A Note on $G(\gamma_{tss})$ of Some Graphs

T.Sheeba Helen^{#1},T.Nicholas^{#2},

Assistant Professor in Mathematics, Holy Cross College (Autonomous), (Affiliated to Manonmaniam Sundaranar University, Tirunelveli) Nagercoil, TamilNadu, India. # Former Principal, St. Jude's College, (Affiliated to Manonmaniam Sundaranar University, Tirunelveli), Thoothoor, TamilNadu, India.

Abstract

A total dominating set D of graph G = (V, E) is a total strong split dominating set if the induced sub graph $\langle V-D \rangle$ is totally disconnected with at least two vertices. The total strong split domination number $\gamma_{tss}(G)$ is the minimum cardinality of a total strong split dominating set. In this paper, we introduce the concept $\gamma_{tss} - \text{graph of a graph } G$ and define the graph $G(\gamma_{tss}) = (V(\gamma_{tss}), E(\gamma_{tss}))$ of G to be the graph whose vertices $V(\gamma_{tss})$ corresponds injectively with the γ_{tss} -sets of a graph G and two γ_{tss} -sets D_1 and D_2 form an edge in $G(\gamma_{tss})$ if there exists a vertex $v \in D_1$ and $w \in D_2$ such that v is adjacent to w and $D_1 = D_2 - \{w\} \cup \{v\}$ or equivalently $D_2 = D_1 - \{v\} \cup \{w\}$. With this definition, two γ_{tss} -sets are said to be adjacent if they differ by one vertex, and the two vertices defining this difference are adjacent in G. We also determine $G(\gamma_{tss})$ of some graphs.

Keywords - *Domination number, total strong split domination number,* γ_{tss} – *graph of a graph.*

I. INTRODUCTION

The graphs considered here are finite, undirected, without loops, multiple edges. For all graph theoretic terminology not defined here, the reader is referred to [2]. A set of vertices D in a graph G is a dominating set, if every vertex in V–D is adjacent to some vertex in D. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set. A total dominating set D of a connected graph G is a total split dominating set if the induced sub graph $\langle V-D \rangle$ is disconnected. The total split domination number $\gamma_{ts}(G)$ is the minimum cardinality of a total split dominating set. This concept was introduced by B. Janakiram, Soner and Chaluvaraju in [3]. Strong split domination was introduced by V. R. Kulli and B. Janakiram in [4]. A dominating set D of a graph G = (V, E) is a strong split dominating set if the induced sub graph $\langle V - D \rangle$ is totally disconnected with at least two vertices. The strong split domination number γ_{ss} (G) is the minimum cardinality of a strong split dominating set. We have introduced a new concept namely total strong split domination number in [5]. A total dominating set D of a connected graph G is a total strong split dominating set if the induced sub graph $\langle V-D \rangle$ is totally disconnected with at least two vertices. The total strong split domination number $\gamma_{tss}(G)$ is the minimum cardinality of a total strong split dominating set. Gerd H. Fricke et al. [1] introduced γ –graph of a graph. Consider the family of all γ -sets of a graph G and define the γ –graph $G(\gamma) = (V(\gamma), E(\gamma))$ of G to be the graph whose vertices $V(\gamma)$ correspond 1–1 with the γ –sets of a graph G, and two γ –sets, say D₁ and D₂, form an edge in $E(\gamma)$ if there exists a vertex $v \in D_1$ and $w \in D_2$ such that v is adjacent to w and $D_1 = D_2 - \{w\} \cup U$ $\{v\}$ or equivalently $D_2 = D_1 - \{v\} \cup \{w\}$. With this definition, two γ -sets are said to be adjacent if they differ by one vertex, and the two vertices defining this difference are adjacent in G. We introduce the concept γ_{tss} – graph of a graph G and define the graph $G(\gamma_{tss}) = (V(\gamma_{tss}), E(\gamma_{tss}))$ of G to be the graph whose vertices $V(\gamma_{tss})$ corresponds injectively with the γ_{tss} –sets of a graph G and two γ_{tss} –sets D_1 and D_2 form an edge in $G(\gamma_{tss})$ if there exists a vertex $v \in D_1$ and $w \in D_2$ such that v is adjacent to w and $D_1 = D_2 - \{w\} \cup \{v\}$ or equivalently $D_2 = D_1 - \{v\} \cup \{w\}$. With this definition, two γ_{tss} –sets are said to be adjacent if they differ by one vertex, and the two vertices defining this difference are adjacent in G and we determine $G(\gamma_{tss})$ of some graphs.

