_{j h}\right)$.

Using(1.21) in (2.12), we get
$\left(2.13 \mathcal{B}_{l}\left(C_{k h \mid j}^{i}+C_{s j}^{i} P_{k h}^{s}-j / k\right)=\lambda_{l}\left(C_{k h \mid j}^{i}+C_{s j}^{i} P_{k h}^{s}-j / k\right)+\alpha_{l}\left(\delta_{j}^{i} g_{k h}-\delta_{k}^{i} g_{j h}\right)\right.$
Where $\alpha=-2 \mu_{1}$
Thus, we conclude
Theorem 2.5.In $G(\mathcal{B P})-R F_{n}$, the tensor $\left(C_{k h \mid j}^{i}+C_{s j}^{i} P_{k h}^{s}-j / k\right)$ is generalized recurrent.

III. CERTAIN IDENTITIES

We shall obtain some identities which are satisfying in $G(\mathcal{B P})-R F_{n}$
Using (1.9) inBianchi identity (1.11), we get
(3.1) $\quad R_{i j k \mid h}^{r}+R_{i h j \mid k}^{r}+R_{i k h \mid j}^{r}=-\left(H_{k h}^{s} P_{i j s}^{r}+H_{j k}^{s} P_{i h s}^{r}+H_{h j}^{s} P_{i k s}^{r}\right)$,

Taking the covariant derivative for (3.1) with respect to x^{l} in the sense of Berwald, we get
(3.2) $\quad \mathcal{B}_{l}\left(R_{i j k \mid h}^{r}+R_{i h j \mid k}^{r}+R_{i k h \mid j}^{r}\right)=-\left\{\left(\mathcal{B}_{l} H_{k h}^{s}\right) P_{i j s}^{r}+H_{k h}^{s}\left(\mathcal{B}_{l} P_{i j s}^{r}\right)+\left(\mathcal{B}_{l} H_{j k}^{s}\right) P_{i h s}^{r}+H_{j k}^{s}\left(\mathcal{B}_{l} P_{i h s}^{r}\right)+\right.$ $\left(\mathcal{B}_{l} H_{h j}^{s}\right) P_{i k s}^{r}+H_{h j}^{s}\left(\mathcal{B}_{l} P_{i k s}^{r}\right\}$
Using the condition (2.1) in (3.2), we get
(3.3) $\mathcal{B}_{l}\left(R_{i j k \mid h}^{r}+R_{i h j \mid k}^{r}+R_{i k h \mid j}^{r}\right)=-\lambda_{l}\left(H_{k h}^{s} P_{i j s}^{r}+H_{j k}^{s} P_{i h s}^{r}+H_{h j}^{s} P_{i k s}^{r}\right)-\mu_{l}\left[H_{k h}^{s}\left(\delta_{i}^{r} g_{j s}-\delta_{j}^{r} g_{i s}\right)+\right.$
$\left.\left.H_{j k}^{s}\left(\delta_{i}^{r} g_{h s}-\delta_{h}^{r} g_{i s}\right)+H_{h j}^{s}\left(\delta_{i}^{r} g_{k s}-\quad \delta_{k}^{r} g_{i s}\right)\right]-\left[\left(\mathcal{B}_{l} H_{k h}^{s}\right) P_{i j s}^{r}\right)+\left(\mathcal{B}_{l} H_{j k}^{s}\right) P_{i h s}^{r}+\left(\mathcal{B}_{l} H_{h j}^{s}\right) P_{i k s}^{r}\right]$
Using (3.1) in (3.3), we get
(3.4) $\mathcal{B}_{l}\left(R_{i j k \mid h}^{r}+R_{i h j \mid k}^{r}+R_{i k h \mid j}^{r}\right)=\lambda_{l}\left(R_{i j k \mid h}^{r}+R_{i h j \mid k}^{r}+R_{i k h \mid j}^{r}\right)-\mu_{l}\left[H_{k h}^{s}\left(\delta_{i}^{r} g_{j s}-\delta_{j}^{r} g_{i s}\right)+H_{j k}^{s}\left(\delta_{i}^{r} g_{h s}-\right.\right.$ $\left.\left.\delta_{h}^{r} g_{i s}\right)+H_{h j}^{s}\left(\delta_{i}^{r} g_{k s}-\delta_{k}^{r} g_{i s}\right)\right]-\left[\left(\mathcal{B}_{l} H_{k h}^{s}\right) P_{i j s}^{r}+\left(\mathcal{B}_{l} H_{j k}^{s}\right) P_{i h s}^{r}+\left(\mathcal{B}_{l} H_{h j}^{s}\right) P_{i k s}^{r}\right]$
This shows that
(3.5) $\quad \mathcal{B}_{l}\left(R_{i j k \mid h}^{r}+R_{i h j \mid k}^{r}+R_{i k h \mid j}^{r}\right)=\lambda_{l}\left(R_{i j k \mid h}^{r}+R_{i h j \mid k}^{r}+R_{i k h \mid j}^{r}\right)$

