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Abstract 
       A total dominating set D of graph G = (V, E) is a total strong split dominating set if the induced sub 

graph < V−D > is totally disconnected with at least two vertices. The total strong split domination number 

γtss(G) is the minimum cardinality of a total strong split dominating set. In this paper, we introduce the concept 

𝛾𝑡𝑠𝑠 − graph of a graph G and define the graph G(𝛾𝑡𝑠𝑠) = (V(𝛾𝑡𝑠𝑠), E(𝛾𝑡𝑠𝑠)) of G to be the graph whose 

vertices V(𝛾𝑡𝑠𝑠) corresponds injectively with the 𝛾𝑡𝑠𝑠 −sets of a graph G and two 𝛾𝑡𝑠𝑠 −sets D1 and D2 form an 

edge in G(𝛾𝑡𝑠𝑠) if there exists a vertex v ∈ D1 and w ∈ D2 such that v is adjacent to w and D1 = D2 – {w} ∪ {v} 

or equivalently D2 = D1 – {v} ∪ {w}.  With this definition, two 𝛾𝑡𝑠𝑠 −sets are said to be adjacent if they differ by 

one vertex, and the two vertices defining this difference are adjacent in G. We also determine G(𝛾𝑡𝑠𝑠) of some 

graphs. 
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I.  INTRODUCTION 

 

     The graphs considered here are finite, undirected, without loops, multiple edges. For all graph theoretic 

terminology not defined here, the reader is referred to [2]. A set of vertices D in a graph G is a dominating set, if 

every vertex in V−D is adjacent to some vertex in D. The domination number γ(G) is the minimum cardinality 

of a dominating set. A total dominating set D of a connected graph G is a total split dominating set if the 

induced sub graph < V−D > is disconnected. The total split domination number γts(G) is the minimum 

cardinality of a total split dominating set. This concept was introduced by B. Janakiram, Soner and Chaluvaraju 

in [3]. Strong split domination was introduced by V. R. Kulli and B. Janakiram in [4]. A dominating set D of a 

graph G = (V, E) is a strong split dominating set if the induced sub graph < V – D > is totally disconnected with 

at least two vertices. The strong split domination number γss (G) is the minimum cardinality of a strong split 

dominating set. We have introduced a new concept namely total strong split domination number in [5]. A total 

dominating set D of a connected graph G is a total strong split dominating set if the induced sub graph < V−D > 

is totally disconnected with at least two vertices. The total strong split domination number γtss(G) is the 

minimum cardinality of a total strong split dominating set. Gerd H. Fricke et al. [1] introduced 𝛾 −graph of a 

graph. Consider the family of all 𝛾-sets of a graph G and define the 𝛾 −graph G(𝛾) = (V(𝛾), E(𝛾)) of G to be 

the graph whose vertices V(𝛾) correspond 1−1 with the 𝛾 −sets of a graph G, and two 𝛾 −sets, say D1 and D2, 

form an edge in E(𝛾) if there exists a vertex v ∈ D1 and w ∈ D2 such that v is adjacent to w and D1 = D2 – {w} ∪ 

{v} or equivalently D2 = D1 – {v} ∪ {w}.  With this definition, two 𝛾 −sets are said to be adjacent if they differ 

by one vertex, and the two vertices defining this difference are adjacent in G. We introduce the concept γtss − 

graph of a graph G and define the graph G(γtss ) = (V(γtss ), E(γtss )) of G to be the graph whose vertices 

V(γtss ) corresponds injectively with the γtss −sets of a graph G and two γtss −sets D1 and D2 form an edge in 

G(γtss ) if there exists a vertex v ∈ D1 and w ∈ D2 such that v is adjacent to w and D1 = D2 – {w} ∪ {v} or 

equivalently D2 = D1 – {v} ∪ {w}.  With this definition, two γtss −sets are said to be adjacent if they differ by 

one vertex, and the two vertices defining this difference are adjacent in G and we determine G(γtss ) of some 

graphs. 

Definition 1.1[5] A total dominating set D of a connected graph G is a total strong split dominating set if the 

induced sub graph < V−D > is totally disconnected with at least two vertices. The total strong split domination 

number γtss(G) is the minimum cardinality of a total strong split dominating set. 