Definition 1.1[5] A total dominating set D of a connected graph G is a total strong split dominating set if the induced sub graph $\langle V-D \rangle$ is totally disconnected with at least two vertices. The total strong split domination number $\gamma_{tss}(G)$ is the minimum cardinality of a total strong split dominating set.

Definition 1.2[1] Consider the family of all γ -sets of a graph G and define the γ –graph $G(\gamma) = (V(\gamma), E(\gamma))$ of G to be the graph whose vertices $V(\gamma)$ correspond 1–1 with the γ –sets of a graph G, and two γ –sets, say D_1 and D_2 , form an edge in $E(\gamma)$ if there exists a vertex $v \in D_1$ and $w \in D_2$ such that v is adjacent to w and $D_1 = D_2 - \{w\} \cup \{v\}$ or equivalently $D_2 = D_1 - \{v\} \cup \{w\}$. With this definition, two γ –sets are said to be adjacent if they differ by one vertex, and the two vertices defining this difference are adjacent in G.

Definition 1.3. Consider the family of all γ_{tss} –sets of a graph G and define the graph $G(\gamma_{tss}) = (V(\gamma_{tss}), E(\gamma_{tss}))$ of G to be the graph whose vertices $V(\gamma_{tss})$ corresponds injectively with the γ_{tss} -sets of a graph G and two γ_{tss} –sets D_1 and D_2 form an edge in $G(\gamma_{tss})$ if there exists a vertex $v \in D_1$ and $w \in D_2$ such that v is adjacent to w and $D_1 = D_2 - \{w\} \cup \{v\}$ or equivalently $D_2 = D_1 - \{v\} \cup \{w\}$.

Example 1.4.

Figure 1.1

For the given graph in Figure 1.1 the total strong split dominating sets are

 $D_1 = \{u_4, u_5, u_7, u_8, u_9\}, D_2 = \{u_4, u_5, u_6, u_8, u_9\}, v = u_7 \text{ and } w = u_6$

Then $D_1 - \{v\} \cup \{w\} = \{u_4, u_5, u_7, u_8, u_9\} - \{u_7\} \cup \{u_6\} = \{u_4, u_5, u_6, u_8, u_9\} = D_2$

 $D_2 - \{w\} \cup \{v\} = \{u_4, u_5, u_6, u_8, u_9\} - \{u_6\} \cup \{u_7\} = \{u_4, u_5, u_7, u_8, u_9\} = D_1$

Figure 1.2

Definition 1.5. A vertex v in a graph G = (V, E) is a γ_{tss} -indispensable vertex if it is an element of every γ_{tss} -set of G. In a caterpillar, every vertex of degree ≥ 3 is a γ_{tss} - indispensable vertex.

II. RESULTS

Theorem 2.1. Let T be a caterpillar with exactly 2 support vertices v_1 and v_2 which are γ_{tss} -indispensable vertices. If the number of vertices in between v_1 and v_2 of T is 3k+1 then $G(\gamma_{tss})$ is a path of length k.