If and only if
(3.6)
$\mu_{l}\left[H_{k h}^{s}\left(\delta_{i}^{r} g_{j s}-\delta_{j}^{r} g_{i s}\right)+H_{j k}^{s}\left(\delta_{i}^{r} g_{h s}-\delta_{h}^{r} g_{i s}\right)+H_{h j}^{s}\left(\delta_{i}^{r} g_{k s}-\quad \delta_{k}^{r} g_{i s}\right)\right]+$
$\left[\left(\mathcal{B}_{l} H_{k h}^{s}\right) P_{i j s}^{r}+\left(\mathcal{B}_{l} H_{j k}^{s}\right) P_{i h s}^{r}+\left(\mathcal{B}_{l} H_{h j}^{s}\right) P_{i k s}^{r}\right]=0$
Transvecting(3.1) by $g_{r m}$, using (1.10), (1.5a), and (1.16), we get
(3.7) $\quad R_{m i j \mid h}+R_{m i h j \mid k}+R_{m i k h \mid j}=-\left(H_{k h}^{s} P_{m i j s}+H_{j k}^{s} P_{m i h s}+H_{h j}^{s} P_{m i k s}\right)$,

Taking the covariant derivative for (3.7) with respect to x^{l} in the sense of Berwald, we get
(3.8) $\quad \mathcal{B}_{l}\left(R_{m i j \mid h}+R_{m i h j \mid k}+R_{m i k h \mid j}\right)=-\left\{\left(\mathcal{B}_{l} H_{k h}^{s}\right) P_{m i j s}+H_{k h}^{s}\left(\mathcal{B}_{l} P_{m i j s}\right)+\quad\left(\mathcal{B}_{l} H_{j k}^{s}\right) P_{m i h s}+\right.$ $\left.H_{j k}^{s}\left(\mathcal{B}_{l} P_{m i h s}\right)+\left(\mathcal{B}_{l} H_{h j}^{s}\right) P_{m i k s}+H_{h j}^{s}\left(\mathcal{B}_{l} P_{m i k s}\right)\right\}$
Using the condition (2.2) in (3.8), we get
(3.9) $\quad \mathcal{B}_{l}\left(R_{m i j k \mid h}+R_{m i h j \mid k}+R_{m i k h \mid j}\right)=-\lambda_{l}\left(H_{k h}^{s} P_{m i j s}+H_{j k}^{s} P_{m i h s}+H_{h j}^{s} P_{m i k s}\right)-\mu_{l}\left[H_{k h}^{s}\left(g_{m i} g_{j s}-\right.\right.$ $\left.\left.g_{m j} g_{i s}\right)+H_{j k}^{s}\left(g_{m i} g_{h s}-g_{m h} g_{i s}\right)+H_{h j}^{s}\left(g_{m i} g_{k s}-g_{m k} g_{i s}\right)\right]-\left[\left(\mathcal{B}_{l} H_{k h}^{s}\right) P_{m i j s}\right)+\left(\mathcal{B}_{l} H_{j k}^{s}\right) P_{m i h s}+$ $\left.\left(\mathcal{B}_{l} H_{h j}^{s}\right) P_{m i k s}\right]+2 y^{t} \mathcal{B}_{t} C_{i m l}\left[P_{i j s}^{r}+P_{i h s}^{r}+P_{i k s}^{r}\right]$
Using (3.7) in (3.9), we get
(3.10) $\mathcal{B}_{l}\left(R_{m i j k \mid h}+R_{m i h j \mid k}+R_{m i k h \mid j}\right)=\lambda_{l}\left(R_{m i j k \mid h}+R_{m i h j \mid k}+R_{m i k h \mid j}\right)-\mu_{l}\left[H_{k h}^{s}\left(g_{m i} g_{j s}-g_{m j} g_{i s}\right)+\right.$ $\left.\left.H_{j k}^{s}\left(g_{m i} g_{h s}-g_{m h} g_{i s}\right)+H_{h j}^{s}\left(g_{m i} g_{k s}-g_{m k} g_{i s}\right)\right]-\left[\left(\mathcal{B}_{l} H_{k h}^{s}\right) P_{m i j s}\right)+\left(\mathcal{B}_{l} H_{j k}^{s}\right) P_{m i h s}+\left(\mathcal{B}_{l} H_{h j}^{s}\right) P_{m i k s}\right]+$ $2 y^{t} \mathcal{B}_{t} C_{i m l}\left[P_{i j s}^{r}+P_{i h s}^{r}+P_{i k s}^{r}\right]$