Definition 1.2[1] Consider the family of all 𝛾-sets of a graph G and define the 𝛾 −graph G(𝛾) = (V(𝛾), E(𝛾)) 

of G to be the graph whose vertices V(𝛾) correspond 1−1 with the 𝛾 −sets of a graph G, and two 𝛾 −sets, say 

D1 and D2, form an edge in E(𝛾) if there exists a vertex v ∈ D1 and w ∈ D2 such that v is adjacent to w and D1 = 

D2 – {w} ∪ {v} or equivalently D2 = D1 – {v} ∪ {w}.  With this definition, two 𝛾 −sets are said to be adjacent if 

they differ by one vertex, and the two vertices defining this difference are adjacent in G. 
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Definition 1.3.  Consider the family of all 𝛾𝑡𝑠𝑠 −sets of a graph G and define the graph G(𝛾𝑡𝑠𝑠) = (V(𝛾𝑡𝑠𝑠), 

E(𝛾𝑡𝑠𝑠)) of G to be the graph whose vertices V(𝛾𝑡𝑠𝑠) corresponds injectively with the 𝛾𝑡𝑠𝑠 -sets of a graph G and 

two 𝛾𝑡𝑠𝑠 −sets D1 and D2 form an edge in G(𝛾𝑡𝑠𝑠) if there exists a vertex v ∈ D1 and w ∈ D2 such that v is 

adjacent to w and D1 = D2 – {w} ∪ {v} or equivalently D2 = D1 – {v} ∪ {w}. 

Example 1.4. 

 

For the given graph in Figure 1.1 the total strong split dominating sets are  

D1 = {u4, u5, u7, u8, u9},  D2 = {u4, u5, u6, u8, u9},     v = u7 and w = u6 

Then D1 – {v} ∪ {w} = {u4, u5, u7, u8, u9}− {u7} ∪ {u6} = {u4, u5, u6, u8, u9} = D2 

D2 – {w} ∪ {v} = {u4, u5, u6, u8, u9}− {u6} ∪ {u7} = {u4, u5, u7, u8, u9}= D1 

 

Definition 1.5.  A vertex v in a graph G = (V, E) is a 𝛾𝑡𝑠𝑠−indispensable vertex if it is an element of every 

𝛾𝑡𝑠𝑠−set of G. In a caterpillar, every vertex of degree ≥ 3 is a 𝛾𝑡𝑠𝑠− indispensable vertex. 

II. RESULTS 

Theorem 2.1. Let T be a caterpillar with exactly 2 support vertices v1 and v2which are 

𝛾𝑡𝑠𝑠−indispensable vertices. If the number of vertices in between v1 and v2 of T is 3k+1 then G(𝛾𝑡𝑠𝑠) is a path of 

length k. 

 

Proof: Let T be a caterpillar with exactly 2 support vertices v1, v2 which are 𝛾𝑡𝑠𝑠− indispensable vertices and u1, 

u2, u3, u4, . . . , u3k+1  be the vertices between v1 and v2.  Then the 𝛾𝑡𝑠𝑠−sets of T can be listed as follows. D1 = 

{v1, u1, u3, u4, u6, u7, . . . , u3k+1, v2}, D2 = {v1, u1, u3, u4, u6, u7, . . . , u3k-3, u3k-2, u3k-1, u3k+1, v2}, D3 = {v1, u1, u3, u4, 

u6, u7, . . . , u3k-6, u3k-5, u3k-4, u3k-2, u3k-1, u3k+1, v2},  . . . ,  Dk = {v1, u1, u3, u4, u6, u7, . . . , u3k-9, u3k-8, u3k-7, u3k-5, u3k-

4, u3k-2, u3k-1, u3k+1, v2}, Dk+1 = {v1, u1, u3, u4, u6, u7, . . . , u3k-8, u3k-7, . . . , u3k+1, v2}. Here 𝛾𝑡𝑠𝑠−sets D2, D3, D4, . . . 

 

Figure 2.1 
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Figure 1.2 
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, Dk are adjacent to both the preceding and succeeding 𝛾𝑡𝑠𝑠−sets  and hence get degree 2. The 𝛾𝑡𝑠𝑠−set D1 is 

adjacent to D2 alone and Dk+1 is adjacent to Dk  alone. So both D1 and Dk+1 get degree 1. Thus we get a path 

containing vertices D1, D2, D3, D4, . . . , Dk+1 of length k.       ■ 

Theorem 2.2. Let T be a caterpillar as shown in the figure. If the number of vertices in between v1 and v2 of T is 

3k, k ≥ 1 then T(𝛾𝑡𝑠𝑠) is K1. 

 

Proof: Let T be a caterpillar with exactly 2 support vertices v1, v2 which are 𝛾𝑡𝑠𝑠− indispensable vertices and u1, 

u2, u3, u4, . . . , u3k  be the vertices between v1 and v2.  Then D = {v1, u1, u3, u4, u6, u7, . . . , u3k, v2}is the only 

𝛾𝑡𝑠𝑠−set of T. Hence we get T(𝛾𝑡𝑠𝑠) to be  K1.        ■ 

Proposition 2.3. C3k (𝛾𝑡𝑠𝑠) ≅ 𝐾3
   , for k  ≥ 2. 