Figure 2.1

Proof: Let T be a caterpillar with exactly 2 support vertices v_1 , v_2 which are γ_{tss-} indispensable vertices and u_1 , u_2 , u_3 , u_4 , ..., u_{3k+1} be the vertices between v_1 and v_2 . Then the γ_{tss-} sets of T can be listed as follows. $D_1 = \{v_1, u_1, u_3, u_4, u_6, u_7, \ldots, u_{3k+1}, v_2\}$, $D_2 = \{v_1, u_1, u_3, u_4, u_6, u_7, \ldots, u_{3k-3}, u_{3k-2}, u_{3k-1}, u_{3k+1}, v_2\}$, $D_3 = \{v_1, u_1, u_3, u_4, u_6, u_7, \ldots, u_{3k-3}, u_{3k-2}, u_{3k-1}, u_{3k+4}, u_{2k-2}, u_{3k-4}, u_{3k-5}, u_{3k-4}, u_{3k-2}, u_{3k-1}, u_{3k-4}, u_{3k-5}, u_{3k-4}, u_{3k-2}, u_{3k-1}, u_{3k-4}, u_{3k-5}, u_{3k-4}, u_{3k-4}, u_{3k-4}, u_{3k-6}, u_{3k-7}, \ldots, u_{3k-6}, u_{3k-7}, \dots, u_{3k-6}, u_{3k-$

, D_k are adjacent to both the preceding and succeeding γ_{tss} -sets and hence get degree 2. The γ_{tss} -set D_1 is adjacent to D_2 alone and D_{k+1} is adjacent to D_k alone. So both D_1 and D_{k+1} get degree 1. Thus we get a path containing vertices D_1 , D_2 , D_3 , D_4 , ..., D_{k+1} of length k.

Theorem 2.2. Let T be a caterpillar as shown in the figure. If the number of vertices in between v_1 and v_2 of T is $3k, k \ge 1$ then $T(\gamma_{tss})$ is K_1 .

Figure 2.2

Proof: Let T be a caterpillar with exactly 2 support vertices v_1 , v_2 which are γ_{tss-} indispensable vertices and u_1 , u_2 , u_3 , u_4 , ..., u_{3k} be the vertices between v_1 and v_2 . Then $D = \{v_1, u_1, u_3, u_4, u_6, u_7, ..., u_{3k}, v_2\}$ is the only γ_{tss-} set of T. Hence we get $T(\gamma_{tss})$ to be K_1 .

Proposition 2.3. $C_{3k}(\gamma_{tss}) \cong \overline{K_3}$, for $k \ge 2$.

Proof: Let $\{v_1, v_2, \ldots, v_{3k}\}$ be the vertex set of C_{3k} , for $k \ge 2$. Let D be the minimal total strong split domination set of C_{3k} . $D_1 = \{v_1, v_2, v_4, v_5, \ldots, v_{3k-2}, v_{3k-1}\}$, $D_2 = \{v_2, v_3, v_5, \ldots, v_{3k-2}, v_{3k}\}$, $D_3 = \{v_1, v_3, v_4, v_6, \ldots, v_{3k-2}, v_{3k}\}$ are the γ_{tss} -sets of C_{3k} . Since each C_{3k} , for $k \ge 2$ has 3 disjoint γ_{tss} -sets $C_{3k}(\gamma_{tss}) \cong \overline{K_3}$.

Theorem 2.4. $C_{3k+1}(\gamma_{tss}) \cong C_{3k+1}$, for $k \ge 2$.