This shows that
(3.11) $\quad \mathcal{B}_{l}\left(R_{m i j k \mid h}+R_{m i h j \mid k}+R_{m i k h \mid j}\right)=\lambda_{l}\left(R_{m i j k \mid h}+R_{m i h j \mid k}+R_{m i k h \mid j}\right)$

If and only if
(3.12) $\mu_{l}\left[H_{k h}^{s}\left(g_{m i} g_{j s}-g_{m j} g_{i s}\right)+H_{j k}^{s}\left(g_{m i} g_{h s}-g_{m h} g_{i s}\right)+H_{h j}^{s}\left(g_{m i} g_{k s}-g_{m k} g_{i s}\right)\right]+\left[\left(\mathcal{B}_{l} H_{k h}^{s}\right) P_{m i j s}\right)+$ $\left.\left(\mathcal{B}_{l} H_{j k}^{s}\right) P_{m i h s}+\left(\mathcal{B}_{l} H_{h j}^{s}\right) P_{m i k s}\right]+2 y^{t} \mathcal{B}_{t} C_{i m l}\left[P_{i j s}^{r}+P_{i h s}^{r}+P_{i k s}^{r}\right]=0$

Transvecting(3.1) by y^{i}, using (1.9), (1.6a) and (1.14), we get
(3.13) $\quad H_{j k \mid h}^{r}+H_{h \mid k}^{r}+H_{k h \mid j}^{r}=-\left(H_{k h}^{s} P_{j s}^{r}+H_{j k}^{s} P_{h s}^{r}+H_{h j}^{s} P_{k s}^{r}\right)$

Taking the covariant derivative for (3.13) with respect to x^{l} in the sense of Berwald, we get
(3.14) $\mathcal{B}_{l}\left(H_{j k \mid h}^{r}+H_{h j \mid k}^{r}+H_{k h \mid j}^{r}=-\left\{\left(\mathcal{B}_{l} H_{k h}^{s}\right) P_{j s}^{r}+H_{k h}^{s}\left(\mathcal{B}_{l} P_{j s}^{r}\right)+\right.\right.$
$\left(\mathcal{B}_{l} H_{j k}^{s}\right) P_{h s}^{r}+H_{j k}^{S}\left(\mathcal{B}_{l} P_{h s}^{r}\right)+$
$\left(\mathcal{B}_{l} H_{h j}^{s}\right) P_{k s}^{r}+H_{h j}^{s}\left(\mathcal{B}_{l} P_{k s}^{r}\right\}$