Proof: Let {v1, v2, . . . , v3k} be the vertex set of C3k, for k  ≥ 2. Let D be the minimal total strong split 

domination set of C3k. D1 = {v1, v2, v4, v5, . . . , v3k-2, v3k-1}, D2 = {v2, v3, v5, . . . , v3k-2, v3k}, D3 = {v1, v3, v4, v6, . . 

. , v3k-2, v3k} are the 𝛾𝑡𝑠𝑠−sets of C3k. Since each C3k, for k  ≥ 2 has 3 disjoint 𝛾𝑡𝑠𝑠−sets  C3k(𝛾𝑡𝑠𝑠) ≅ 𝐾3
   .  

           ■ 

Theorem 2.4. C3k+1 (𝛾𝑡𝑠𝑠) ≅ C3k+1, for k  ≥ 2. 

Proof: Let {v1, v2, . . . ,  v3k+1} be the vertex set of C3k+1, for k  ≥ 2. We arrange the vertices of 𝛾𝑡𝑠𝑠−sets of C3k+1 

in the ascending order of the suffixes of the vertices. Let D be the minimal total strong split domination set of 

C3k. D1 = {v1, v2, v4, v5, . . . , v3k-1, v3k+1}, D2 = {v1, v2, v3, v5, v6, . . . , v3k-2, v3k-1}, D3 = {v2, v3, v4, v6, v7, . . . , v3k, 

v3k+1}, D4 = {v1, v3, v4, v5, . . . , v3k-1, v3k+1}, D5 = {v1, v2, v4, v5, v6, . . . , v3k-1, v3k},. . . , Dk+5 = {v2, v3, v5, . . . , v3k, 

v3k+1 }, . . . , D2k+2 = {v1, v3, v4, v6, v7, . . . , v3k-1, v3k}, D2k+3 = {v1, v2, v4,. . . , v3k-1, v3k} D2k+4 = {v1, v3, v4, v6, v7, . . 

. , v3k, v3k+1},  . . . ,  D3k+1 = {v1, v3, v4, v6, v7, . . . , v3k, v3k+1}. We have 3k+1 𝛾𝑡𝑠𝑠−sets of C3k+1. The 𝛾𝑡𝑠𝑠−sets D1 is 

adjacent to Dk and D2k+3. D2 is adjacent to Dk+1 and D3k. D3 is adjacent to Dk+2 and D2k+1, . . . ,  Dk is adjacent to 

D1  and Dk+3. Dk+1 is adjacent to D2 and D2k. Dk+2 is adjacent to D3 and D2k+1. Dk+3 is adjacent to Dk and D2k+2,  . . . 

, D2k  is adjacent to Dk+1  and D2k+3. D2k+1 is adjacent to Dk+2 and D3k. D2k+2 is adjacent to Dk+3 and D3k+1. D2k+3 is 

adjacent to D1 and D2k, . . . , D3k  is adjacent to D2  and D2k+1. D3k+1 is adjacent to D3 and D2k+2. Thus we get a 

cycle D1 , Dk , D2k+3, Dk+1, D3k,  Dk+2 , D2k+1, . . . ,  Dk+3, D2k, D3,  Dk, D2k+2,  . . . ,  Dk+1 , D2k+3,  Dk+3,  D3k+1 , D1, D2k 

, . . . ,  D2 , D2k+1, D3 , D2k+2. Thus the degree of each 𝛾𝑡𝑠𝑠−set Di is 2. Then we get a cycle of 3k+1 vertices. 

Hence it is proved that C3k+1 (𝛾𝑡𝑠𝑠) ≅ C3k+1, for k  ≥ 2.       

        ■ 

Proposition 2.5. P3k+1 (𝛾𝑡𝑠𝑠) ≅ K1 where k = 1, 2, 3, . . .  

Proof: Let {v1, v2, v3, . . . , v3k+1} be the vertex set of the path P3k+1. 

Case (i) k =1. 

The path obtained is P4. The 𝛾𝑡𝑠𝑠−set of P4 is D = {v2, v3}.The order of P4 (𝛾𝑡𝑠𝑠) 𝑖𝑠 1.  Hence P4 (𝛾𝑡𝑠𝑠) ≅ K1. 

Case (ii) k =2. 

The path obtained is P7. The 𝛾𝑡𝑠𝑠−set of P7 is D = {v2, v3, v5, v6}.The order of P7 (𝛾𝑡𝑠𝑠) 𝑖𝑠 1.  Hence P7 (𝛾𝑡𝑠𝑠) ≅ 

K1. 

Case (ii) k ≥ 3. 

The 𝛾𝑡𝑠𝑠−set of P3k+1 is D = {v2, v3, v5, v6, . . . , v3k-3, v3k-1, v3k}. The order of P3k+1 (𝛾𝑡𝑠𝑠) 𝑖𝑠 1.  Hence P3k+1 (𝛾𝑡𝑠𝑠) ≅ 

K1.             ■ 
 

 

Figure 2.2 
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