Proof: Let $\{v_1, v_2, \ldots, v_{3k+1}\}$ be the vertex set of C_{3k+1} , for $k \ge 2$. We arrange the vertices of γ_{tss} -sets of C_{3k+1} in the ascending order of the suffixes of the vertices. Let D be the minimal total strong split domination set of C_{3k} . $D_1 = \{v_1, v_2, v_4, v_5, \ldots, v_{3k-1}, v_{3k+1}\}$, $D_2 = \{v_1, v_2, v_3, v_5, v_6, \ldots, v_{3k-2}, v_{3k-1}\}$, $D_3 = \{v_2, v_3, v_4, v_6, v_7, \ldots, v_{3k}, v_{3k+1}\}$, $D_4 = \{v_1, v_3, v_4, v_5, \ldots, v_{3k-1}, v_{3k+1}\}$, $D_5 = \{v_1, v_2, v_4, v_5, v_6, \ldots, v_{3k-1}, v_{3k}\}$, \dots , $D_{k+5} = \{v_2, v_3, v_5, \cdots, v_{3k}, v_{3k+1}\}$, \dots , $D_{2k+2} = \{v_1, v_3, v_4, v_6, v_7, \ldots, v_{3k-1}, v_{3k}\}$, $D_{2k+3} = \{v_1, v_2, v_4, \cdots, v_{3k-1}, v_{3k}\}$, $D_{2k+4} = \{v_1, v_3, v_4, v_6, v_7, \ldots, v_{3k}, v_{3k+1}\}$, \dots , $D_{3k+1} = \{v_1, v_3, v_4, v_6, v_7, \ldots, v_{3k}, v_{3k+1}\}$. We have $3k+1 \gamma_{tss}$ -sets of C_{3k+1} . The γ_{tss} -sets D_1 is adjacent to D_k and D_{2k+3} . D_2 is adjacent to D_{k+1} and D_{3k} . D_3 is adjacent to D_{k+2} and D_{2k+1} , \dots , D_k is adjacent to D_1 and D_{2k+3} . D_{2k+1} is adjacent to D_2 and D_{2k} . D_{k+2} is adjacent to D_3 and D_{2k+2} . Thus we get a cycle D_1 , D_k , D_{2k+3} , D_{k+1} , D_{2k+2} , D_{2k+1} , \dots , D_{k+3} , D_{2k+3} , D_{k+3} , D_{2k+1} . Thus we get a cycle D_1 , D_k , D_{2k+3} , D_{k+1} . Thus the degree of each γ_{tss} -set D_1 is 2. Then we get a cycle of 3k+1 vertices. Hence it is proved that C_{3k+1} (γ_{tss}) $\cong C_{3k+1}$, for $k \ge 2$.

Proposition 2.5. $P_{3k+1}(\gamma_{tss}) \cong K_1$ where k = 1, 2, 3, ...**Proof:** Let $\{v_1, v_2, v_3, ..., v_{3k+1}\}$ be the vertex set of the path P_{3k+1} .

Case (i) k =1. The path obtained is P₄. The γ_{tss} -set of P₄ is D = {v₂, v₃}. The order of P₄ (γ_{tss}) *is* 1. Hence P₄ (γ_{tss}) \cong K_{1.} Case (ii) k =2. The path obtained is P₇. The γ_{tss} -set of P₇ is D = {v₂, v₃, v₅, v₆}. The order of P₇ (γ_{tss}) *is* 1. Hence P₇ (γ_{tss}) \cong K_{1.} Case (ii) k \ge 3. The γ_{tss} -set of P_{3k+1} is D = {v₂, v₃, v₅, v_{6,...}, v_{3k-3}, v_{3k-1}, v_{3k}}. The order of P_{3k+1} (γ_{tss}) *is* 1. Hence P_{3k+1} (γ_{tss}) \cong K₁.

REFERENCES

- [1] Gerd. H. Fricke, Sandra. M, Hedetniemi, Stephen Hedetniemi and Kevin R. Hutson, γ –graph on Graphs, Discuss Math Graph Theory n31 (2011) 517–531.
- [2] Harary. F, Graph Theory, Addison-Wesley, Reading, MA, 1972.
- [3] Janakiraman. B, Soner. N. D and Chaluvaraju. B, Total Split Domination in Graphs, Far East J.Appl. Math. 6(2002) 89-95.
- [4] Kulli.V. R and Janakiram. B, The Strong Split Domination Number of a Graph, Acta Ciencia Indica, Vol. XXXII M, No. 2 (2006) 715–720.
- [5] T.Nicholas and T. Sheeba Helen, The Total Strong Split Domination Number of Graphs, International Journal of Mathematics and Statistics Invention, Vol.5 Issue 2(1-3) February 2017.