Using the condition (2.3) in (3.14), we get
(3.15) $\quad \mathcal{B}_{l}\left(H_{j k \mid h}^{r}+H_{h j \mid k}^{r}+H_{k h \mid j}^{r}\right)=-\lambda_{l}\left(H_{k h}^{s} P_{j s}^{r}+H_{j k}^{s} P_{h s}^{r}+H_{h j}^{s} P_{k s}^{r}\right)-\mu_{l}\left[H_{k h}^{s}\left(y^{r} g_{j s}-\delta_{j}^{r} y_{s}\right)+\right.$ $\left.\left.H_{j k}^{s}\left(y^{r} g_{h s}-\delta_{h}^{r} y_{s}\right)+H_{h j}^{s}\left(y^{r} g_{k s}-\delta_{k}^{r} y_{s}\right)\right]-\left[\left(\mathcal{B}_{l} H_{k h}^{s}\right) P_{j s}^{r}\right)+\left(\mathcal{B}_{l} H_{j k}^{s}\right) P_{h s}^{r}+\left(\mathcal{B}_{l} H_{h j}^{s}\right) P_{k s}^{r}\right]$
Using (3.13) in (3.15), we get
(3.16) $\mathcal{B}_{l}\left(H_{j k \mid h}^{r}+H_{h j \mid k}^{r}+H_{k h \mid j}^{r}\right)=\lambda_{l}\left(H_{j k \mid h}^{r}+H_{h j \mid k}^{r}+H_{k h \mid j}^{r}\right)-\mu_{l}\left[H_{k h}^{s}\left(y^{r} g_{j s}-\delta_{j}^{r} y_{s}\right)+H_{j k}^{s}\left(y^{r} g_{h s}-\right.\right.$ $\left.\left.\left.\delta_{h}^{r} y_{s}\right)+H_{h j}^{s}\left(y^{r} g_{k s}-\delta_{k}^{r} y_{s}\right)\right]-\left[\left(\mathcal{B}_{l} H_{k h}^{s}\right) P_{j s}^{r}\right)+\left(\mathcal{B}_{l} H_{j k}^{s}\right) P_{h s}^{r}+\left(\mathcal{B}_{l} H_{h j}^{s}\right) P_{k s}^{r}\right]$
This shows that
(3.17) $\quad \mathcal{B}_{l}\left(H_{j k \mid h}^{r}+H_{h j \mid k}^{r}+H_{k h \mid j}^{r}\right)=\lambda_{l}\left(H_{j k \mid h}^{r}+H_{h j \mid k}^{r}+H_{k h \mid j}^{r}\right)$

If and only if
(3.18) $\mu_{l}\left[H_{k h}^{s}\left(y^{r} g_{j s}-\delta_{j}^{r} y_{s}\right)+H_{j k}^{s}\left(y^{r} g_{h s}-\delta_{h}^{r} y_{s}\right)+H_{h j}^{s}\left(y^{r} g_{k s}-\delta_{k}^{r} y_{s}\right)\right]+\quad\left[\left(\mathcal{B}_{l} H_{k h}^{s}\right) P_{j s}^{r}\right)+$
$\left.\left(\mathcal{B}_{l} H_{j k}^{s}\right) P_{h s}^{r}+\left(\mathcal{B}_{l} H_{h j}^{s}\right) P_{k s}^{r}\right]=0$
The equation (3.5), (3.11) and (3.17) show that the tensors $\left(R_{i j k \mid h}^{r}+R_{i h j \mid k}^{r}+R_{i k h \mid j}^{r}\right),\left(R_{m i j k \mid h}+R_{m i h j \mid k}+\right.$ $\left.R_{\text {mikh|j}}\right)$ and $\left(H_{j k \mid h}^{r}+H_{h j \mid k}^{r}+H_{k h \mid j}^{r}\right)$ behave as recurrent if and only if (3.6), (3.12) and (3.18) respectively holds.
Thus, we conclude
Theorem 3.1.In $G(\mathcal{B P})-R F_{n}$, tensors $\left(R_{i j k \mid h}^{r}+R_{i h j \mid k}^{r}+R_{i k h \mid j}^{r}\right),\left(R_{m i j k \mid h}+R_{m i h j \mid k}+R_{m i k h \mid j}\right)$ and $\left(H_{j k \mid h}^{r}+\right.$ $\left.H_{h j \mid k}^{r}+H_{k h \mid j}^{r}\right)$ behave as recurrent if and only if (3.6), (3.7) and (3.18) respectively holds.

IV. THE PROJECTION ON INDICATRIX IN G(BR) $-\boldsymbol{R} F_{n}$

Definition 4.1.Let the current coordinates in the tangent space at the pointx ${ }_{0}$ bex i, then the indicatrixI ${ }_{n-1}$ is a hypersurface defined by[8]
(4.1) $\quad F\left(x_{0}, x^{i}\right)=1$
or in the parametric form it is defined by
(4.2) $x^{i}=x^{i}\left(u^{a}\right), \quad a=1,2, \ldots, n-1$.

Definition 4.2.The projection of any tensor T_{j}^{i} on the indicatrixI ${ }_{n-1}$ is given by [7]
(4.3) $\quad p . T_{j}^{i}:=T_{b}^{a} h_{a}^{i} h_{j}^{b}$,
where
(4.4) $\quad h_{c}^{i}:=\delta_{c}^{i}-l^{i} l_{c}$.

The projection of the vector y^{i}, the unit vectorl l^{i} and the metric tensorg ${ }_{i j}$ on the indicatrix are given by [8]
(4.5) a) p. $y^{i}=0$,
b) $p \cdot l^{i}=0$
and
c) $p . g_{i j}=h_{i j}$,
where
$(4.6) h_{i j}:=g_{i j}-l_{i} l_{j}$.
Our aim is to discuss the projection of the generalized recurrence property on indicatrix with respect to Berwald's connection for the tensors whose behave as recurrent in $G(\mathcal{B P})-R F_{n}$. We obtained some theorems in projection on indicatrix for Berwald's curvature tensor, the P-Ricci tensor $P_{j k}$ and the curvature vector P_{k}.

Let us consider $(\mathcal{B P})-R F_{n}$, for which the $P-$ Ricci tensor $P_{j k}$ behaves as recurrent in the sense of Berwald, i.e. satisfied (2.5).
In view of (4.3), the projection of the P - Ricci tensor $P_{j k}$ on the indicatrix is given by
(4.7) $\quad p . P_{j k}=P_{a b} h_{j}^{a} h_{k}^{b}$.

Taking the covariant derivative for the equation (4.7) with respect to x^{l}, in the sense of Berwald, we get
(4.8) $\quad \mathcal{B}_{l}\left(p . P_{j k}\right)=\mathcal{B}_{l}\left(P_{a b} h_{j}^{a} h_{k}^{b}\right)$.

Using (2.5) and the fact that $\mathrm{h}_{\mathrm{b}}^{\mathrm{a}}$ is covariant constant in (4.8), we get
(4.9) $\quad \mathcal{B}_{l}\left(p . P_{j k}\right)=\lambda_{l} P_{a b} h_{j}^{a} h_{k}^{b}$.

Using (4.7) in (4.9), we get
(4.10) $\quad \mathcal{B}_{l}\left(p . P_{j k}\right)=\lambda_{l}\left(p . P_{j k}\right)$.

Thus, we conclude
Theorem 4.1. In $(\mathcal{B P})-R F_{n}$, the projection of the $P-$ Ricci tensor $P_{j k}$ on indicatrix is recurrent.
Let us consider $(\mathcal{B R})-R F_{n}$, for which the curvature vector P_{k} behaves as recurrent in the sense of Berwald, i.e. satisfied (2.6).
In view of (4.3), the projection of the curvature vector P_{k} on the indicatrix is given by
(4.11) $\quad p . P_{k}=P_{a} h_{k}^{a}$.

Taking the covariant derivative for the equation (4.11) with respect to x^{l}, in the sense of Berwald, we get
(4.12) $\quad \mathcal{B}_{l}\left(p . P_{k}\right)=\mathcal{B}_{l}\left(P_{a} h_{k}^{a}\right)$.

Using (2.6) and the fact that h_{b}^{a} is covariant constant in (4.12), we get
(4.13) $\mathcal{B}_{l}\left(p . P_{k}\right)=\lambda_{l} P_{a} h_{k}^{a}$.

Using (4.11) in (4.13), we get
(4.14) $\quad \mathcal{B}_{l}\left(p . P_{k}\right)=\lambda_{l}\left(p . P_{k}\right)$.

Thus, we conclude
Theorem 4.2. In $(\mathcal{B P})-R F_{n}$, the projection of the curvature vector P_{k} on indicatrix is recurrent.
Let us consider a Finsler space F_{n} for which the projection of the P - Ricci tensor $P_{j k}$ on indicatrixbehaves as recurrent with respect to Berwald's connection, i.e. satisfied the equation (4.10).
Using (4.3) in (4.10), we get
(4.15) $\quad \mathcal{B}_{m}\left(P_{a b} h_{j}^{a} h_{k}^{b}\right)=\lambda_{m}\left(P_{a b} h_{j}^{a} h_{k}^{b}\right)$.

Using (4.4) in (4.15), we get
(4.16) $\quad \mathcal{B}_{m}\left\{P_{a b}\left(\delta_{j}^{a} \delta_{k}^{b}-\delta_{j}^{a} l^{b} l_{k}-l^{a} l_{j} \delta_{k}^{b}+l^{a} l_{j} l^{b} l_{k}\right)\right\}=\lambda_{m}\left\{P_{a b}\left(\delta_{j}^{a} \delta_{k}^{b}-\quad \delta_{j}^{a} l^{b} l_{k}-l^{a} l_{j} \delta_{k}^{b}+\right.\right.$ $\left.\left.l^{a} l_{j} l^{b} l_{k}\right)\right\}$.
Using (1.4) in (4.16), we get
(4.17) $\quad \mathcal{B}_{m}\left(P_{j k}-P_{j b} \frac{1}{F} y^{b} l_{k}-P_{a k} \frac{1}{F} y^{a} l_{j}+P_{a b} \frac{1}{F^{2}} y^{a} y^{b} l_{j} l_{k}\right)$
$=\lambda_{m}\left(P_{j k}-P_{j b} \frac{1}{F} y^{b} l_{k}-P_{a k} \frac{1}{F} y^{a} l_{j}+P_{a b} \frac{1}{F^{2}} y^{a} y^{b} l_{j} l_{k}\right)$.
Now, if $P_{j b} y^{b}=0=P_{a k} y^{a}$, then the equation (4.17) becomes
(4.18) $\quad \mathcal{B}_{m} P_{j k}=\lambda_{m} P_{j k}$.

Thus, we conclude
Theorem 4.3. If theprojection of the $P-$ Ricci tensor $P_{j k}$ of $G(\mathcal{B R})-R F_{n}$ on indicatrix is recurrent, then the $P-$ Ricci tensor $P_{j k}$ itself recurrent, provided $P_{j b} y^{b}=0=P_{a k} y^{a}$.

Let us consider a Finsler space F_{n} for which the projection of the curvature vector P_{k} on indicatrixbehaves as recurrent with respect to Berwald's connection, i.e. satisfied the equation (4.14).

Using (4.3) in (4.14), we get
(4.19) $\quad \mathcal{B}_{m}\left(P_{a} h_{k}^{a}\right)=\lambda_{m}\left(P_{a} h_{k}^{a}\right)$.

Using (4.4) in (4.19), we get
(4.20) $\mathcal{B}_{m}\left\{P_{a}\left(\delta_{k}^{a}-l^{a} l_{k}\right)\right\}=\lambda_{m}\left\{P_{a}\left(\delta_{k}^{a}-l^{a} l_{k}\right)\right\}$.

Using (1.4) in (4.22), we get
(4.21) $\quad \mathcal{B}_{m}\left(P_{k}-P_{a} \frac{1}{F} y^{a} l_{k}\right)=\lambda_{m}\left(P_{k}-P_{a} \frac{1}{F} y^{a} l_{k}\right)$.

Now, ifP $\mathrm{P}_{\mathrm{a}}^{\mathrm{a}}=0$, then the equation (4.21) becomes
(4.22) $\quad \mathcal{B}_{m} P_{k}=\lambda_{m} P_{k}$.

Thus, we conclude
Theorem 4.4.If theprojection of the curvature vector P_{k} of $G(B R)-R F_{n}$ on indicatrix is recurrent, then the curvature vector P_{k} itself recurrent, provided $P_{a} y^{a}=0$.

V. CONCLUSION

(1) The space which defined by the condition (2.1) we called a generalized $\mathcal{B} P$ - recurrent Finsler space.
(2) In generalized $\mathcal{B P}$ - recurrent Finsler space , P - Ricci tensor $P_{j k}$, the curvature vector P_{k} and the curvature scalar P behave as recurrent.
(3) In generalized $\mathcal{B P}$ - recurrent Finsler space, Berwald's covariant derivative of first order for the associate curvature tensor $P_{i j k h}$, the $(v) h v$ - torsion tensor $P_{k h}^{i}$ and the associative torsion tensor $P_{j k h}$ are nonvanishing.
(4) In generalized $\mathcal{B P}$ - recurrent Finsler space, the tensor $\left(S_{j k h \mid r}^{i} y^{r}\right)$ and the tensor $\left(C_{k h \mid j}^{i}+C_{s j}^{i} P_{k h}^{s}-\right.$ j / k) are generalized recurrent.
(5) In generalized $\mathcal{B P}$ - recurrent Finsler space, the tensor $\left(R_{i j k \mid h}^{r}+R_{i h j \mid k}^{r}+R_{i k h \mid j}^{r}\right)$, $\left(R_{m i j k \mid h}+R_{m i h j \mid k}+\right.$ $\left.R_{m i k h \mid j}\right)$ and $\left(H_{j k \mid h}^{r}+H_{h j \mid k}^{r}+H_{k h \mid j}^{r}\right)$ behave as recurrent if and only if (3.6), (3.7) and (3.18) respectively holds.
(6) We obtained some certain identities in generalized $\mathcal{B P}$ - recurrent Finsler space.
(7) In generalized $\mathcal{B P}$ - recurrent Finsler space the projection of the P - Ricci tensor $P_{j k}$ and curvature vector P_{k} on indicatrix is recurrent.
(8) If the projection of P - Ricci tensor $P_{j k}$ and the projection of curvature vector P_{k} of $G(\mathcal{B R})-R F_{n}$ on indicatrix is recurrent, then the $P-$ Ricci tensor $P_{j k}$ and curvature vector P_{k} itself recurrent, provided $P_{j b} y^{b}=0=P_{a k} y^{a}$ and $P_{a} y^{a}=0$ respectively.

REFERENCES

[1] A.H.Mohammed, On study of P^{h} - recurrent curvature tensors in different types of Finsler space, M.Sc. Thesis, University of Aden, (Aden) (Yemen), (2016).
[2] A.H.Awed,On study of generalized P^{h} - recurrent Finsler space, M.Sc. Thesis, University of Aden, (Aden) (Yemen), (2017).
[3] A.M.Hanballa,On covariant differentiation of curvature tensors in Finsler spaces, Ph.D. Thesis, Faculty of Education - Aden, University of Aden, (Aden) (Yemen), (2016).
[4] A. Zafar and A.Musavvir,On some properties of W - curvature tensor, Palestine Journal of Mathematices, Vol.3(1), (2014), $61-69$.
[5] F.Y.Qasem,On transformations in Finsler spaces,D. Phil. Thesis, University of Allahabad, (Allahabad) (India) (2000).
[6] F.Y.Qasem and A.A.Abdallah, On certain generalized $\mathcal{B R}$-recurrent Finsler space, International Journal of Applied Science and Mathematics, Volume 3, Issue 3, (2016), 111-114 .
[7] F.Y.Qasem and S.M.Baleedi,On a generalized $\mathcal{B K}$ - recurrent Finsler space, International Journal of Science basic and applied reserch, Volume 28, No.3, (2016), 195-203.
[8] H. Rund,TheDifferential Geometry of FinslerSpaces, Springer-Verlag, Berlin Göttingen, $2^{\text {nd }}$ Edit. Nauka, Moscow-Russian, 1959.
[9] P.N.Pandey, Some problems in Finsler spaces, D.Sc. Thesis, University of Allahabad, (Allahabad) (India) , (1993) .
[10] P.N. Pandey, S. Saxena and A. Goswani, On a generalized H - recurrent space, Journal of International Academy of Physical Science, Vol.15, (2011), 201 - 211.
[11] R. Verma, Some transformations in Finsler space, Ph.D.Thesis, University of Allahabad, (Allahabad), (India), (1991).
[12] S. Dikshit, Certain types of recurrences in Finsler spaces, D. phil. Thesis, University of Allahabad, (Allahabad) (India), (1992).

